A glimpse at the standalone muon

Geliang Liu (刘格良)

Sep. 19th, 2025

Standalone muons

Look at only the muon detector

 Instead of a full particle flow reconstruction, look at how good the muon detector itself can reconstruct muons

Targets

- So far, there is no tracking algorithm in the muon detector
- The main task is to distinguish muons from pions through muon detector information

Samples

- Single particle gun samples
 - /cms/user/liugeliang/CEPC/202503/Production/ParticleGun
 - Muons & pions generated uniformly with energy from 1 GeV to 80 GeV
 - 100% sure that any muon hits detected are induced by the particle itself (or its secondary particles)

Distributions

All muon hits in one event is collected

Multi-dimensional distributions: N

Multi-dimensional distributions: N_{layer}

Muon tagging

Require the number of penetrated superlayers to be at least 3

The same requirement used by the muon group (Xiaolong Wang)

- At very low momentum, muons cannot enter the muon detector.
- From 2-4 GeV, the efficiency sees the turn-on.
- Pion misidentification rate is very high at high momentum: high-energy pions can penetrate calorimeters and enter the muon detector.

Muon tagging

Comparison with the results from the muon group

- In general compatible in terms of muon tagging efficiency.
- They claim the pion misidentification rate to be 0.75%, satisfying the requirement of below 1%.
 - Not entirely sure how this is computed. Probably in the jet environment?

Backup: muon energy loss in calorimeters

