

Resolving the Puzzles of Quarkonium Transitions

Estia Eichten Fermilab

- Basic QCDME
- Puzzles in hadronic transitions
 - Two pion transitions
 - Single hadron transitions
- Hadronic transitions above threshold
 - Eta transitions
 - Structure in two pion transitions
- Summary

Quarkonium 2013 The 9th International Workshop on Heavy Quarkonium April 22- 26, 2013, IHEP, Beijing

Basic Idea

- Analogous to the QED multipole expansion with gluons replacing photons.

$$H_{\mathrm{QCD}}^{\mathrm{eff}} = H_{\mathrm{QCD}}^{(0)} + H_{\mathrm{QCD}}^{(1)} + H_{\mathrm{QCD}}^{(2)} \qquad H_{\mathrm{QCD}}^{(1)} \equiv Q_a A_0^a(\mathbf{X},t)$$
 zero for color singlet $H_{\mathrm{QCD}}^{(2)} \equiv -\mathbf{d}_a \cdot \mathbf{E}^a(\mathbf{X},\mathbf{t}) - \mathbf{m_a} \cdot \mathbf{B}^a(\mathbf{X},\mathbf{t}) + \cdots$

- color singlet physical states means lowest order terms involve two gluon emission. So lowest multipoles E1 E1, E1 M1, E1 E2, $\,\,$ g
- factorize the heavy quark and light quark dynamics

$$\begin{split} \mathcal{M}(\varPhi_i \to \varPhi_f + h) &= \\ \frac{1}{24} \sum_{KL} \frac{\left\langle f \middle| d_m^{ia} \middle| KL \right\rangle \left\langle \middle| KL \middle| d_{ma}^{j} \middle| i \right\rangle}{E_i - E_{KL}} \left\langle h \middle| \mathbf{E}^{ai} \mathbf{E}_a^{j} \middle| 0 \right\rangle & \text{ + higher order multipole terms.} \end{split}$$

- assume a model for the heavy quarkonium states Φ i, Φ f and a model for the intermediate states |KL> hybrid states.

 Model: Kuang & Yan [PR D24, 2874 (1981)]
- use chiral effective lagrangians to parameterize the light hadronic system.

Two pion transitions: (E1-E1), ... $C_AC_B = +1$

$$\mathcal{M}_{if}^{gg} = \frac{1}{16} < B | \mathbf{r}_i \xi^a \mathcal{G} \mathbf{r}_j \xi^a | A > \frac{g_{\rm E}^2}{6} < \pi_\alpha \pi_\beta | Tr({\rm E}^i {\rm E}^j) | 0 > \frac{\delta_{\alpha\beta}}{\sqrt{(2\omega_1)(2\omega_2)}} \Big[C_1 \delta_{kl} q_1^\mu q_{2\mu} + C_2 (q_{1k}q_{2l} + q_{1l}q_{2k} - \frac{2}{3} \delta_{kl} (q_1 \cdot q_2)) \Big]$$
 S-wave D-wave nS -> mS transitions

Μ(ππ)

nS -> mS transitions

$$d\Gamma \sim K \sqrt{1 - \frac{4m_{\pi}^2}{M_{\pi\pi}^2} (M_{\pi\pi}^2 - 2m_{\pi}^2)^2 dM_{\pi\pi}^2} \qquad K \equiv \frac{\sqrt{(M_A + M_B)^2 - M_{\pi\pi}^2} \sqrt{(M_A - M_B)^2 - M_{\pi\pi}^2}}{2M_A}$$

$$\Gamma = G |\alpha_{AB}^{EE} C_1|^2$$

Phase Space Overlap - Vibrating String Model

- Higher order transitions: (E1-M2), (M1-M1), ... $C_AC_B = +1$
 - Combine chiral symmetry and SU(3) symmetry breaking to relate (π^0, η, η') transitions
- 3 gluons $C_A C_B = -1$ $(\omega, ...)$

April 25, 2013

- When should the QCDME work well?
 - Transitions between tightly bound quarkonium states
 - Small radius (R $\ll \Lambda_{QCD}$)
 - bottomium 1S, 1P, 2S, 1D, 2P, 3S, ...
 - · charmonium 1S, 1P, ...

