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__Review of Schwinger-Keldysh Formalism

 “Partition Function”
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__Review of Schwinger-Keldysh Formalism

* Properties of Coherent States
* Over-Complete Coherent State Basis
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* Trace of Operators in Number and Coherent Basis
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__Review of Schwinger-Keldysh Formalism H (85,6 1) = ot
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__Review of Schwinger-Keldysh Formalism

Partition Function in Discrete Coherent Basis

- — {po} / H a[65.4; exp( S 356 ¢]>

J,7'=1

(—1 p (wo)

e~v—1 . .
IGJJ = 1 _1 h:F = ]. :F lwodt

he -1

\ he -1 )

* Initial Density Matrix : Proper Inverse / Green Function
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__Review of Schwinger-Keldysh Formalism

 Normalization and Continuum Notation

 Determinant
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« Normalization
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* Continuum Notation
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__Review of Schwinger-Keldysh Formalism

* Normalization and Continuum Notation
« Continuum Notation
Sigdl = [ wa()G o0 G =10, — w;
« Zero Mode and Boundary Terms (To Uniquely Determine Inverse Operator @)
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« To Avoid Integration along the Closed Time Contour
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__Review of Schwinger-Keldysh Formalism

 Green Functions

e Correlator of Two Bosonic Fields
2N
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__Review of Schwinger-Keldysh Formalism

 Green Functions

 Matrix Elements

1, -1 N—j, N—j' N-1;1-j; 1§
(6187} =165, = L1 (978 =iay = M (k)RR
j Oy ) =G5 = > jy) =G5 = 1= >
det [—1G’_1] det [—1G_1] det [—1G_1]
_ hi7 1, > § _ hi N1
<¢;¢j+,> =iGT, = - { v 7 <¢j—¢j—,> =iGT, = t {p(h+h—) R
det [—iG_l] p(hih-) <1 det [—’iG_l] 1, j<j

e Continuum Limit
<¢+(t)¢3_ (t')> =iG< (t,') = nge (") <<b‘(t)<z3+ (t’)> —iG” (t,t') = (np + 1)e “0(~?)
<¢+(t)q3+ (t’)> =iG" (t,t) =0 (t —t)iG” (t,t') + 0 (¢ — t)iG~ (¢,¢)

<¢—(t)q3— (t’)> —iGT (t,¢) = 6 (' — 1)iG” (t,') + 6 (¢t — t')iG< (¢t
Bosonic Occupation Number

p (wo)

10 ¢*




__Review of Schwinger-Keldysh Formalism

e Green Functions

* Four Green Functions are not Independent
G (t,¢') + GT (t,¢') — G~ (t,¢') — G~ (t,#) = 0
* Keldysh Rotation
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» Retarded, Advanced and Keldysh Components of Green Functions
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__Review of Schwinger-Keldysh Formalism

* Keldysh Rotation

» Retarded, Advanced and Keldysh Components of Green Functions
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__Review of Schwinger-Keldysh Formalism

* Keldysh Rotation
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« Toy Example of Single Boson Level # (BT,B) = wob'b
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__Review of Schwinger-Keldysh Formalism

» Keldysh Rotation
 Toy Example of Single Boson Level A (13*,13) = wob'b
« Graphic Representation
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* Fluctuation-Dissipation Theorem
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__Review of Schwinger-Keldysh Formalism

 From (0+1)d QM to (3+1) d QFT
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__Single-Particle Quantum Mechanics

« Parametrize the Action by its Real and Imaginary Parts

i 1 o . 1 o
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J
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__Single-Particle Quantum Mechanics

Saddle Point
P=X
* Indeed the Action of the Quantum Harmonic Oscillator

S&P:/&
[]C 5P~

PXx_ Ltp2_ w—gle

 Integrate out Momentum to Derive the Lagrangian Form
S[X] = /C dt l%xz — %‘%)@]

 Feynman Lagrangian Action of the Harmonic Oscillator on CTP
S[X] = /C dt B)@ — V(X)]

» Keldysh Rotation
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__Single-Particle Quantum Mechanics

Saddle Point
P=X

* Keldysh Rotation
S[X] = /Cdt [%XZ - V(X)] - /_:o dt { B (X+)2 - V(X+)] - B (X—)2 - V(X‘)] }
_ /_:o dt [% (X+ + X—) (X+ - X—) — (V(XH) - V(X_))]
= /_ :o dt [zXQXd ~V(X9+ X9 + V(X9 - X9)
— {{2%0 [(X+)2 +V (X+)] - %XU&'*} - {2%0 {(X—f +V (X‘)} - %X‘X‘} + 2qud}+:
+ /_ :o dt [—2XQX°1 V(X4 X9 4V (X - Xq)]
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__Single-Particle Quantum Mechanics

« Small Fluctuation of Quantum Components

S[x9, x4 = —/_ "t [2Xq (X"1+V’ (XC‘)) +0 [(XQ)?’H
I
7= / D [X¢, X4]elSXX = / D [x%)2ms (2 (X + V' (x)))
 Classical Newtonian Dynamics of
Xd — _y (Xcl)
« Higher-Order Terms : Both are Subject to Quantum Fluctuations
« Harmonic Oscillator v(x)=uw}x?/2
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__Single-Particle Quantum Mechanics

Quantum Particle in Contact with an Environment

S = Sp + Sbath + Sint

S,[X] = / " t|-2x9% -V (X4 X9) 4+ V (X - X9)]
Sath [@s] = Z / - dtGID'Gs St [X, 0] =§sjgs /_ :o dtX "6, 8,
* Interaction between the Particle and Bath Oscillators
23: /th ng/ dt (X Tof — X ;)
Dissipative Action (Integrate out the Bath)

5 S a Sin = N Y74 D 51X
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Saddle Point
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__Single-Particle Quantum Mechanics w mew  ms

Dissipative Action (Integrate out the Bath)
Saddle Point st = —gsf)s)_{'T&l = —93153312 i ow u
RN S M
Sp + Shath + Sint — Sp + S diss » Lhi »
+°° n AT . R . +oo . .
SdlSS Z/ gst&1X> Ds_l <_93D3&1X) + ng/ thT&l (—gsta‘1X>

4

+00 . . .
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« Bath Spectral Density




__Single-Particle Quantum Mechanics S S

Dissipative Action (Integrate out the Bath)
« Causality Structure 3 .
Im € 5 el e o
)m > > m Re ¢ [ Causal retarded propagator J
ok Cr T [ Gr(T) = —0(7)A(7)
C=-CUCGC,
Im €,
LWk | ) Lo . Rec [ Causal advanced propagator ]
Gl e - oAl

« Ohmic Bath (More Realistic Model of the Environment) J(w) = 4yw

d 2
[ 1(6)]R(A / d nd = const =+ 2ivye

2 w? — (e +1i0)2
« Keldysh Component (FDT)
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__Single-Particle Quantum Mechanics

« Dissipative Action (Integrate out the Bath)

« Ohmic Bath

« Time Domain (R/A : Local K': Non-Local)
[@R(A)} R (t —t") 0y

@1 (t—t)]" = 4iy

2T +C)(t—t) - sinh? [:g (t—t)] ]

C = nT? / dt/ sinh?(7T't) / ait[®11)]" = [® Y e=0)]"
« Keldysh Action of the Particl Connected to the Ohmic Bath

= 8iyT

S[X] = /_:o dt [—2X“1 (X1 +7X"l) V(X X9+ V(xS - Xq)]

00
+2iy / dt [2T(X9(t))? +
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__Single-Particle Quantum Mechanics

Dissipative Action (Integrate out the Bath)
» Keldysh Action of the Particl Connected to the Ohmic Bath

S[X] = /+oo dt [—2X01 (X1 +7Xd) — V(X XY +V (X Xq)]

—o0

+oo
+21y /

g-q Component : Finite instead of Higher Order

t [27(X9(t)) TS sinh? [7T (t — ¢/)]

T L (X)) - X)) ]

Broken Time-Reversal Symmetry / Unitarity after Integrating out
S[x9,-X9 =-5[Xx9, Xx9]

Linear Term = Newtonian Equation with the Viscous Friction Force
XC] — _V/ (Xcl) . 'YXCI

Hubbard-Stratonovich Transformation

& toteRT
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__Rotating-Wave Approximation
« Self-Energy Related to Quantum Fluctuation

[2(e)]* = —iJ(€) coth o

* Predicament : Non-Locality at Small Temperatures

€
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__Rotating-Wave Approximation

 Particular Mode of a Resonant Cavity

 Filter out Low-Frequency Part of the Bath Spectrum

« Self-Select Relatively Narrow High-Frequency Band

« Weakly Nonlinear Bosonic Oscillator

|Le)
2g) —@io )
Whp




__Rotating-Wave Approximation

 Particular Mode of a Resonant Cavity
« Weakly Nonlinear Bosonic Oscillator

 External Monochromatic Drive
H = Hp + Hbath + Hint

N 2t2 9 (it .3 4 (3t %
H, = wob b—i—ﬁ b' +b) +2in(b' —b) coswyt

; ata ; 9s_ (a1h+ bla
Hbath — wsaTas Hint — (CL b+ b as)
; ’ Z V2w, °

S
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__Rotating-Wave Approximation

 Particular Mode of a Resonant Cavity

« Corresponding Schrodinger Equation

06 0()) = A ()2 (2))
Y
Ui (1)) = (TOHOT(E)) ()
Y
0 (t)) = [OOBOU @)+ (8.0(6)) 01 #)]19(6) = B@)E(2)

« Hamiltonian under this Frame

=
~~
N—"
I

UAGT ) +i (001))01)  18@#) = U@)[w(E)
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__Rotating-Wave Approximation

« Rotating-Wave Approximation (RWA)

« Hamiltonian

2 242 PPN A Al A . , A n
H, = wob'b + [U(b + bT)UT] iU (bt — b)UT (et 1 ety 4 (8,00
_ woi)Ti) g(b’[ oWt + be zwpt)2 + Z’I’](bT iwpt Be—iwpt)(eiwpt + e—iwpt) _ waTB

T (wo — wy)blh + E(BTBT + bb + 126 + 3) + in(b" — b)




__Rotating-Wave Approximation Sokhotski- Plemelj Theorem

1

1 .
X0 P(;) Fimd(x)

 Dissipative Action for the Oscillator

 Fourier Transformation
2 R K 2 A
o / 9, (0 1\ (G G, 1\ i (t—t') 9s 0 Gy 1 iwy(t—t')
— — — p — t—t p
Bt =) Zg 2ws(1 0)(0 ¢1)E= {1 o) 2 g0 \gr i)t

