Measurement of quarkonium polarization in pp collisions at $\sqrt{s}=7\,\mathrm{TeV}$ with the CMS experiment

April 22, 2013 QWG 2013, IHEP, Beijing

Linlin ZHANG
Peking University, Beijing
on behalf of
the CMS collaboration

Introduction

- Despite many attempts made in recent years, quarkonium production is not yet well understood
- Various models can describe cross sections well, but quarkonium polarization is sensitive to the production mechanism and still puzzling
- New measurements needed, especially for the Υ family and at high p_{T}

Quarkonium polarization

Most general observable angular decay distribution:

$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\varphi} \sin^{2}\theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi$$

$$\lambda_{\theta} = +1$$
 $\lambda_{\phi} = \lambda_{\theta \phi} = 0$
 $\lambda_{\theta} = +1$: "transverse" polarization
$$\lambda_{\theta} = -1$$
 $\lambda_{\phi} = \lambda_{\theta \phi} = 0$
 $\lambda_{\theta} = -1$: "longitudinal" pol.

Definition of reference frames

Helicity axis (HX): direction of quarkonium momentum Collins-Soper axis (CS): direction of relative velocity of colliding particles (p_1 , p_2)

Perpendicular helicity axis (PX): perpendicular to CS

Need to measure full angular distribution

- ullet In the past, only $\lambda_{artheta}$ was measured in one reference frame
- Two very different physical cases are with same λ_{ϑ} (shown below), so the full angular distribution (three polarization parameters) must be measured
- Observed polarization depends on the frame

Frame independent parameter

- The shape of the angular distribution is obviously frame-invariant (= invariant by rotation)
- It can be characterized by a frame-independent parameter, e.g.

$$\tilde{\lambda} = \frac{\lambda_{\vartheta} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$$

The CMS detector

CMS $\Upsilon(nS)$ polarization analysis

- We measure λ_{ϑ} , λ_{φ} , $\lambda_{\vartheta\varphi}$ and $\tilde{\lambda}$ in three frames (HX, CS, PX)
- Data collected in 2011 with $L_{\rm int} = 4.9\,{\rm fb}^{-1}$
- Upsilon dimuon trigger:
 - dimuon mass: 8.5–11.5 GeV
 - dimuon rapidity: |y| < 1.25
 - dimuon $p_{\mathrm{T}} > 5$, 7, 9 GeV
- Independent in five $p_{\rm T}$ bins: $10-50\,{\rm GeV}$ and two rapidity ranges: |y|<0.6 and 0.6<|y|<1.2

• Estimated signal yields in the probed kinematic phase space:

$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
222 k	82 k	51 k

The framework

The Posterior Probability Distribution (PPD) of the polarization parameters $\vec{\lambda} = (\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$, is directly calculated

- Events distributed in the background model are subtracted from the data sample
- 2 Define the PPD from the remaining signal-like events
- Numerical results and uncertainties are obtained from the 1D projections of the PPD

Background subtraction

- Signal regions defined as $\pm 1\sigma$ around mass peaks
- Background fractions in these regions are determined by fits to the dimuon mass distributions
- Angular distribution and dimuon kinematics $(p_T, M, |y|)$ of background events modeled as weighted sums of the distributions in the mass sidebands, left of the $\Upsilon(1S)$ and right of the $\Upsilon(3S)$
- Event-by-event background subtraction of background-like events using a likelihood-ratio criterion

Efficiencies

- Single-muon efficiencies measured with data-driven Tag&Probe method
- Carefully studied to avoid artificial spurious polarizations
- Muon-pair correlations are negligible in the probed phase space from detailed MC studies
- Efficiencies are accounted for on an event-by-event basis

Systematic effects

- Systematic effects studied on data and with pseudo-experiments
- Individual sources of systematic uncertainty are related to:
 - Analysis framework
 - Background model
 - Muon efficiencies
- Systematic uncertainties are propagated to the PPD
- Total uncertainties of the measurements are dominated by systematics at low $p_{\rm T}$ and statistics at high $p_{\rm T}$
- $\Upsilon(2S)$ and $\Upsilon(3S)$ systematic uncertainties are dominated by the background model uncertainty, especially at low $p_{\rm T}$

$\Upsilon(nS)$ polarization in the HX frame, |y| < 0.6

$\Upsilon(nS)$ polarization in the HX frame, 0.6 < |y| < 1.2

$\tilde{\lambda}$ results

- Consistent frame-invariant parameters in the three reference frames
- No evidence for unaccounted systematic uncertainties

Comparison with CDF and theory

- ullet CMS extends the measurements beyond the p_{T} and rapidity ranges probed by CDF at the Tevatron
- ullet CMS has smaller uncertainties at high $p_{
 m T}$, where the theory is more reliable
- Both measurements do not show strong polarizations: puzzling!
- $\Upsilon(1S)$ suffers from large χ_b feed-down contribution, with unknown polarization
- $\Upsilon(3S)$ polarization calculated more reliably
- Theory predictions needed for λ_{φ} and $\lambda_{\vartheta\varphi}$, and in the CS and PX frames

Summary

- $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ polarizations have been measured in pp collisions at $\sqrt{s}=7\,\text{TeV}$ using the 2011 dimuon data collected by CMS, corresponding to an integrated luminosity of 4.9 fb $^{-1}$
- Three anisotropy parameters λ_{ϑ} , λ_{φ} , $\lambda_{\vartheta\varphi}$ and the frame invariant parameter $\tilde{\lambda}$ have been measured in three polarization frames: HX, CS and PX
- Results were obtained in five $p_{\rm T}$ bins and for two rapidity ranges, covering the kinematic region of $10 < p_{\rm T} < 50$ GeV and |y| < 1.2
- No evidence of strong polarizations, transverse or longitudinal, has been observed

Thank you for your attention

$\Upsilon(nS)$ polarization in the CS frame, |y|<0.6

$\Upsilon(nS)$ polarization in the CS frame, 0.6 < |y| < 1.2

$\Upsilon(nS)$ polarization in the PX frame, |y|<0.6

$\Upsilon(nS)$ polarization in the PX frame, 0.6 < |y| < 1.2

Definition of the PPD

$$\mathcal{P}(\vec{\lambda}) \propto \prod_i \frac{1}{\mathcal{N}(\vec{\lambda})} W(\cos \vartheta^{(i)}, \varphi^{(i)} | \vec{\lambda}) \epsilon(\vec{p}_1^{(i)}, \vec{p}_2^{(i)})$$

 \mathcal{N} : normalization

W: general angular distribution

 ϵ : dimuon efficiency as a function of the muon momenta

Background subtraction algorithm

- Construct a background model; in our case, we use an interpolation from the mass sidebands
- Using the model, define the likelihood \mathcal{L}_B for $(p_T, y, M, \cos \vartheta, \varphi)$ to represent a background event
- Using the entire data sample in the considered p_T, y, M bin, define the likelihood \mathcal{L}_{S+B} for $(p_T, y, M, \cos \vartheta, \varphi)$ to represent an event in our analysis sample, irrespectively of being signal or background
- Normalize \mathcal{L}_B to \mathcal{L}_{S+B} so that the ratio of the integrals is the background fraction f_{BG}
- Take one event from the data sample and calculate $R = \mathcal{L}_B(p_{\mathrm{T}}, y, M, \cos \vartheta, \varphi) / \mathcal{L}_{S+B}(p_{\mathrm{T}}, y, M, \cos \vartheta, \varphi)$
- Generate a uniform deviate $r \in [0, 1]$
- Classify the event:
 - if R > r the event is considered background
 - if R < r the event is considered signal
- An event classified as background is removed from the sample