- Small contributions from excitations involving QCD additional degrees of freedom.
 - This is essential to the factorization assumption!
- light quark pairs
 - $D^{(*)} \overline{D^{(*)}}$ thresholds in 1D to 3S region
 - $B^{(*)} \overline{B^{(*)}}$ thresholds in 4S region
- gluonic excitations?

Lattice calculation V(r), then SE

$$-\frac{1}{2\mu}\frac{d^2u(r)}{dr^2} + \left\{\frac{\langle \boldsymbol{L}_{Q\bar{Q}}^2 \rangle}{2\mu r^2} + V_{Q\bar{Q}}(r)\right\}u(r) = E\ u(r)$$

- What about the gluon and light quark degrees of freedom in QCD?
- Two thresholds
 - Usual $(Q\overline{q})$ + $(q\overline{Q})$ decay thresholds
 - Exciting the string hybrids
- Hybrid states will appear in the spectrum associated with the potentials Π_u , ...
- In the static limit this occurs at separation $r \approx 1.2$ fm.
 - Between the 35 and 45 in $(c\overline{c})$ system
 - Just above the 5S in the (\overline{bb}) system
- Should have expected trouble for QCDME above the 35 ($c\overline{c}$) and 45 ($b\overline{b}$)

LQCD calculation of static energy

Estia Eichten

Two pion Transitions

Table 1: Partial widths for observed two pion transitions.

Initial State → Final State	$\Gamma_{ m total} \ m (MeV)$	Branching Fraction (10 ⁻³)	Γ_{partial} (keV)	
$\psi' \rightarrow J/\psi + \pi^+\pi^-$	0.304 ± 0.009	336 ± 4	102 ± 3.3	
$\psi(1D) \rightarrow J/\psi + \pi^+\pi^-$	27.2 ± 1.0	1.93 ± 0.28	52.5 ± 7.9	
$\psi(3S) \to J/\!\psi + \pi^+\pi^-$	80 ± 10	5.2 ± 0.73	416 ± 78	
$\psi(2D) \rightarrow J/\psi + \pi^+\pi^-$	103 ± 8 (8.2 nb)	1.92 ± 0.52	197 ± 52	
$\Upsilon(2S) \rightarrow \Upsilon(1S) + \pi^+\pi^-$	$(31.98 \pm 2.63) \times 10^{-3}$	179.2 ± 2.6	5.73 ± 0.48	
$\Upsilon(1\mathrm{D}) \to \Upsilon(1\mathrm{S}) + \pi^+ \pi^-$	28.5×10^{-3}	6.6 ± 1.6	0.188 ± 0.045	
$\chi_{b1}(\mathrm{2P}) \rightarrow \chi_{b1}(\mathrm{1P}) + \pi^+\pi^-$	0.096 ± 0.016	9.1 ± 1.3	0.87 ± 0.19	
$\chi_{b2}(\mathrm{2P}) \rightarrow \chi_{b2}(\mathrm{1P}) + \pi^+\pi^-$	0.138 ± 0.019	5.1 ± 0.9	0.70 ± 0.16	
Υ(3S)	$(20.32 \pm 1.85) \times 10^{-3}$			
		28.2 ± 1.8 43.7 ± 0.8	0.573 ± 0.064 0.888 ± 0.082	
Υ(4S)	20.5 ± 2.5			
		$(8.6 \pm 1.3) \times 10^{-2}$ $(8.1 \pm 0.6) \times 10^{-2}$	1.76 ± 0.34 1.66 ± 0.24	
Υ(5S)	55 ± 28			
$\rightarrow \Upsilon(3S) + \pi^+\pi^-$		2.88 ± 0.41 [25]	158 ± 84	
$\rightarrow \Upsilon(2S) + \pi^+\pi^-$		7.97 ± 1.00 [25]	438 ± 230	
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$		4.45 ± 0.35 [25]	245 ± 126	
$\rightarrow h_b(2P) + \pi^+\pi^-$		$6.0^{+2.1}_{-1.8}$	330^{+204}_{-195}	
$\rightarrow h_b(1P) + \pi^+\pi^-$		$3.5^{+1.0}_{-1.3}$	192^{+112}_{-121}	
$\rightarrow \Upsilon_2(1D) + \pi^+\pi^-$		0.10 ± 0.028 [1]	5.5 ± 3.2	