S

2ws / t_ t) e Z 2ws | Var (C;)R gi) (r)eteren)T
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) / ;: - GR gz) e / Z_:J(W) (Ke + wp) —0 w—i0]"  —2mi [[(2:; :;); 175;; Zf]w; - w))
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2m (e —w —10) —27i [2np (€) + 1]6(e — w)

( 0 [ J(w+ wp) [’P(EIW)iwé(ew)]>
I35 L J(w~+wp) [P (L) + ind(e — w)] —iJ(w+ wp) [2np (€) + 1]
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__Rotating-Wave Approximation

 Dissipative Action for the Oscillator
« Dissipative Self-Energy

€+ wy
2T

SN = F 2T (e +wp)  [S() = —iJ (e + w,) coth
 Narrow Band around € = A
€+ wp ~ A+ w, ~ wp
U
Im[2()]F A ~ Fik  [B(e)]¥ = —2ik (2np + 1) = —2ik;
* Locality

« Spectral Density of the Bath at the Resonace Frequency
J(wo) K,l—i—K,_’nB—l—].:ewO/T

2 K1 — K npg

np =np(wy) = (e“’O/T — 1)

-1




__Rotating-Wave Approximation

 Dissipative Action for the Oscillator
e-Independent Dissipative Self-Energy = Time-Local Effective Action
feo 0 10, — A — 2|¢9? —ik\ /4d
S [¢cl,¢q] — / dt (¢cl,¢q) 2 t 2 | | (Q(Zq)
oo 10, — A — 4|89 +ik 21k,
00
- [ ar[§ (et + 350 + Vain (30 - 97)]

» Shift the Classical Field to Eliminate the Driving Term ~n
¢cl N ¢cl . ¢7]

v [ {5 [(0- - Yot ) Vau] o [0 it ) () ]
+/_:odt {&q{[iﬁt A g(¢cl_¢n) ($c1_$n+im)]¢cl+ [A+ %(|¢cl|2 _¢n$cl_$n¢cl) —in]¢n+2in¢q— %|¢q|2 (¢! _¢n)}
o {8 8060 (54 8) e 3+ B et - ) ] - B 524
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__Rotating-Wave Approximation

 Dissipative Action for the Oscillator
« Shift the Classical Field to Eliminate the Driving Term ~n

« Non-Linear Equation (A —ik)¢, + glcbnlszn = V2in
* Bogoliubov & Non-Linear Terms ¢9¢  ¢9¢  ¢9¢%¢? g,
« Higher Order (Cubic) Terms in Quantum Component

e Contain Full Quantum Information

« von-Neumann Equation : Unitary Evolution 8:4(t) = —i[H(t), 5(t)]
« Time-Local Driven-Dissipative Action : Non-Unitary Evolution
« Bath Degrees of Freedom were Integrated out

« Non-Unitary Evolution Equation for the Reduced Density Matrix ( Lindblad Equation )

& taiy R 33 ¢°
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__Lindblad Equation

Energy Energy
" —H
* Non-Unitary Evolution I .y I » Unitary Evolution
Open . ose
. system . system d n N
* Particle Loss; Decoherence - : | ¢ | E\W(t)} = (Hs + V) T (t))
H‘ =/
* Lindblad Master Equation Energy f
Matter Matter
d .  epn X
— () = Zp(t) SN
‘eystem * Unitary Evolution
y f
—= < —[¥(t)) = Hs[¥(t))

/\ dt

Matter 3 4 ‘0



__Lindblad Equation

« Reduced Density Matrix / Trace out

pp = Trpaeh {9} Tr{...} = Trp {Trvaen {..-}} Tr{p} =1
« von-Neuman Equation Lindblad Equation
atﬁp(t) = —1i [-E[IINPAP ] + 27(1 ( app LT o %{LTmeP( )})

* Non-Hermitian Operators La . Lindblad / Quantum Jump Operators

p(t+dt) = U (dt)p(t)UT (dt)
unltary evolution B -b.

H(®) o
Ut(dt) = e—lH(t)dt', Kraus 0perators

p(t + dt)
= E(p(D))

Lindblad
evolution

20 (H®), L}

4
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__Lindblad Equation

« GKSL Equation (A Brief History of the GKLS Equation : arXiv:1710.05993)




_Llndblad Equation — On the Generators of Quantum Dynamical Semigroups

* Motivation
* Cloed System : One-Parameter Group Unitary Transformation in Hilbert Space
 Irreversible Processed? (Decay of Unstable Particles, Approach to Thermodynamic

Equilibrium, Measurement Processes)

Releases alpha particles

/Reversible
Direct from process
TytoT,
— ‘ Beta Decay ‘ Reversible
I
I
0

T, T;
Radioactive Decay Alpha Decay (gl \E

Releases electron (B°) or positron (B*) processs

\ \/W\/\/\ Gamma Decay

Releases gamma rays

Tc

Irreversible Two reversible processes

() Neutron @) Proton
ASirrev = ASrev ASirrev= ASrev




__Lindblad Equation

On the Generators of Quantum Dynamical Semigroups

* To Avoid Unitary Evolution = Non-Hamiltonian Systems
System (S) ® Reservoir (R)

« Measure Process (System + Ancilla/Pointer)
« Stochastic External Force in Brownian Motion (Particle + Fluid)

D.o.F of § (Macroscopic) < D.o.F of R (Microscopic)
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_Llndblad Equation — On the Generators of Quantum Dynamical Semigroups

 |s Lindblad for me? (arXiv:2506.22436 )

* Hierarchy of Timescales

Relaxation Time of System 7 > Time of System Internal Dynamicas 7¢ > Relaxation Time of Reservoir 75

A

TR"’F =d

Aps~ps(0)1_

(B()B(0))
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__Lindblad Equation An Introduction to Operator Algebra
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Basics of Analysis
e Normed Spaces and Banach Spaces

A normed space (X, ||-|) over C is a vector space with a norm satisfying positivity, homogeneity, and the
triangle inequality. A Cauchy sequence (x,,) is one such that |z, — x| — 0 as n,m — oo. If every
Cauchy sequence converges in X, then X is complete and is called a Banach space.

e Bounded Linear Maps and Operator Norm

A linear map T : X — Y between normed spaces is bounded if sup |Tz| < oo; its norm is

|zl<1
|T] := sup |Tx].
|| =1
: : o : - _ f
Boundedness is equivalent to continuity for linear maps. 17| == <;|'::1>111 1T]2)|| = (j;gl ({2IT") (T]z))

¢  PRATRR /T 41 “
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Basics of Analysis
e Hilbert Spaces and Adjoints

A complex Hilbert space (H, {-,-)) is a complete inner-product space (linear in the second slot by our
convention). For every bounded operator A € B(J) there is a unique AT € B(H) such that (x, Ay) =
<ATx, y> for all z,y; AT is the adjoint.

e Spectral Notions
For a in a unital Banach algebra, the spectrum o(a) is the set of A € C such that a — A1 is not invertible.

Its radius is r(a) := sup{|\| : A € o(a)}. A fundamental fact is the spectral radius formula

1
r(a) = lim a"]"

In C*-algebras, spectra of norm elements encode geometry via the functional calculus (see below).

& tonsmxy 42 ¢°*
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__Lindblad Equation An Introduction to Operator Algebra

Vector Spaces .
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Basics of Analysis

e Finite-Dimensional Sanity Check

In finite dimensions all norms are equivalent, every linear map is bounded, and adjoints are the usual
conjugate-transpose with respect to the standard inner product. This lets you test general definitions on

M ;(C) before returning to the infinite dimensional setting.
e ("-Algebra in Functional Analysis
e x- Algebra

A complex *-algebra (A, -, *) is a complex algebra with an involution a — a* such that

(ab)* =b*a*, (Aa)*=Xa*, a*"=a, Va,be A,AeC

6 Ya7mRs 44 ¢°

University of Chinese Academy of Sciences




__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Basics of Analysis

e Banach *- Algebra

A Banach *-algebra is a x-algebra equipped with a complete submultiplicative norm |-||
(i.e. [|abl| < |a||[b] ) such that |a*| = ||a|| need not hold a priori.

e (C*-Algebra
A (*-algebra is a Banach x-algebra (A, -, *) satisfying the C*-identity
la*a] = |af?

If A has a multiplicative identity 1, it is called unital.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Basics of Analysis
e Immediate Consequences of C*-Identity

For a C*-algebra A :

» The norm is uniquely determined by the *-algebraic structure: if another
norm makes A a C*-algebra, it must agree with |-|.

» ||la|| = r(a) for every normal element (a*a = aa*), in particular for self-
adjoints (@ = a*) and unitaries (a*a = aa* = 1).

» If 7: A — B(H is a x-homomorphism, then it is automatically contractive:
|7(a)] < a

; if injective, it is isometric.
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__Lindblad Equation An Introduction to Operator Algebra

.. =z A = A (Hermiti 1
C*-Algebras: the Minimal Package reew (Hermitian Observable)
r=bb < p=|Y)(¢| (Pure State) A= B'B
e Basics of Analysis o(x) C [0,00) <> All eigenvalues non-negative
e Positivity a<b < (YA[p) < ($|B|y) for all [¢)

An element x € A is positive (written as > 0) if x = * and o(z) C [0, c0). Equivalently, z = b*b for
some b € A. We define a < b iff b — a > 0; this turns the self-adjoints into an ordered vector space.

e Functional Calculus (for Normal Elements)

If a € A is normal, then for every continuous f on o(a) there is a unique f(a) € A such that f — f(a) is
a x-homomorphism C(o(a)) — C*(a, 1), the C*-subalgebra generated by a and 1. This generalizes
“apply a function to a diagonalizable matrix”

ola) <« {E,} (spectrum of eigenvalues)

f(a) Z f(E,)|n)(n| (spectral decomposition)

Classical Functions: C(o(a)) < span{dg, : Ei € o(a)}

By TR 7 MR K/F quantum Operators: 0*(a, 1) span{ A, (A 4,52 0 47 “
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Canonical Examples

e Bounded Operators on a Hilbert Space

Let A be a complex Hilbert space. B(H) is the algebra of all bounded linear
operators X : { — JH with operator norm

| X1 = sup [ Xy
Jy=1I

Involution is the adjoint X +— XT. The C*-identity holds:
| XTX]) = X1

@ FetTixs

University of Chinese Academy of Sciences




__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Canonical Examples
e Bounded Operators on a Hilbert Space
Proof:
» Submultiplicativity || XTX|| < || XT|||X] = | X]?
> Vi), (W lth,) = 1, st Tim [X]5s,)] = X1
(| XTX ) = |1 X |90,)|° = X7
= | XTX[ = sup (4, |XTX|3,) > lim (3, |XTX[p,) = | X

<’n, n/—

= [ XTX] =1 x?