Comments:

- Chosing $|C_1| = 10.2 \pm 0.2$, $|C_2/C_1| = 1.25 \pm 0.14$ from the (cc) system.
- Ratio of charged to neutral pion pair production consistent with I=0
- For the ³D₂ (bb) state the theoretical total width is used.
- The $\Upsilon(5S)$ transitions are strikingly large. Partial rates over 100 times the rates of lower states.
- A number of quarkonium-like states have been first discovered in hadron transitions. X(3872), Y(4260), ... and charged states Z_b*(10,610), Z_b*(10,650), ... Discussion these states postponed.

Unresolved Puzzles

- The experimental transitions rates (for states below threshold) are in reasonable agreement with the simple KY model.
- $\Upsilon(35) \rightarrow \Upsilon(15) \pi\pi$ and $\Upsilon(45) \rightarrow \Upsilon(25) \pi\pi$ transitions
 - $M_{\pi\pi}$ distributions NOT the expected S-wave behaviour.
 - Transitions not expected to have any large violation of QCDME assumptions due to light quark pairs. [Unlike the $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi\pi$]
 - Possible explanation same as overlap dynamically suppressed in $\Upsilon(3S) \rightarrow \chi_b(1P) \gamma$ EM transitions. [The KY model has such a dynamical suppression.]
 - Further study at Belle 2 would be useful. Look at polarization.

Unresolved Puzzles

• The ψ (4160) -> h_c(1P) + π + π - transition.

T.K. Pedlar et.al [CLEO Collaboration]
PRL 107, 041803 (2011) [arXiv:1104.2025]

- ψ (4160) is the 2³D₁ charmonium state.
- Spin flip transition (E1-M1) expected to be too small to observe but the transition is clearly seen.
- Gross violation of QCDME for hadronic transitions!

Unresolved Puzzles

• The $\Upsilon(5S) \rightarrow \Upsilon(2S) + \pi^{+}\pi^{-}$ transitions

BELLE [arXiv:1103.3419]

- $\Upsilon(5S)$: m=10,876 ± 11 MeV and Γ = 55 ± 23 MeV
- PRL100,112001(2008) $\Gamma(MeV)$ $\Upsilon(5S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.59 \pm 0.04 \pm 0.09$ $\Upsilon(5S) \to \Upsilon(2S)\pi^{+}\pi^{-} \quad 0.85 \pm 0.07 \pm 0.16$ $\Upsilon(5S) \to \Upsilon(3S)\pi^{+}\pi^{-} \quad 0.52^{+0.20}_{-0.17} \pm 0.10$ $\Upsilon(2S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.0060$ $\Upsilon(3S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.0009$ $\Upsilon(4S) \to \Upsilon(1S)\pi^{+}\pi^{-} \quad 0.0019$

- $\pi^{\dagger}\pi^{-}$ system I= 0
- total branching ratio for known hadronic transitions $(3.9 \pm 0.7)\% \Rightarrow \Gamma = 2.1 \pm 0.9 \text{ MeV}$
- Clear violation of QCDME expectations. (E1-M1/E1-E1) should be small but
 - the transitions $\Upsilon(5S) \rightarrow h_b(1P,2P) + \pi^+\pi^-$ requires a heavy quark spin flip (M1)(E1)

$$\frac{\sigma(h_b(nP)\pi^+\pi^-)}{\sigma(\Upsilon(2S)\pi^+\pi^-)} \equiv R = 0.46 \pm 0.08^{+0.07}_{-0.12} \qquad \text{(n=1)} \qquad R = 0.77 \pm 0.08^{+0.22}_{-0.17} \qquad \text{(n=2)}$$

- Striking failure of the QCDME above threshold

Single Light Hadron Transitions

Eta transitions (E1-M2, M1-M1)

$$(C_AC_B = +1) \qquad O(v^2)$$

$$O(v^2)$$

- E1-M2 expected to dominate
- Factorization

$$\mathcal{M}_{if}^{gg} = \frac{1}{16} < B | \mathbf{r_i} \xi^a \mathcal{G} \mathbf{r_j} \xi^a | A > \frac{g_e g_M}{6} \langle \eta | \mathbf{E}_i \partial_j \mathbf{B}_k | 0 \rangle \quad \frac{(\epsilon_B^* \times \epsilon_A)_k}{3m_Q}$$

$$\alpha_{AB}^{EE}$$
 Hadronize
$$: i(2\pi)^{3/2} C_3 q_k$$

- α^{EE} same factor of heavy quark dynamics as in two pion case. So cancels in ratio $R_{\eta/\pi\pi}$ at $q^2 = m\eta^2$
- Relation to other single pseudoscalar transitions

Chiral symmetry breaking - Chiral effective lagrangian

$$\tilde{\pi}^{0} = \pi^{0} + \epsilon \eta + \epsilon' \eta' \qquad \tilde{\eta} = \eta - \epsilon \pi^{0} + \theta \eta' \qquad \tilde{\eta}' = \eta' - \theta \eta - \epsilon' \pi^{0},$$

$$\epsilon = \frac{(m_{d} - m_{u})\sqrt{3}}{4(m_{s} - \frac{m_{u} + m_{d}}{2})}, \quad \epsilon' = \frac{\tilde{\lambda}(m_{d} - m_{u})}{\sqrt{2}(m_{\eta'}^{2} - m_{\pi^{0}}^{2})}, \quad \theta = \sqrt{\frac{2}{3}} \quad \frac{\tilde{\lambda}\left(m_{s} - \frac{m_{u} + m_{d}}{2}\right)}{m_{\eta'}^{2} - m_{\eta}^{2}}.$$