@ Potexs 49 ¢°*
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Canonical Examples

e Matrix Algebras

M,(C) = B(C?) with involution A + AT = AT and the operator norm induced
by the Euclidean norm on C¢. All finite-dimensional C*-algebras are *-isomorphic
to finite direct sums @, M, (C).

> For rank-one A = |u)(v|, [A] = [ul|v]; ATA = |Ju|?|v)(v] =

Jull?1ol? | 75) (7 | so ||ATA|| = Jul?v]?> = | A|? verifies the C*-identity by
hand.

» Positivity: A > 0iff A = AT and all eigenvalues are > 0; equivalently A =
B'B.

&) Ta#y Rz 50
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Canonical Examples

e Commutative example C,(X)

Let X be locally compact Hausdorff. C;(X) is the algebra of continuous f : X — C that vanish at
infinity, meaning for every € > 0 there exists a compact K C X with |f(z)| < € for all x ¢ K. Operations

are pointwise; involution is complex conjugation f* = f; norm is the sup-norm | f|., = sup|f(z)|.
zeX

» Cy(X) is complete in || - |, (uniform limit of continuous functions is continuous, and

vanishing at infinity is closed under uniform limits).

» C*-identity holds: | f* floo = 1/ floc = I1/*loc = I 13
» For X compact, Cy(X) = C(X) is unital with 1 = 1. For noncompact X, one can adjoin a

unit (one-point compactification).

&5  (ORL 7 RRT 51 “




__Lindblad Equation

An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Canonical Examples

e Remark (Gelfand-Naimark for Commutative C*-Algebras)

Every commutative unital C*-algebra A is x-isomorphic to C (X ) for a compact Hausdorff space X,
called the Gelfand spectrum of A. This space is defined as

X :={w: A — C | wis a nonzero multiplicative * -linear functional}.

The algebra C (X' ) consists of all continuous functions f : X — C with pointwise operations and the sup
norm. Thus, Example above is not just a model; it characterizes the entire commutative world.

e States and Expectations

e Positive Linear Functional and State

A linear functional w : A — C is positive if w(a*a) > 0 for all a € A. It is a state if, additionally,
(equivalently, for unital A, w(1) = 1).

@ YR TR 52 ¢°
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations
e Cauchy-Schwarz for Positive Functionals

If w is positive, then for all a,b € A
lw(b*a)|? < w(a*a)w(b*d).
Hence |w(a)| < w(ﬂ)%w(a*a)% when A is unital.
e Remark (Order Unit and Expectations)

On self-adjoints, a < b = w(a) < w(b). Thus a state is precisely an order-preserving normalized
functional, playing the role of an expectation value in physics.

A<B = w(d)=WlAlp) <wB) = (|Bly)

& YanvmRs 53 ¢°
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__Lindblad Equation

An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations

e Two Canonical Representation Theorems Linking Analysis and States.
» Theorem (Riesz—Markov-Kakutani for C, (X))

Every positive linear functional w on Cy(X) is integration against a unique regular Borel measure p,:
of) = [ fdn, feC)
X

States correspond to probability measures (u,,(X) = 1). This identifies the classical notion “state =
probability distribution”

Statistical f=4 w(f)= /A (e"ﬂH(p’Q)dI‘)

Quantum F=A w(A)=Tr(pA)

B YEMTRRT

University of Chinese Academy of Sciences




__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations
® Theorem (Normal states on B(H))

Let T (J) be the trace-class operators on J (those T with |T||, := Tr VTTT < o). For every T €
T (J), the map wp : B(H ) — C, wp4)y = Tr(T'A) is a bounded linear functional. The normal

linear functionals on B(JH') are exactly those of this form. States correspond to density operators p €
T(H) withp > 0 and Tr p = 1:

wp(A) = TT(pA)
e Example (Classical expectation as a C,(X)-state)

Let X = R with Borel probability measure . Then w(f) = [ f dp is a state on Cy(R). For f(x) =
; _f; (which vanishes at infinity), w(f) is the bounded second-moment surrogate | s f; d.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations

e Two Canonical Representation Theorems Linking Analysis and States.
» Example (Quantum expectations on M ;(C))

Let p € M;(C) be positive with Tr p = 1. Then for A € M;(C), w,(A) = Tr(pA) is a state. If p =
) (] is pure, w, (4) = (W AL). T p = 5 p; [} {0,
ZP@<¢¢|A|¢1>-

» Example (Projective measurement as expectation)

, then w p is the convex combination

For a projection P = P2 = PT in M (C) and a state p, the number Tr(pP) € [0, 1] is the Born
probability of obtaining the “yes” outcome for the yes/no observable P.

|
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations

e Pure v.s. Mixed States and the Krein-Milman Picture
» Definition (Pure and Mixed States)

A state w on a C*-algebra A is called pure if it cannot be written as a nontrivial convex
combination of other states. That is, w is pure if whenever w = Aw; + (1 — \)w, with

A€ (0,1) and wq, w, states, then w; = w, = w. A state that is not pure is called mixed.

Equivalently, w is pure if and only if it is an extreme point of the convex set S(.A) of all
states on A.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations

e Pure v.s. Mixed States and the Krein-Milman Picture
» Physical Interpretation

m Pure states represent maximal knowledge about a quantum system - they
correspond to preparation procedures that cannot be decomposed into
probabilistic mixtures of other preparations.

m Mixed states arise from statistical uncertainty or incomplete knowledge
about the system’s preparation, and can be written as convex combinations
w = )Y p,w; where w, are pure states and p, > 0, Y p, = L.
i i
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations
® The Krein—-Milman Framework

The state space S(A) is convex and weak* compact. By the Krein-Milman theorem:
» The extreme points of S(A) are precisely the pure states

» Every state is a weak™ limit of convex combinations of pure states

» Pure states form the “building blocks” from which all other states can be constructed
0)
Z4

=

Maximally
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e States and Expectations

e Pure v.s. Mixed States and the Krein-Milman Picture
» Concrete Realizations

s On B(H): Pure normal states are exactly vector states w,,(A) = (| A[))
with [ = 1

m On M (C): Pure states correspond to rank-1 density matrices p = [1)) (1

b

while mixed states correspond to density matrices p = Y p, |¥,)(¢;| with
i
at least two nonzero p;,

s On C(X) (commutative case): Pure states are point evaluations w, (f) =
f(x), while mixed states correspond to probability measures with support
on more than one point
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Why (™-algebras for physics? A structured checklist
e Unification.

Classical observables form C,(X); quantum finite-level observables form M ;(C); both
are C*-algebras with a common positivity and order formalism.

e Intrinsic norm and spectrum.

The C*-identity ties the norm to spectral data for normal elements, enabling a robust
functional calculus (e.g. f(H) for Hamiltonians H = H).

& YanvmRs 61 ¢°
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Why (™-algebras for physics? A structured checklist
e States as expectations.

The abstract “state” matches probability measures in the classical case and density
matrices in the quantum case

e Gateway to dynamics.

Once observables live in a C*-algebra, completely positive (CP) maps and semigroups
are the natural dynamics; the GKSL theorem characterizes their generators.

& toteRT
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e A First Encounter with Functional Calculus (Hands-on)

Let H = H' on /. For any bounded continuous f : o(H) — R, f(H) is defined in B() such that

|f(H)| = A:U&)U()\)L gofr g(f(H)) and f > f(H)I.

In finite dimension, if H = U diag()\,, ..., \;)UT, then
f(H) =U diag(f(A), ... f(Ag))UT.

B tanTRxy

University of Chinese Academy of Sciences




__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e A First Encounter with Functional Calculus (Hands-on)

Examples:
1. f(z) = e yields the unitary e “*#:

e—itH :/ e—itAP<d)\),

where P(d)) is the spectral measure associated with H. This operator represents the time evolution
operator in quantum mechanics. The integral sums over the eigenvalues A of H, with each term

weighted by the function e~ #*,

6 Ya7mRs 64 ¢°
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e A First Encounter with Functional Calculus (Hands-on)

Examples:

2. f(x) = 1, yields the spectral projection onto the energy window A:
Pa= [ 1awPlay) =P(a),

where P(A) is the spectral projection operator corresponding to the energy window A. This
projection operator projects the state onto the subspace of A associated with the eigenvalues of H
that lie within the set A.

6 Ya7mRs 65 ¢°
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Worked Micro-Exercises

e Show C,(X) is a C*-algebra.
Step 1: Algebraic Structure

The set C;(X) is clearly a complex vector space under pointwise addition and scalar multiplication.
Furthermore, it is closed under pointwise multiplication since the product of two functions vanishing at
infinity also vanishes at infinity. The associative, distributive, and commutative properties follow from the
corresponding properties of complex numbers.

Step 2: Involution

Define the involution * : Cy(X) — Cy(X) by f*(z) = f(x) (complex conjugation). This involution
fr =

satisfies: (f + ¢)* = f* + g%, (A Mffor A€ C, (fg) =g f* (f) = f

& taiy R 66 ¢°
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® Worked Micro-Exercises

e Show C,(X) is a C*-algebra.

Step 3: Norm and Completeness

Equip C,(X) with the supremum norm: || ||, = sup|f(z)| This norm makes C;,(X) a Banach space. The
zeX

norm satisfies: | f* f|.. = | f|% (C*-identity) '21’0 verify the C*-identity, note that: || f* f|| ., =

sup (@) ()] = sup|(@)]2 = (sup|f<x>|) 12

reX reX rxeX

|
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® Worked Micro-Exercises

e Rank-One Operator Norm. For |u), |v) € F, A = |u)(v|. Show |[A| = |ul [v].
Step 1: Upper bound || A|| < ||u| ||v]

For any |¢) € A with |¢| = 1, we have: A|¢) = |u)(v|v) = (v|1p) |u) Therefore, |A[Y)| = |{v]1)] -
lu| < ||v|| - ||| - |u| = |lu| |v] where we used the Cauchy-Schwarz inequality |(v|1))| < |v]| - ||1|. Since

this holds for all unit vectors |1), we conclude: |A|| = sup |A|Y)|| < ||lu| v
[ =1

Step 2: Lower bound || A|| > ||u| ||v]

To show the reverse inequality, consider the vector |p) = ﬁ (if v % 0). Then |¢| = 1, and: A|p) =

[u) (v]) = ||v] |u). Thus, [ A]@)[ = |[v] - |u] Therefore, | A] = ”ZTQJIAIWII > [ Ale)]

= [ul v
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® Worked Micro-Exercises
e Cauchy-Schwarz for States.