April 25, 2013

Single light hadronTransitions

Table 2: Partial widths for observed single $\pi^0, \eta,$ or ω transitions.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Initial State	$\Gamma_{ m total}$	Branching Fraction	$\Gamma_{ m partial}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\rightarrow Final State		(10^{-3})	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ψ'	0.304 ± 0.009		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rightarrow J/\psi + \eta$		33.75 ± 0.88 [23]	10.26 ± 0.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rightarrow J/\psi + \pi^0$		1.26 ± 0.04 [23]	0.383 ± 0.017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rightarrow h_c(1P) + \pi^0$		0.86 ± 0.13	0.26 ± 0.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\psi(1\mathrm{D})$	27.2 ± 1.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rightarrow J/\psi + \eta$		0.87 ± 0.4	23.7 ± 10.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rightarrow J/\psi + \pi^0$		< 0.28	< 7.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\psi(3S)$	80 ± 10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rightarrow J/\psi + \eta$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.6 ± 2.0 [26]	450 ± 170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\rightarrow J/\psi + \pi^0$		< 0.28 [22]	< 22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\psi(2D)$	103 ± 3		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\rightarrow J/\psi + \eta$		4.8 ± 2.0 [26]	500 ± 210
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\Upsilon(2S)$	$(31.98 \pm 2.63) \times 10^{-3}$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\rightarrow \Upsilon(1S) + \eta$			
$\chi_{b2}(2P) \rightarrow \Upsilon(1S) + \omega$ 0.138 ± 0.019 $1.10^{+0.34}_{-0.30}$ $1.52^{+0.51}_{-0.46}$ $\Upsilon(3S)$ $(20.32 \pm 1.85) \times 10^{-3}$ < 0.1 < 2 $\Upsilon(4S)$ 20.5 ± 2.5 $\rightarrow \Upsilon(1S) + \eta$ 0.196 ± 0.011 4.02 ± 0.54 $\Upsilon(5S)$ 55 ± 28 $\rightarrow \Upsilon(2S) + \eta$ 3.8 ± 0.8 209 ± 115	$\rightarrow \Upsilon(1S) + \pi^0$		< 0.041 [24]	< 0.013
$\begin{array}{c ccccc} \Upsilon(3S) & (20.32 \pm 1.85) \times 10^{-3} \\ \hline \to \Upsilon(1S) + \eta & < 0.1 & < 2 \\ \hline \Upsilon(4S) & 20.5 \pm 2.5 \\ \hline \to \Upsilon(1S) + \eta & 0.196 \pm 0.011 & 4.02 \pm 0.54 \\ \hline \Upsilon(5S) & 55 \pm 28 \\ \hline \to \Upsilon(2S) + \eta & 3.8 \pm 0.8 & 209 \pm 115 \\ \hline \end{array}$	$\chi_{b1}(2P) \rightarrow \Upsilon(1S) + \omega$	0.096 ± 0.016	$1.63^{+0.40}_{-0.34}$	$1.56^{+0.46}_{-0.42}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\chi_{b2}(2P) \rightarrow \Upsilon(1S) + \omega$	0.138 ± 0.019	$1.10^{+0.34}_{-0.30}$	$1.52^{+0.51}_{-046}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Υ(3S)	$(20.32 \pm 1.85) \times 10^{-3}$		
$\begin{array}{ccc} \Upsilon(5S) & 55 \pm 28 \\ \to \Upsilon(2S) + \eta & 3.8 \pm 0.8 & 209 \pm 115 \end{array}$	$\rightarrow \Upsilon(1S) + \eta$		< 0.1	< 2
$\begin{array}{ccc} \Upsilon(5S) & 55 \pm 28 \\ \to \Upsilon(2S) + \eta & 3.8 \pm 0.8 & 209 \pm 115 \end{array}$	Υ(4S)	20.5 ± 2.5		
$\begin{array}{ccc} \Upsilon(5S) & 55 \pm 28 \\ \to \Upsilon(2S) + \eta & 3.8 \pm 0.8 & 209 \pm 115 \end{array}$	$\rightarrow \Upsilon(1S) + \eta$		0.196 ± 0.011	4.02 ± 0.54
		55 ± 28		
$\rightarrow \Upsilon(1S) + \eta$ 0.73 ± 0.20 40.2 ± 23.2	$\rightarrow \Upsilon(2S) + \eta$		3.8 ± 0.8	209 ± 115
	$\rightarrow \Upsilon(1S) + \eta$		0.73 ± 0.20	40.2 ± 23.2

Single light hadronTransitions

Ratios of transitions:

- The ratio of eta to two pion transitions at $M_{\pi\pi}$ = M_{η} is independent of the details of the intermediate octet (QQ) states: [kinematic factor]

$$R_{\eta/\pi\pi}(n \to m) \equiv \frac{\Gamma(n^3S_1 \to m^3S_1 + \eta)}{\Gamma(n^3S_1 \to m^3S_1 + \pi^+\pi^-)} = \frac{8\pi^2}{27} \frac{1}{m_Q^2} (\frac{C_3}{C_1})^2 \left[\frac{[(M_i + M_f)^2 - M_\eta^2)((M_i - M_f)^2 - M_\eta^2)]^{3/2}}{G} \right]$$

- The ratio of eta to neutral pion transitions are given by chiral perturbation theory,
- The present experimenta status is shown in Table 3.

Table 3: Ratios of hadronic transitions. $R_{\eta/\pi\pi}$ is ratio of eta to two pion and $R_{\eta/\pi\pi}$ is ration of neutral pion to eta. All other notation as in Table 2.

Initial State	Final State	$R_{\eta/\pi\pi}$ (in units 10^{-1})	$R_{\pi^0/\eta}$ (in units 10^{-2})
ψ'	J/ψ	1.00 ± 0.02	$3.74 \pm 0.17 (stat) \pm 0.04 (syst)$ [23]
$\psi(1\mathrm{D})$	J/ψ	4.5 ± 2.2	< 32
$\psi(3S)$	J/ψ	10 ± 2	
$\Upsilon(2S)$	$\Upsilon(1S)$	$0.199 \pm 0.018(stat) \pm 0.11(syst)$ [24]	< 13 [24]
$\Upsilon(3S)$	$\Upsilon(1S)$	< 0.023	
$\Upsilon(4S)$	$\Upsilon(1S)$	24.0 ± 2.2	
Y (5S)	$ \Upsilon(2S) \\ \Upsilon(1S)$	4.8 ± 1.2 1.6 ± 0.5	

More puzzles

- Within the KY model the ratio $R_{\eta/\pi\pi}$ is fixed for all transitions (n->m) once one is fixed. From the $\Upsilon(25)$ -> $\Upsilon(15)$ transitions set the value of |C3/C1| = 0.143 ± 0.024 0.143 ± 0.024

Table 4: Comparison of theory (KY model) nd experiment for $R_{\eta/\pi\pi}$

$R_{\eta/\pi\pi}(^3S_1(n) \rightarrow ^3S_1(m))$ $(Q\bar{Q})n \rightarrow m$	theory	experiment	
$(c\bar{c}): 2 \rightarrow 1$	3.39×10^{-3}	1.0×10^{-1}	~ 30 × theory
$(c\bar{c}): 3 \to 1$	6.35×10^{-3}	1.0	γ
$(bar{b}):2 o 1$	1.99×10^{-2}	1.99×10^{-2}	input
$(b\bar{b}):3 o 1$	4.57×10^{-3}	$<2.3\times10^{-2}$	suppressed?
$(b\bar{b}):4 o 1$	2.23×10^{-3}	24	~ 1000 theory
$(b\bar{b}): 5 \to 1$	9.58×10^{-4}	4.8	~ 2000 x theory
$(b\bar{b}): 5 \rightarrow 2$	5.33×10^{-3}	1.6	~ 300 x theory

 The eta transitions are very poorly described by this model if initial state is near or above threshold.

Hadronic Transitions Above Threshold

- Quarkonium states above threshold have strong decays to pairs of heavy flavor mesons $H + \overline{H}'$
 - The thresholds

Hadronic Transitions Above Threshold

- The physical states are mixtures of the naive quarkonium (QQ) and the four quark states ($\overline{Q}q\overline{q}Q$)
 - Above threshold the fraction of time the state is in the virtual four quark sector is large and therefore hadronic transitions from these system must be considered.
 - For hadronic transitions this is a critical difference.
 - The four quark system dominated by the H+H' configuration at least for large QQ separation. For smaller QQ separation dynamics more complicated.
 - Need a model of the detailed contributions of various H+H' states. (Cornell model for me).
- Effect on the QCDME expansion
 - In the heavy quark symmetry limit, the H + H' states would not violate the expectation that (E1-M1) and (E1-M2) transitions are suppressed. (general theorem)
 - BUT the spin splitting within a HQS multiplet induces a large heavy quark spin flip contribution. Invalidates the QCDME. No suppression.
 - The general conclusion is not model dependent: For H (1/2)- ground states (D,D*) and (B,B*). In HQS limit HH, HH*+H*H, H*H* decay ratios are 1:4:7 (0.083: 0.33: 0.58)
 - measured ratio at the $\Upsilon(55)$: 0.096:0:24.66 (B) 0.0:0.08;0.92 (B_s)
 - · measured ratios in the charm threshold region studied in detail (see figure)
- Eta transitions not suppressed relative to two pion transitions above threshold.