For positive w and a,b € A, consider w((a + A\b)*(a + Ab)) > 0 for all A € C; optimize over A
to get the inequality.

Proof
w((a+ Xb)*(a + Ab)) = w(a*a) + |\|?w(b*b) + Mw(a*d) + X\*w(b*a)

dw w(a*b) w(b*a)
o 0=\ = — N = —
a7 w(b'b) w(6°D)

Insert the A back to the first expression and require the minimum to be no less than 0:

w(a*b)w(b*a) < w(a*a)w(b*d)
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Worked Micro-Exercises
e Cauchy-Schwarz for States.

For positive w and a, b € A, consider w((a + Ab)*(a 4+ Ab)) > 0 for all A € C; optimize over A
to get the inequality.

Proof
w(a*b)w(b*a) < w(a*a)w(b*b)
In particular,
(1o  ATBl4pg) (1o BT Altpo) < (10| AT Al (0| BT Blay)
.Let Altpy) = |9), Bltyy) = |¢) and we derive the Cauchy-Schwarz inequality in QM:
[(l) 12 < (Dle)(ol@)
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Worked Micro-Exercises
e Spectral radius formula in M ,(C).
Verity r(A) = nh_)rglo | A”||= by diagonalizing A in Jordan form and bounding | A"| above and
below by the largest modulus eigenvalue.
Proof
Rewrite A in Jordan form (J is the block-diagonal matrix)
A=PJP! = Ar=pJjrp~l Jgr=pP7lA"P
The corresponding norm satisfys
A" = PJ"P~ = |AM| < P P7H| = A" < ey )T
Jr=PLATP = T < |[PTH[IAMIP] = A" = e 7]
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__Lindblad Equation

e Worked Micro-Exercises

e Spectral radius formula in M ,(C).

An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

Verify r(A) = lim |A™|# by diagonalizing A in Jordan form and bounding | A"| above and
n—o0

below by the largest modulus eigenvalue.

Proof

With lim c» = 1, we have
n—oo

(es] I )™ < AR <

@ FetTixs

University of Chinese Academy of Sciences
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Common Pitfalls Clarified
e “Positive” #* “Nonnegative Entries”
In M,(C), A > 0 means ' Az > 0 for all z, not that each entry is > 0.
e Trace-Class vs Hilbert-Schmidt.

On infinite-dimensional J, T (H) C HS(H') C B(H); only trace-class defines normal states via
p > Tr(p-).
e Vanishing at Infinity.

In C,(X), functions need not be compactly supported; they merely become small outside a compact
set. This is crucial for completeness and duality with measures.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples

e What does “GNS” stand for?

GNS stands for Gel’fand-Naimark-Segal. The GNS construction is a fundamental tool in operator
algebras that takes a state w on a C*-algebra A and produces a Hilbert space  , and a representation

7, : A — B(H,) such that w is realized as a vector state.
e Definition (Cyclic Vector)
A vector |Q2) € K, is called cyclic for the representation 7, if the set of vectors
[r(@)0,) | a € A}

is dense in /. This means that by acting on |€2 ) with all elements of the algebra (via 7)), we can
approximate any vector in J . The cyclicity ensures that the representation is “large enough” to capture

the full algebra A.
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__Lindblad Equation

An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples

e Unification of States

The GNS construction unifies the treatment of pure states (described by vectors in a Hilbert space) and
mixed states (described by density operators) by representing both as vector states in the GNS Hilbert

space:
w(a) = (Qulm,(a)[,) Vae A

Pure states: If w is a pure state, the GNS representation is irreducible, and |2} is the unique (up to

phase) vector representing w.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples

e Unification of States

Mixed states: If w is a mixed state with density operator p = } .. p;|;){9;| on a Hilbert space 7, the
GNS space J(, is isomorphic to /' ® J(, and the cyclic vector becomes a purification of p:

Q) =D Voil) ® |v;) € H @ H.

7

The representation acts as 7 (a) = a ® 1, and the expectation value reproduces the mixed-state trace:

(2,[(a®1)[82,) = Zpi<¢i!a\%> = Tr(pa).

Thus, the GNS framework treats all states uniformly as vector states, with cyclicity ensuring the algebra is
fully represented.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples

e Definition (State)

A state on a C*-algebra A is a linear functional w : A — C such that w(a*a) > 0 for all a € A and
|w| = 1 (equivalently, w(1) = 1 when A4 is unital). For A = B(H ), normal states are precisely

w(a) = Tr(pa) with p > 0, Tr p = 1.
e Definition (GNS construction (Gel’fand-Naimark-Segal))
Given a state w on a C*-algebra A, the GNS triple (7, F,, |€2,)) is obtained as follows.

& tansmxy 77 ¢°




__Lindblad Equation

C*-Algebras: the Minimal Package op Functional analysis

part 5 — completeness

An Introduction to Operator Algebra

® GNS Construction: Definition, Meaning, and Examples

e Definition (GNS construction (Gel’fand-Naimark-Segal))

Ve>0 AN e N VYn,m >N : dlzy,zm) <e

» Step 1 (pre-Hilbert space).
Define a sesquilinear form on A by (a, b) , := w(a*b), a,b € A. Let the null space (left ideal)
N, :={a € A:w(a*a) =0}.
Form the quotient vector space 7\% and denote the class of a by [a]. The form (-, -) , descends
to an inner product

(lal, [0]),, = w(a®b),

making Ni a pre-Hilbert space.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples
e Definition (GNS construction (Gel’fand-Naimark-Segal))
» Step 2 (completion).
Let . be the Hilbert-space completion of 7\% in the norm ||[a]|,, := v/w(a*a).
» Step 3 (representation).
Define 7, : A — B(H,) by left multiplication:
7, (x)a] :=[xa], x,a € A,

which is well-defined, bounded, and a *-representation.




__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples
e Definition (GNS construction (Gel’fand-Naimark-Segal))
» Step 4 (cyclic vector).
Let [©2,) := [1] € K. Then
w(a) =(Q,, 7, (a),),, and span{r(a)|Q,):a€ A} =K,

w?r w
e Theorem (Uniqueness up to unitary equivalence)

If (m, F(, |€2)) is any cyclic representation such that w(a) = (Q| w(a) [2) for alla €
A, then there exists a unique unitary U : K, — H with U |Q_) = |Q2) an
Urn,(a) =m(a)U foralla € A.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Key Properties and Physical Meaning.

e Vector-State realization.

Every abstract state is realized as a concrete vector state on some Hilbert space, with observables
represented by bounded operators via 7.

e Purity vs Irreducibility.

w is pure < m_, is irreducible (has no nontrivial closed invariant subspaces). This is the rigorous
correspondence between pure states and rays.

e Faithfulness.

w is faithful (w(a*a) = 0 = a = 0) = =, is faithful (injective), hence identifies A with a concrete
operator algebra.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e Key Properties and Physical Meaning.

e From Abstract to Concrete.

In physics, we often start from A and a physically prepared state w (e.g. a thermal/KMS state). GNS
provides the “right” Hilbert space 7, and the observable representation tailored to w.

e Bridge to Stinespring,.

Stinespring’s dilation for CP maps uses a GNS-like construction for the positive functional (a
(1, ®(a)1)); technically, GNS underlies many dilation theorems in operator theory.

6 Ya7mRs 82 ¢°
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e GNS Construction: Definition, Meaning, and Examples

e Finite-dimensional examples (QI notation).

» Example (Matrix algebra with a density operator)

Let A = M, (C) and w(a) = Tr(pa) with p > 0, Tr p = 1. Define inner product on A by
(X,Y), =Tr(pX'Y). Then

H, = (M;C),{,),), m, (a): X—aX, Q) =Id

One checks Tr(pa) = (1, al) , and 7, is faithful iff p is full rank. If p has support
projection s(p) of rank r, then 7, is equivalent to the standard representation on C".
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples
e Finite-dimensional examples (QI notation).
» Example (Pure state (vector state))
Let A = B(H) and w(a) = (Y| a [tp) with || = 1. Then N, = {a : a |¢p) = 0}, FH is
isomorphic to the closure of {a |¢) : a € B(H )} (which is all of H if H is separable and

1 is cyclic), 7, is the identity representation (up to unitary equivalence), and |€2_,)
corresponds to |¢). Thus GNS reproduces the usual Dirac formalism for pure states.
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C*-Algebras: the Minimal Package

e GNS Construction: Definition, Meaning, and Examples
e Finite-dimensional examples (QI notation).

» Example (Tracial state and L2-picture)

On M,(C) with the tracial state 7(a) = 5 Tr(a), the GNS Hilbert space is the Hilbert-
Schmidt space (M,(C),(X,Y), = 2 Tr(X'Y)), with 7, the left-regular representation
a: X+ aX and |Q_) = Id. This is the finite-dimensional prototype of the L?-space
L?(A, ) used in noncommutative integration.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

® GNS Construction: Definition, Meaning, and Examples

e Finite-dimensional examples (QI notation).

» Commutative case and the Riesz—Markov theorem.

If A = Cy(X) (continuous functions vanishing at infinity on a locally compact Hausdorff

space X), any state w comes from a unique probability measure u by the Riesz—Markov
theorem: w(f) = fX f du. The GNS space is K, = L?(X, u), with

7 (f) acting as multiplication by f, Q_=1¢& L*(X,pu).

Thus, in the classical case GNS reduces to the standard L? representation of observables as
multiplication operators and the state as an L?-unit vector.
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__Lindblad Equation An Introduction to Operator Algebra
C*-Algebras: the Minimal Package

e® GNS Construction: Definition, Meaning, and Examples
e Useful facts (at a glance).
» Cyclicity: |2 ) is cyclic by construction; 7 (A) [€2,,) is dense in F_.

» Separating vector: If w is faithful, then |Q)_) is separating for 7_(A) (i.e.
7, (a) |2, =0=a=0).

» Normal states on B(H): For w(a) = Tr(pa), the GNS triple is unitarily equivalent
to the standard form built on the support of p; if p is pure, GNS collapses to the usual
Hilbert-space picture.