Hadronic Transitions Above Threshold

Charm threshold region has very large induced HQS breaking effects

- What happened to decays into heavy-light P state H(1P) $j^P = (1/2, 3/2)^+$ and a ground state H(1S) $j^P = (1/2)^-$?
 - For the bottomium region the narrow B(1P) states have thresholds in the Υ (6S) while the influence of the wide states entend into the Υ (5S) region and above.

- For the charm threshold region the narrow D(1P) states have thresholds around 4260 MeV to the ψ (4S) region, while influence of the wide states extends down to the ψ (3S)

- S-wave decays should be very strong near threshold. D-wave decays weaker.

TABLE VI. Systematics for decays containing charmed P states. Here j_L is the total angular momentum of the light-quark constituent of D_P as seen in the rest frame of c.

Eichten, et.al, PR D17, 3090 (1978)

Final state	Threshold behavior	Statistical factor		
$D\overline{D}_{P_0}$	Forbidden	• • •		
$D\overline{D}_{P_{1}}$ $(j_{L}=\frac{1}{2})$	S-wave	2/3		
$D*\overline{D}_{P_0}$	S-wave	2/3		
$D*\overline{D}_{P_1}$ $(j_L=\frac{1}{2})$	S-wave	$\frac{4}{3}$		
$D\overline{D}_{m{P}_2}$	D-wave	<u>2</u> 3		
$D\overline{D}_{P_1}$ $(j_L = \frac{3}{2})$	D-wave	<u>2.</u> 3		
$D*\overline{D}_{P_1}(j_L=\frac{3}{2})$	D-wave	<u>4</u> 3		
$D*\overline{D}_{P_2}$	D-wave	8/3		

• For example, the $\Upsilon(5S)$ has a B(1/2⁻) + B_P(1/2⁺) component. The B_P(1/2⁺) state decays rapidly into a B meson and pion, leaving a B(1/2⁻) + B(1/2⁻) nearly at rest. They then recombine into the final (Υ or h_b) and pion.

$$\Upsilon(5S) \to Bp(0+) B^* \to \pi B B^*$$

and $Bp(1+) B \to \pi B B^*$
and $Bp(1+) B^* \to \pi B^*B^*$

- Both the $\Upsilon(5S) \rightarrow Bp(0+) B^*$ and $Bp(0+) \rightarrow \pi B$ decays are S-wave
- The analogy in the charmonium system is the structure seen in the ψ (4160) -> π π J/ ψ transition.
- This provides a dynamical mechanism for the Meson Loop and ISPE models.

- Chen, Lui and Matsuki applied the ISPE model to the Y(4260) -> $\pi \pi \psi$ transition.
- They were able to reproduce the structure observed in those transitions.

D.Y. Chen, X, Lui and T. Matsuki [1304.5845]

- Thus the nature (cusp or molecule) of the Z⁺(10610), Z+(10650)⁺ and newly observed Z⁺(3900) state is open.
- There is an extraordinary rich structure of decays into a heavy-light P state $H_q(1P)$ $j^P=(1/2, 3/2)^+$ and a ground state $H_q(1S)$ $j^P=(1/2)^-$ (q=u,d,s) at and above the ψ (4S) in the charm sstem and Υ (6S) in the bottom system.
- The study of these channels will provide detailed information about the decay strengths and the associated hadronic transitions.