» Purity test: w pure < the commutant 7 (A)” contains only scalars (Schur’s lemma).
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C*-Algebras: the Minimal Package

e GNS Construction: Definition, Meaning, and Examples
e Why GNS matters for these notes.

» It justifies representing abstract observables in A by concrete operators on some H_,
with expectations given by vector states. This is the backbone for moving between

abstract C*-algebras and B(H).

» It clarifies the role of normal states and ultraweak continuity in the W* (von
Neumann) setting: normal states correspond to trace-class objects via the predual,
and their GNS representations mesh well with partial traces and dilations.

» It connects directly to Stinespring dilations of CP maps (next section), which can be
viewed as a GNS construction for a positive semidefinite kernel induced by the map.
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__Lindblad Equation An Introduction to Operator Algebra

von Neumann (W*) Algebras and the Right Topologies

This section explains what von Neumann (W *) algebras are, why the weak/
strong operator topologies are the correct ones for infinite systems and open
dynamics, and how normal states/maps arise from the unique predual.

Examples are chosen with quantum mechanics, quantum optics, and (briefly)
QFT in mind.

e Operator Topologies on B(H) (physicist-friendly refresher)

Let B(H ') denote bounded operators on a Hilbert space J{. Besides the norm
topology || X

, we use weaker topologies defined via matrix elements.
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von Neumann (WW*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Definition (Weak and Strong Operator Topologies on Bounded Sets)

For anet (X_,) C B(H ) and X € B(H):
» Weak operator topology (WOT): X_, — X iff (p, X 1) — (@, X)) for all p, ¢ €
H.
» Strong operator topology (SOT): X, — X iff | X_ o — X¢| — Oforally € K.

On bounded sets (i.e., sup| X, | < 00), these are metrizable if / is separable. One always

(0%
has

norm = SOT = WOT.
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von Neumann (W*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Definition (Ultraweak and Ultrastrong Topologies)

Using the trace-class 7 () as the predual of B(H ) (Theorem below):
» Ultraweak (UW/ o (B(H), T (H))): X, —» X iff Tr(TX_,) — Tr(TX) for all
T € T(H).
» Ultrastrong: X, — X iff [(X, — X)pz|, — Oforall p € T (J),, where | - ||, is
Hilbert-Schmidt norm.

On bounded sets, ultraweak = WOT and ultrastrong = SOT. The “ultra” language is
convenient beyond B() in general von Neumann algebras.

Physically: WOT/UW track convergence of expectation values (| X |1) or Tr(pX); SOT/
us track convergence of action on state vectors or density-operator square roots.
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von Neumann (WW*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e What is a von Neumann algebra?
e Definition (Commutant and Double Commutant)
For § C B(H ), the commutant is
S ={XeBH):[X,5]=0VS e S}

It is a unital *-subalgebra. The double commutant is 8" = (8’)’.
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von Neumann (W*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e What is a von Neumann algebra?
e Theorem (von Neumann Double Commutant Theorem)

If A C B(J) is a unital x-subalgebra, then the following are equivalent:
o A is WOT-closed (equivalently, SOT-closed) in B(H);
o A = A" (it equals its double commutant).

A unital x-subalgebra satisfying either condition is called a von
Neumann algebra (or W*-algebra).

@ tansxs 93 ¢°
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von Neumann (W*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e What is a von Neumann algebra?

e Remark (Closing under weak/strong limits matters)

In experiments and theory, we approximate observables by sequences/
nets (finite-resolution detectors, finite-volume/energy cutofts, Trotter
products, etc.). Demanding closure under WOT/SOT ensures limits of
physically meaningful approximations remain in the algebra.
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An Introduction to Operator Algebra

von Neumann (IV*) Algebras and the Right Topologies

e Examples a Theoretical Physicist Knows

e Example (All bounded observables)

B(H) itself is a von Neumann algebra: it is already WOT/SOT closed and
equals its double commutant. Type classification: B(J) is a type I factor
(center = C1).
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__Lindblad Equation An Introduction to Operator Algebra

von Neumann (W*) Algebras and the Right Topologies

e Examples a Theoretical Physicist Knows

e Example (Multiplication operators: classical probability)

Let (X, i) be a o-finite measure space and A = L?(X, u). Define
Lo(X, ) = {M; > fo | f € L®(X, )} C B(%).

This is a commutative von Neumann algebra (WOT-closed). Its
commutant is itself: L>° (X, u)" = L*=°(X, u).
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von Neumann (IV*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Examples a Theoretical Physicist Knows

e Example (Finite-level quantum systems)

For finite d, M,;(C) = B(C%) is a von Neumann algebra (and a C*-algebra).

Any finite direct sum &, M, (C) acting on @, C?* is also a von Neumann
algebra. These model superselection sectors or block-diagonal Hamiltonians.
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von Neumann (W*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Examples a Theoretical Physicist Knows

e Example (Quantum optics and CCR via Weyl operators)

Let A be the Fock space of a bosonic mode. The Weyl operators W (£) =
exp( ( 18, + D&, )) are unitary and bounded. The von Neumann algebra M
generated by {W £) : £ € R?} in a fixed regular representation is WOT-
closed and contains all bounded functions of the number operator via the

spectral calculus. This provides a rigorous bounded-operator setting for
continuous-variable systems.
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An Introduction to Operator Algebra
von Neumann (IV*) Algebras and the Right Topologies

e Examples a Theoretical Physicist Knows

e Example (Local algebras in algebraic QFT (AQFT))

For a spacetime region (), the local bounded observables generate a von
Neumann algebra M (OQ) C B(H ). In relativistic QFT, these are typically type
III factors (no trace, no density matrices as normal faithful tracial states),
explaining the subtleties of entropy and partial trace in QFT. For our open-
systems notes we mainly use type I, but the W* framework scales to QFT.
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von Neumann (WW*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Predual and normality
e Theorem (Unique Predual)

Every von Neumann algebra M is the dual of a uniquely determined Banach space M, (its

predual): M = (M,)". The o(M, M,) topology is the ultraweak topology.

e Example (Predual of B(H))
If w is positive, then for all a,b € A

lw(b*a)|? < w(a*a)w(b*b).

Hence |w(a)| < w(]l)%w(a*a)% when A is unital.
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von Neumann (W*) Algebras and the Right Topologies

e Predual and normality

e Remark (Order Unit and Expectations)

The predual is the trace-class T (H); the dual pairing is (T', X) = Tr(TX), T € T (H),
X € B(H). Thus ultraweak convergence is exactly convergence of all density-matrix

expectations Tr(pX ).
e Proposition (Normal States on B(H))

Normal states are exactly w,(X) = Tr(pX) with p € T (), p > 0, Tr p = 1. Non-normal
states exist (singular states), but they are unphysical for open-systems dynamics driven by
partial traces and limits of finite-rank approximations.
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An Introduction to Operator Algebra
von Neumann (WW*) Algebras and the Right Topologies

e Predual and normality

e Remark (Why Normality for Dynamics)

In open quantum systems we repeatedly use:
» Partial trace Try : B(HqQ Hg) — B(Hg) is a normal, completely positive
(CP), unital map in Heisenberg picture (CPTP in Schrodinger picture).
» Limits of Trotter products and weak-coupling limits produce UW/SOT limits;
normality ensures these limits commute with expectations Tr(p -).
» Semigroups {CIDt}t> , used in GKSL are assumed normal so that p -

Tr(p, ®,(X)) varies continuously with ¢ for all trace-class p.
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An Introduction to Operator Algebra
von Neumann (W*) Algebras and the Right Topologies

e Projections, support, and conditional expectations
e Definition (Projections and Support)

A projection P € M satisfies P = PT = P2, For a positive normal functional (state) w on M, its support
projection s(w) is the smallest P € M with w(1 — P) = 0. For a positive A € M, s(A) is the projection
onto Ran(A) in B(H)..

e Proposition (Lattice of projections)

In a von Neumann algebra, projections form a complete lattice: any family has a least upper bound
(supremum) and greatest lower bound (infimum), given by strong/ultraweak limits of increasing/
decreasing nets. This fails in general C*-algebras.
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von Neumann (W*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Projections, support, and conditional expectations
e Definition (Conditional expectation)

A (faithful, normal) conditional expectation £ : M — N onto a von Neumann subalgebra
N C M is a unital CP idempotent map E? = E, normal and NV-bimodular: E(N; XN,) =
N, E(X)N,. Example: partial trace £ = Try onto B(H¢) ® 1.
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von Neumann (W*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Cyclic and Separating Vectors; Standard Form (Physics View)

e Definition (Cyclic and Separating)
A vector Q2 € H is cyclic for M if M) = J. 1t is separating it X{) = 0 implies X = 0 for

X eM.
e Example (Thermal/Gibbs States)
For M = B(H) and pg = < BH full-rank, the vector {5 = ,01/2 in the GNS (or standard)

Hilbert space L?-picture is Cychc and separating. This underpins the KMS condition and,
more generally, Tomita—Takesaki modular theory (not needed in detail here, but it explains
why type III algebras naturally encode thermal/time evolution).
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An Introduction to Operator Algebra

von Neumann (W*) Algebras and the Right Topologies

e Type Classification at 10,000 ft (Why You might Care)
A von Neumann algebra M has a center Z(M) = M N M’; if Z(M) = C1, M is a factor.
Factors are classified as:

e Type I: contains minimal projections; includes B(# ). Standard quantum mechanics/
open systems mostly live here.

e Type II: has a faithful trace but no minimal projections (e.g. hyperfinite 11, factor);
appears in statistical mechanics and subfactor theory.

e Type III: no trace at all; arises in relativistic QFT local algebras. Entropy and partial
trace require modular theory, not density matrices.

Even if your system is type I, environments or scaling limits can generate non-type-I
behavior; W* language keeps the formalism robust.
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An Introduction to Operator Algebra
von Neumann (WW*) Algebras and the Right Topologies

e Worked micro-exercises (with solutions)
e WOT closure test.

Let (P,) be spectral projections of a Hamiltonian H onto energy windows [—n, n]. Show

P, | P in SOT for some projection P and that the set of all spectral projections of H is
SOT-closed.

Solution: Spectral theorem gives P, 1 — P71 for all 9; projections form a complete lattice in
a von Neumann algebra.
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von Neumann (W*) Algebras and the Right Topologies

e Worked micro-exercises (with solutions)
e Commutant of multiplication operators.

Prove that on A = L?(X, i), the commutant of L (X, p) is itself: L (X, u)" =
L>®(X, ).

Solution: If T' commutes with all M, it must preserve the ranges of M, for measurable E;
from this one deduces ' = M for some g € L.
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An Introduction to Operator Algebra
von Neumann (W*) Algebras and the Right Topologies

e Worked micro-exercises (with solutions)
e Normality of partial trace.
For finite-rank X = ) A; ® B;, check UW-continuity of Try, against any pg € T (Hg)
using Tr[pgTr g (X)) —T r[(pg ® 1).X], then extend by density and UW continuity.
e Identify a factor.
Show B(H) has trivial center C1; hence it is a factor (type I).

Solution: If Z commutes with all rank-one operators ) (¢
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von Neumann (W*) Algebras and the Right Topologies

An Introduction to Operator Algebra

e Takeaways for open quantum systems and GKSL

e The right topology for infinite systems and limits is ultraweak/weak operator; von
Neumann algebras are exactly the UW/SOT-closed *-algebras.

e Normal states/maps are those continuous for these topologies; they coincide with trace-
class generated expectations and CPTP dynamics relevant in experiments.

e Partial traces, conditional expectations, and Stinespring dilations are normal CP maps
between von Neumann algebras; this is the natural stage for GKSL semigroups.
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Positivity, Complete Positivity, and Dilations

e Positive vs Completely Positive (CP)
e Definition (CP maps)

A linear map ® : A — B is positive if (X ) > 0 whenever X > 0. It is completely positive (CP) if, for
every n € N, the amplification

¢ =01, AQM, (C) - B M,(C)
is positive. We identify A @ M, (C) = M, (A).

Physically, CP means the map remains positive on the system even when we extend by an arbitrary idle n
-dimensional ancilla, possibly entangled with the system.
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An Introduction to Operator Algebra

Positivity, Complete Positivity, and Dilations

e Positive vs Completely Positive (CP)

e Choi-Jamiolkowski isomorphism (finite dimension)

For A = M ;(C), define the (unnormalized) maximally entangled vector |Q2) = ) "|i) ® |7)

and the Choi matrix
Jo = (2 ®1,)(]Q2){(2).

Then @ is CP iff J; > 0. The rank of J3 is the minimal number of Kraus operators.
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Positivity, Complete Positivity, and Dilations

An Introduction to Operator Algebra

e Stinespring Dilation and Kraus Form

e Theorem (Stinespring)

Let A be a C*-algebra and ® : A — B(H ) be CP (and normal if A is W*). Then there

exists a Hilbert space H, a *-representation 7 : A — B(Hy), and a bounded V' : FH —
H such that

®(a) =Vin(a)V (VYa € A).

For channels on B(Hg) (Schrédinger picture), there exist H , a unitary U on H ¢ @ Hy,
and a fixed environment state o5 such that

@, (p) = Trg|U(p® o)UT].
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An Introduction to Operator Algebra
Positivity, Complete Positivity, and Dilations

e Stinespring Dilation and Kraus Form
e Proposition (Kraus representation)

In finite dimension (or for normal CP on B()), there exist operators { K } such that

P, (p) = ZKkali, ZK);Kk <1

If , is trace preserving (CPTP), then } , K K 'K r = 1. Heisenberg dual: (X) = >, K gX K, (unital iff
2, KKK i =1).
e Why CP (and not just positive)?

A merely positive map can map a valid bipartite state pg 4 into a non-positive operator when applied as
d, ® 1 4 if pg 4 is entangled (counterexample: matrix transpose). CP guarantees physicality in the
presence of arbitrary idle ancillas.
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Positivity, Complete Positivity, and Dilations

e Stinespring Dilation and Kraus Form

e Kadison-Schwarz Inequality

If @ is CP and unital (®(1) = 1), then
P(XTX) > d(XT)P(X).

This inequality seeds generator constraints by differentiation.




__Lindblad Equation

Quantum Dynamical Semigroups and Generators

An Introduction to Operator Algebra

e Definition (QDS)

A quantum dynamical semigroup (QDS) {<I>t}t> , ona W=-algebra M is a

family of CP (usually unital in Heisenberg, trace preserving in Schrodinger)
normal maps with

=1, &, =P 09, thr(l)rl+|\<l> — 1| =0 (norm continuity).

Lindblad assumes norm continuity so the generator is bounded.
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An Introduction to Operator Algebra

Quantum Dynamical Semigroups and Generators

e® Generator (Liouvillian)

There exists a bounded linear map L : M — M such that

oo

P, = el = L” (norm-convergent).

|
n=0 L

Differentially: in Heisenberg picture, % X, = L(X,) with X, := ®,(X); in
Schrédinger picture, < p, = L, (p,) where Tr[L, (p)X] = Tr[pL(X)].
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Quantum Dynamical Semigroups and Generators

e From CP to generator constraints: matrix amplification

Define the n-level amplification L, := L ® 1, acting on M, (M) =2 M & M, (C). Complete
positivity of each ®, means 9, ,, := &, ® 1,, is positive for all n. Differentiating the Kadison-
Schwarz inequality for ®, ,, at ¢ = 0 yields complete dissipativity:

D(L,;X,X)=L,(X'X)—L, (X)X -X"L,(X)>0 VXe€M,(M),VneN.

This is exactly where the amplification L, is essential: it transfers CP at the semigroup level to a
quadratic inequality at the generator level.
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Quantum Dynamical Semigroups and Generators

An Introduction to Operator Algebra

e Characterizing reversibility

D(L;-,-) = 0iff L is a derivation L(X) = i[H, X] with H = H'. Then {®,} is a
group of *-automorphisms (unitary Heisenberg evolution). Otherwise, the semigroup
is genuinely irreversible.
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The Lindblad/GKSL normal form

e Heisenberg Picture
» Theorem (GKSL/Lindblad form on B(%))

Let {®,} be a norm-continuous QDS of normal unital CP maps on B(J) with generator L. Then

there exist a self-adjoint H = H' and (possibly countably many) Lindblad operators {V;} C
B(H) such that

L(X) = Z(VjTXVj - %{Vijj,X}) +4[H, X].

J
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Quantum Dynamical Semigroups and Generators

An Introduction to Operator Algebra

e Schrodinger Dual

For density operators p,

L,(p) = —i[H,p] + Z(VijjT - %{Vf‘/j, p}),

J

and the master equation reads p, = L, (p,).
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An Introduction to Operator Algebra

Quantum Dynamical Semigroups and Generators

e Non-Uniqueness (Gauge)

e Unitary mixing of jumps: V; = >,V for a unitary U =
(uj k) on the index space leaves L, invariant.

e Hamiltonian shift: certain shifts V; > Vt7 + cj]l can be absorbed
into H — H + H;gq (Lamb-shift-like), leaving L, invariant.

e Minimal number of jumps: equals rank of the Choi matrix of L,
(finite dimension).
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__Lindblad Equation

Quantum Dynamical Semigroups and Generators

e Complete dissipativity made manifest

With equation

L(X) = Z(VjTXV; - %{X{;TVJ-,X}) +i[H, X],

J
one computes

D(L; X, X) =) [X,V]'[x,V] >0,

and the same holds at all matrix levels by amplification, confirming equation

An Introduction to Operator Algebra

D(L,;X,X)=L,(X'X)—L,(X")X—-X'L,(X)>0 VXe€M,(M),VneN.
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__Lindblad Equation
Physical Modeling, Ancillas, and Micro-to-Master

An Introduction to Operator Algebra

e Why ® ® 1,, must be positive for all n

Any real device can be part of a larger system (registers, reference frames, probe
pointers). The system may start entangled with an external idle ancilla. A
physically valid evolution must never produce negative eigenvalues on such inputs.
CP is exactly this ancilla-robustness.
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Lindblad Equation
Physical Modeling, Ancillas, and Micro-to-Master

An Introduction to Operator Algebra

e From microscopic unitary to GKSL (big picture)

Start with H, , = Ho ®@ 1y +1¢ Q@ Hp + AVgp on Hg ® H . Reduced dynamics:
ps(t) = Trp [Ui(ps(0) ® 05U |

Under weak coupling, fast-decaying bath correlations, Markov and secular
approximations (e.g. Davies weak-coupling limit), one obtains a CPTP semigroup
with a GKSL generator. Thermal baths impose detailed balance for the rates and
produce a Gibbs fixed point (up to Lamb shifts).
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__Lindblad Equation
Physical Modeling, Ancillas, and Micro-to-Master

An Introduction to Operator Algebra

e Reversibility vs Irreversibility
e Purely Hamiltonian L(X) = i[H, X|
= automorphism group (reversible).
e Any nonzero dissipator

= proper CP semigroup (irreversible), contractive in trace
distance in Schrodinger picture; arrow of time emerges.
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__Lindblad Equation
Physical Modeling, Ancillas, and Micro-to-Master

An Introduction to Operator Algebra

e Worked examples

» Example (Qubit pure dephasing)
Let V = ,/vZ and H = 0. Then

L,(p) =v(ZpZ — p).

Bloch vector (z,y, 2) = (e 27z, e My, 2).




__Lindblad Equation

An Introduction to Operator Algebra
Physical Modeling, Ancillas, and Micro-to-Master

e Worked examples
» Example (Qubit amplitude damping (7" = 0))

Let V = /7 |0)(1] = y/y0_. Then
1
L.(p) = 7(0_p0+ -

§{a+a,p}).

Excited population decays as e~ *; ground state |0) is fixed.
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__Lindblad Equation

An Introduction to Operator Algebra
Physical Modeling, Ancillas, and Micro-to-Master

e Worked examples

» Example (Thermalization (Davies generator) for Hg = 3 7)
Take V| =\ /yj0_, V; = /70, with 1—1 = ¢ "% and add dephasing V, =
/7,2 Then

. 1

L.(p) = —i[Hg + Hyg, p] +7, (0—P0+ - §{U+U—vﬂ})
1

+ (cupa_ - 5{0_% p}) +7,(ZpZ — p),

with Gibbs state &

B PoHsRX5
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__Lindblad Equation
Physical Modeling, Ancillas, and Micro-to-Master

An Introduction to Operator Algebra

e Worked examples
» Example (Depolarizing semigroup in d)
Let {F, }d2 :
and set V V7V E;. Then

be an orthonormal operator basis with T'r (FJJr Fk) = 0

L.(p) = —v(p— %),

i.e. exponential contraction to the maximally mixed state.
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__Lindblad Equation
Deepening the Operator-Algebra Background

An Introduction to Operator Algebra

® Positive Cones and Order

In any C™*-algebra, an element a is said to be positive, denoted a > 0, if there exists
an element b such that a = b'h. This can also be understood in terms of the
spectrum of a, where a > 0 if and only if the spectrum o(a) is contained in the
non-negative real line, i.e., o(a) C [0, 00).