Summary

- The hadronic transitions for states below strong decay threshold are well described by the usual QCD Multipole Expansion except for:
 - The $\Upsilon(3S) \rightarrow \Upsilon(1S) \pi\pi$ and $\Upsilon(4S) \rightarrow \Upsilon(2S) \pi\pi$ transitions. Here It is not understood why the $M_{\pi\pi}$ distributions not the expected S-wave behaviour.
- Above heavy flavor production threshold the QCDME fails.
 - The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not surpressed.
 - A new mechanism for hadronic transitions is required to explain the large rates
- For 1⁻⁻ quarkonium states above threshold the opening of strong S-wave decays into a ground state $\frac{1}{2}$ (0⁻, 1⁻) and a excited P-wave $\frac{1}{2}$ (0⁺, 1⁺) heavy-light mesons needs to be taken into account to understand the structure of hadronic transitions. This occurs around the
 - ψ (2D) in the ($c\overline{c}$) system.
 - $\Upsilon(55)$ in the (bb) system
- With BES III and LHCb and soon BELLE 2. I expect much progress in understanding hadronic transitions in the near future.

BACKUP SLIDES

$Z_{b^{\pm}}(10,610)$ and $Z_{b^{\pm}}(10,650)$

• BELLE has observed two new charged states in the $\Upsilon(55) \rightarrow \Upsilon(nS) + \pi^{+}\pi^{-}(n=1,2,3)$ and the $\Upsilon(5S) \rightarrow h_b(nP) + \pi^{+}\pi^{-}(n=1,2)$ transitions [arXiv:1105.4583]

TABLE 1. Masses, widths, and relative phases of peaks observed in $h_b\pi$ and $Y\pi$ channels, from fits described in text.

	$h_b(1P)\pi^{\pm}\pi^{\mp}$	$h_b(2P)\pi^{\pm}\pi^{\mp}$	$\Upsilon(1S)\pi^{\pm}\pi^{\mp}$	$\Upsilon(2S)\pi^{\pm}\pi^{\mp}$	$\Upsilon(3S)\pi^{\pm}\pi^{\mp}$	Average
$M_1 (\text{MeV}/c^2)$	$10605.1 \pm 2.2^{+3.0}_{-1.0}$	$10596 \pm 7^{+5}_{-2}$	10609±3±2	$10616 \pm 2^{+3}_{-4}$	$10608 \pm 2^{+5}_{-2}$	10608 ± 2.0
Γ_1 (MeV)	11.4+4.5+2.1	$16^{+16}_{-10}^{+13}_{-14}^{2}$	$22.9 \pm 7.3 \pm 2$	$21.1 \pm 4^{+2}_{-3}$	$12.2 \pm 1.7 \pm 4$	15.6 ± 2.5
M_2 (MeV/ c^2)	$10654.5 \pm 2.5^{+1.0}_{-1.0}$	$10651 \pm 4 \pm 2$	$10660 \pm 6 \pm 2$	$10653 \pm 2 \pm 2$	$1-652\pm 2\pm 2$	10653 ± 1.5
Γ ₂ (MeV)	20.9+5.4+2.1	12 ⁺¹¹ ₋₉ -2 255 ⁺⁵⁶ ₋₇₂ -183	$12 \pm 10 \pm 3$	$16.4 \pm 3.6^{+4}_{-6}$	$10.9 \pm 2.6^{+4}_{-2}$	14.4 ± 3.2
φ (°)	20.9 ^{+5.4} +2.1 188 ⁺⁴⁴ +4 188 ⁺⁴⁴ +4	$255^{+56+12}_{-72-183}$	$53 \pm 61^{+5}_{-50}$	$-20\pm18^{+14}_{-9}$	$6 \pm 24^{+23}_{-59}$	-
			•			-

- $\Upsilon(5S) \rightarrow Z_b^+ + \pi$ and $Z_b \rightarrow h_b(nP) + \pi^+$.
- Explicitly violates the factorization assumption of the QCDME.
- Clear evidence for four quark molecular states if confirmed
- The Z_b^{\pm} (10610) is a narrow state (Γ = 15.6 \pm 2.5 MeV) at the BB* threshold (10605).
- The Z_b^{\pm} (10650) is a narrow state (Γ = 14.4 \pm 3.2 MeV) at the B*B* threshold (10650).