For operators in B(J), the set of bounded operators on a Hilbert space 7, the
condition a > 0 can be described using the expectation value: an operator a is

positive if and only if for all |¢)) € H, (| a |¢p) > 0.
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__Lindblad Equation
Deepening the Operator-Algebra Background

An Introduction to Operator Algebra

® Projections and Commutants

Projections are idempotent operators, meaning p = p?, and they are also self-
adjoint, i.e., pT = p. The set of all projections in a WW*-algebra forms a complete
lattice, which essentially encodes the structure of yes/no events or dichotomic
outcomes in quantum mechanics.

The commutant M’ of an algebra M is defined as the set of all operators that
commute with every element of M. That is, M’ = {a € B(H) | [a,b] =0,Vb €

M }. The double commutant M” is the von Neumann closure of M, which is the

smallest weak-* closed algebra containing M.
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__Lindblad Equation

An Introduction to Operator Algebra
Deepening the Operator-Algebra Background

e Normal Maps

A linear map ® : M — N between two von Neumann algebras is said to be normal if it
satisfies the following properties:

e Continuity: The map ® is continuous with respect to the o-topologies on M and N,
ie., ®is o(M,M,)-c(N,N,) continuous on bounded sets.

e Preservation of suprema: The map ® preserves the suprema of bounded increasing
nets of positive elements in M.

e Duality under trace-class duality: For B(7(), ® is continuous under the trace-class
duality. This means that for any T' € T (), the map ® satisfies Tr|T'®(X )| depends
ultraweakly on X for each fixed T
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Lindblad Equation
Deepening the Operator-Algebra Background

An Introduction to Operator Algebra

e Semigroups and Bounded Generators

A semigroup of maps {®, },_ is said to be norm-continuous if the map ¢t = @,(X) is

continuous in operator norm for each fixed X.

The generator L of a semigroup {®, } is defined as the limit:

o, —id
L = lim —¢ : .
t—0+ t

If ®, is norm-continuous, then the generator L is bounded. Conversely, if L is bounded,

then the semigroup e‘! is norm-continuous for all ¢ > 0.
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__Lindblad Equation
Deepening the Operator-Algebra Background

An Introduction to Operator Algebra

e Complete Dissipativity (Precise Form)
For a bounded *-map L : M — M, the quantity D(L; X,Y) is defined as:
D(L; X,Y):=L(X'Y) - L(X")Y — XTL(Y).
The map L is said to be completely dissipative if it satisfies the following conditions:
® Unitality: L(I) = 0.
e x-preservation: L is x-preserving, i.e., L(a") = (L(a)) for alla € M.
e Dissipativity: D(L ; X, X) > 0forall X € M (M) and all n.

The Lindblad equation shows that a map ®, is unital and completely positive (CP) for all ¢ >
0 if and only if the generator L is completely dissipative.
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__Lindblad Equation

An Introduction to Operator Algebra
Deepening the Operator-Algebra Background

e Heisenberg-Schrodinger Duality

In B(H), the dual generator L, acts on the space of trace-class operators
T (J) and satisfies the relation:

Tr[L,(p)X] = Tr[pL(X)],
for any p € 7 (H ) and X € B(H). If ¥, is a unital CP map, its predual @, , is

a CPTP (Completely Positive and Trace-Preserving) map. The equations in the
Heisenberg and Schrodinger pictures are dual to each other.
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__Lindblad Equation

Practical Derivations and Checkpoints

An Introduction to Operator Algebra

e Positive but not CP: Matrix Transpose

Consider the transpose map T : M, — M, defined by T'(X) = X', where X is a
d X d matrix. The map T’ is positive, meaning that for any X > 0, we have

T(X) > 0. However, (T ® id,)(|€2)(£2|) has a negative eigenvalue, where |2) ()| is
a maximally entangled state, violating the Peres—Horodecki criterion. Therefore, T’
is not completely positive.
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__Lindblad Equation

Practical Derivations and Checkpoints

An Introduction to Operator Algebra

e From Stinespring to Kraus (Finite Dimension)

In the finite-dimensional case, consider an orthonormal basis {|e. )} of the environment Hilbert space . The
Stinespring dilation theorem states that a completely positive map ® can be represented as:

PX)=VI(X®IV,

where V' is a unitary operator. Expanding this using the basis {|e, ) }, we obtain the Kraus representation:
k

where K, = (e, |V |¢) are the Kraus operators.

|
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__Lindblad Equation

Practical Derivations and Checkpoints

An Introduction to Operator Algebra

e Deriving GKSL from complete dissipativity (sketch)

From the condition D(L,; X, X) > 0 at all matrix levels and applying a hyperfinite approximation as in
Lindblad’s work, we can construct a normal CP map © such that:

L(X) = O(X) — %{@(I{),X} +ilH, X).

By Kraus-decomposing ©, we can recover the Lindblad equation in both the Heisenberg and Schrodinger
pictures, as in the equations:

dp
ML—

where the dissipator is given by the sum of jump operators and a Hamiltonian term.

b

' University of Chinese Academy of Sciences
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__Lindblad Equation

On the Generators of Quantum Dynamical Semigroups

 Unitary Evolution : Group
« Non-Unitary Evolution : Semigroup (Preferred Direction in Time)

« Axioms for a Dynamical Semigroup (Ingarden and Kossakowski)
« Let A be a W*-algebra. A dynamical semigroup is a one-parameter family @; of
maps of A into itself satisfying
 a) d; is positive
* b) Oy =1 oo
© ) D5 Dy =Dy B | von Newmam
 d) ®;(X) —» X ultraweakly,t — 0

algebras
* e) @ is normal (ultraweakly continuous)
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__From Keldysh to Lindblad

Coherent State Representation for Lindbladian Evolution

* Formal Solution of the Master Equation

op=Llpl = p(t) =Telr %0, (¢)

.. . 4 . tjt1
* Infinitesimal Steps pjﬂze‘*tﬁfpjz(uatcj)pj 5 = / dt
t

J

* Bosonic Case & Two Sets of Coherent State Over-Complete Basis

a)
VVV e VALY )
t I Ot to
b)
\/ \/ V'V p(to) V'V \/Hy
4 U Ut 5 t
C) v \/ + contour \/ \/
P(tf){ }P(to)
tp =+ /\ /\ - contour /\ /\ tg = —00

1 (g éq) ;?
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__From Keldysh to Lindblad

Coherent State Representation for Lindbladian Evolution

 Instantaneous Density Matrix Operator
pr=iosi = ( [a[ar.of]e 197 o) (o )as ([a[6,0,] 9T 6,) (o)
= [[alereialér o5]e @ o) (a5 lasler ) (o5
» Express Matrix Elements of Reduced Density Matrix 0 ;11 with 0
(el o) = (opule@nslorn) = (ofaleo® | [[a[a1.67]a (6,0, ] 10T lo ) (611316, ) (o | losr)
= [[ alor o587 7] WIIET (a1, 7 ) (ke o7 ) (45 ] 07.1)

_ / d [&j,@*, q3}>¢_ —!¢*’2_\¢-’\2 <¢.+‘;3j ‘¢?> <¢j++1‘¢f> <¢;‘¢j_+1>65t£j(¢3j+1,¢3;,¢j,¢;+1)

// 65.0.8;.4; ]exp{ [%5 IS %*1& IS ($j+1,a‘sj,¢j,¢j+1)]}<¢;ﬁj\qu}

:/ ¢+ o, ¢ 50085 6 +8; 005 +L5(FL,1.85 5 6511 )| <¢ﬂﬁj ’¢;>
153¢°




Coherent State Representation for Lindbladian Evolution

From Keldysh to Lindblad

 Instantaneous Density Matrix Operator

p;=1p;1 = </ [&j,ﬁ: e—|¢}|2|¢j+><¢j+|)ﬁj (/ [@;,¢;]e—l¢jl2|¢;><¢;|)
= [[al5i]a [F565) T ) (o las o5 ) (o7

» Express Matrix Elements of Reduced Density Matrix 0 ;11 with 0

* |terate to the Final Step
N — Pn - N~ PN — _ ) _
<¢N‘PN ‘¢N> // SN 1PN 1Py 1 Pn 1} exp {“st l‘z = 5, - bn_1— by = 5, 2=+ Ly <¢N’¢N—1>¢JJ\FI—1>¢N>] } <¢JJ§r—1|/’N—1 ‘¢N—1>

N-1 B o N-1 ¢+ .__¢._ —é7
(T 0]l £ [ gt

j=N-2

L; } <¢th—2|ﬁN—2 ‘¢J_\/'—2>

N1 o N-1 bl — B __¢j_+1—¢_
:// Hd[gb NOHNO qb} exp z&;z —i 5, ¢; —id; 5, (¢ |ho|¢g)




From Keldysh to Lindblad

Coherent State Representation for Lindbladian Evolution

 Normalization of the “Partition Function”

Z=Trp(t)=1
4
Tep(t) = > (nlp(®) ) = [[ @[3 85 B o] (nl) (0 lon(0)[én) (65 Im)

n=0
— [ 4[8h 8% B3] e 1 (03w 0) ) (i (i) <n|¢7v>>
n=0

= //d |:$]-*\_77 ¢]4\_f’ &]_V’ ¢J_V} e_|¢JJ\r/|_|¢Xr| <¢]-|\_/"pAN(t) ‘¢J—V>e<§1—v¢;\r/
U

Nl N (b‘_ _(b‘_ T— o+
Tej(t) = [ 6565 o] 151 ¢N{ // (Hd 65,0795, 0; ])exp {ustz [— %@ gy +£j”<¢3!ﬁo¢o >}6¢N¢N

7=0

i T+ 4+ I— — . +12 —12 T— o+ = ]—l—l ¢+ LT ¢j_—|—1 _¢J_ NN _
— [[(1La[65.¢.8;.6;] oo i i (161" ~ lon1* = By0k) + 80> (=250 — a6, 20 ) | (6 I 61
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__From Keldysh to Lindblad

Coherent State Representation for Lindbladian Evolution

 Action in the Continuum Limit / Effective Keldysh Action
s =i(legl* +ox]* - dnor)

. Iy ¢+ ¢ ¢
+{—z 16317 + By ($41 — 850 +[95]7) ] + 0 (Zq% K >}

. —9; — PN
+{i¢N(¢N_¢N1 Zdt(Z‘b ]—i—l ¢]_V¢N 5t¢N 1>}+£j

ZE‘:}V —i|¢i|” + / dt (q3+z'at¢+ — ¢ 0 + £j)
¢
S¢, 4] = /dt [¢3+it¢+ —¢"i0¢p” —H" + H — iZ’}’a (L;E; = —LIL} - lL L )]
- 2 2

156¢°*




_FrOm KeldySh to Lindblad —— conerent state Representation for Lindbladian Evolution

 Effective Keldysh Action

Sig.o] = [ at [&*iatw ~50 —Hy +Hy —iY v (B - 5

2 2

LiLg- lm;)]
* No Dissipative = Factorised Action (Unbroken Time Reversal Symmetry)
Y%=0 = S=S[¢"]-S[¢]
« Mixing Terms (broken Time Reversal Symmetry)
L.pll = LIL;
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_From KeldySh to Lindblad —— conerent state Representation for Lindbladian Evolution

 Effective Keldysh Action
Sigo] = [ at lq‘smw ~Gi0 — - Hy =i Y (11D ~ 5 LiL; ;m;)]
* Quantum Jump Operators Correspond to an Approximately Time-Local Effective

Keldysh Action (Non-Markovian)

« Simplest Jump Operators
Li=b Ly=bl = bog¢* b —g*

. —_ 1- 1- B 1/-yq - 0 —im ¢cl
s <¢+¢ —Rt gt )= (¢ 1’¢q) (171 2171) (¢Q>

4
)=3
. - _ 1- ].—__ _1_c_ 0 i72 ¢Cl
— i (¢+¢ - §¢+¢+ ¢ ¢ ) - §(¢ 1’¢q) (—172 2i’Yz) (¢q>'
4
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Coherent State Representation for Lindbladian Evolution

__From Keldysh to Lindblad

 General Interaction

3 A 9s _ (atl & Itg [ —jn
Hu=Y = (asL—l—Las) L=b

« Two Competing Jump Operators
Down Jumps =1L Up Jumps  L,=1f

« Ratio of the Corresponding Down to Up Rates
V1 ng+1 1

72 nB enwo/T _ 1

* Independent of Details of the Coupling Mechanism (Rotating-Wave FDT)
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__Linear Systems

* Recall : Keldysh Rotation

¢ NN N

¢ — T — =% b—b— —%

R D S AT@
¢ — ¢ -~z b—>b—7’;

» Consider Unitary Transformation

Do) = exp { o= (46! - 31) |

 Check

D86 (6,) — e#H Ve 402 b1 [9,1/V3, 8] = b— 1
V2
D@ H1D (8) = e VEebhVE = b+ [—s,b/v/3, 1] = b1 -

Sl




__Linear Systems

« Corresponding Lindblad Equation

D (0.,5)D' = 0, (DpD) = 8, (5)

- . R A A 1 o
— —i|DH!D', ﬁ’} +3 7 [(DLGDT>;3’ (DLLDT) _ —{DL;QLGDT, ﬁ’}]

. . A A A -\, A 1 -
- NI . = -|-_ . = = 2 _77 . N
i |y, Z[(m ﬁcpn)b (m+ 2¢n)b+ RRvA ¢n),p]
R T 1 o(np 2 R L (st 7o M+ s
/T__ 'l‘ !/ o I'i‘ / 'l'l - 1‘ !/ o T/ / T !/
+{71 [bpb 5 {105} - —= (0.0 +¢nbp)]+w [bpb {100, - —= (07 +¢npb)]}+ {961+ 36,7}
=i [, (8091 3 {318,07} ) e (810 - 5 {38107}
. V71— 72 2t a1 i 71— 72 A7 U AT M =72 7\ a7 ! Y1 — V2 7 \7
+|{n+—=2¢,+ ¢)bp —(n+—A¢ + ¢>pb +(n——A¢ + ¢)pb—<n——A¢ + ¢)bp}
[( \/5 n 2\/5 n \/5 n 2\/5 n 5 n 2\/5 n \/5 n 2\/5 n
» Coefficients
M KLtk 1 71 =2(1 +np)k




__Linear Systems

« Corresponding Lindblad Equation

0, = —i [ﬁ;,,s’] + { [n+ %(A ~ m)] [ifr,,s'] + |n— %(A + k)

(809 - 5 {816.6} )+ (155 - 5 {B01,5} )

1)}

« Shift Equation
(A — iR)@y + |68, = V2in

(A +iR)dy + 516" @y = —V2in
* Lindblad Equation for Linear Systems  ¢g=0 T 2

Yo = 2npK

0up = —i | Ay, p| + 26 (np + 1) (Bﬁf)* - %{fﬁfiﬁ}) +26n (BW’ - % {813*,,3})




__Linear Systems

* Glauber-Sudarshan Coherent State Representation
p(t) = [ dld, sl *"Pos(,0,1)16)0)

* Recall Properties of Coherent States

) =e™10)  (g] = (0]e"
¢

blg) = ¢lo) b'lg) = 8yl0) (Blb" = d(gl (b= 8;(¢l
« Lindblad Equation in GS Representation

0 = [ dig, e BiPasle) o
“i[H.] = [ 46,8119 (~iPas) (H10) (0] - 16) (61
= / d[, gle " iAPas (16) (¢[bT — 5Bl) (4]) = / dl, gle” " iAPas | 3l0) (05(6]) — 6 (9s18)) (4]
— [ 6,00 [~05 (7" Pesd) + 95 (19" Pass) | 19)06] = [ did. i (695Pas — G05Pas )60

V& a5 N P | F F ' =9 £, P Y ey |
. B PR VRS Ffa w Ja )P AY O, AL A
) o [N iYW /' Ua 'V o
L% | 4 o A a W
- N
P £ C
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__Linear Systems

 Lindblad Equation in GS Representation
b0t — 38,5} = [ ald, gl Pas 61 6181 — 3 (60101 + 1) 0150)|
~ [ alb e P {|¢|2|¢><¢\ - 2[o@lonie +16) (95061)8]
= [0 {ePasiof + 3 00 (747 Paso) + 05 (¢ Pes) | Yoy 0
_ / d[$, ¢ [PGS+ (¢6¢Pgs+¢3 PGS)} ) (g

615~ 5 {861, = [ dl6,¢le " Pos [8T|¢><¢|8——(88*|¢><¢|+|¢><¢|88*)]

-/

[, $le 1 Pes {<a¢|¢>> (@0(61) — 5 [ (816 +1)18)(9] + 16)(9] (5 + 1)]}
d { e~ le’ PGS ( —lol* PGS¢) + 0 ( ~lef PGS¢) —2¢7 1" PGS] }|¢><¢|

/ ¢, ¢] [ Pas — _(¢3¢PGS + ¢0; PGS) + 02 PGS} 19| (g

1644°




__Linear Systems

« Lindblad Equation in GS Representation
= /d[(/g, ] {3tpgs — iA(¢pOyPgs — (Zaq-spgs) —2k(np + 1) {PGS + %(¢0¢PGS + qgaqugs)]

—2Knp [—PGS - %(¢8¢PGS + ¢85 Pcs) + 8§¢PGS] }6_‘¢|2|¢><¢|
= /d[é, 9] {3t7’Gs — (1A + k) [04(¢Pas) — Pas] — (k —iA) [%(cgpcs) - Pgs] — 25Pas — 2Rn33§¢7’(;s}6_|¢|2|¢><¢| =0
Y
8Pas = |(k +1A)d (9Pas) + (k — iA)0; (FPas ) | + 26502, Pas
« Fokker-Planck Equation for the Probability Distribution in the Phase Space
« Dissipative Terms « K
w|05V5+03V5| P Vi6,6) = do.
« Dynamical Terms : Genrate Rotation in the Phase Space - iA

 Boltzmann-Like Distribution




__Linear Systems

« Lindblad Equation in GS Representation
(’)tPGS = [(Iﬁ‘, -+ iA)8¢ (qb'Pgs) + (Iﬁ: — IA)QE (qg'Pgs)] + 2/€n33£¢'PGS

« Boltzmann-Like Distribution (Stationary)

Pes(@, ¢) = —exp{ W} TrﬁZ/d[$,¢]Pgs($,¢)=1

np

p=— [ g, glexp {16116} (9

B
. = P
In Number State Basis |¢) = ; mlm
A L - ‘m><n| Iy ULPROpN wo/T| 412
p=— mgjom/d[qu B" exp{—e1/T ||}
. 1 & |n n| 2n x wO/T |n | —(n+1)wy/T 2n —|<j>|2
= oS [ glef e o) = - [ aé.a0

—wo/T -

1 00 e 1 0
_ —(n+1)wo/T _ —(n4+1)wo/T __ —nwo /T
= nEZO In)(n|e = (—1 — e—wo/T> En In)(nle 1 nE:O n)(nle
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__Linear Systems

 Lindblad Equation in GS Representation
3tPGS = [(FL -+ iA)6¢ (qbpgs) + (K, — 1A)8q3 (&Pgs)] + 2Rn33§¢Pgs

« Equilibrium Thermal Density Matrix
p= ZPn|n)(n| Prn =
n=0

e—nwo/T

ng+1

« Fluctuations around the Driven Path in the Phase Space
« Linear Drive : No Nonequilibrium Distribution
» Parametric Dirve
« GS Stationary Function in the Unshifted Frame
Pas o exp {|¢ - ¢n|2/n3}
« Zero Temperature = Pure Coherent Stae Density Matrix
Pas xexp {|6— ¢’ fnp}  —  Pas=06(0— )3 (3 — )
4

p=e""16y) (9] 1 67“




__Linear Systems

« Hubbard-Stratonovich Transformation of e-2+@ne+1) fat¢??

 Integration over Quantum Component Gives Langevin Equation
0ip = —(k +iA)g" —i(t) 8¢ = —(rk —iA)P" +i€(t)
<§(t)£ (t’)> =26(2np+1)6 (t —t')

« Correspongding Fokker-Plank Equation

O = |(k+18)8yd™ + (5 — 18)85:6" | P+ 26 (21 + 1)02, P

c1¢c1
* Normalized Stationary Solution

P(q;cl,(bd)_ 1 p{ o]’ } N <¢cl(t)q3cl(t)>:2n3_|_1

2ng+1 2ng + 1
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