

A Novel Linac Simulation Code AVAS

Institute of Modern Physics, Chinese Academy of Sciences Linac Physics Group

Jin Chao, Yuan He, Zhijun Wang, Xin Qi, Zhongyi Li, Yuan Tian, Weiguo Wang and Changwei Hao 2025.10.30

Mini-Workshop on Beam Dynamics Simulation for Particle Accelerators

CONTENTS

1 Background and Challenges

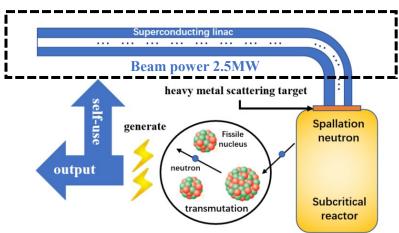
2 Physical Modeling

3 High Performance Computing

4 Machine Learning Techniques

5 Verification and Application

6 Summary



Background and Challenges

CiADS Schematic

To meet the ever-growing application demands, the energy and beam intensity of accelerators continue to increase.

Structure layout of CiADS superconducting linac

Background and Challenges

Commonly Used Beam Simulation Programs

Program	Laboratory	Language	Core Algorithm
TraceWin	CEA Saclay	C++, Python	PIC(PICNIC)
RF-Track	CERN	C++, Octave, Python	Particle to Particle, CIC (Green function method)
PyORBIT	ORNL	C++, Python	PIC(FFT)
IMPACT	LBNL	Fortran90, Python	PIC (Green function method)
Parmila	LANL	Fortran	PIC(SCHEFF)
BEAMPATH	SLAC	Fortran77	PIC(FFT)
TRACK	ANL	-	PIC(FFT)
WARP3D	LLNL	Fortran	PIC(FFT)

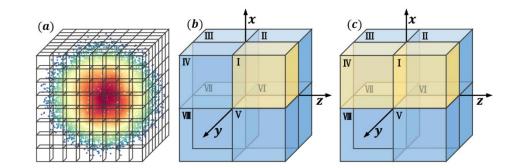
Challenges for Accelerator Simulation

- **1.Computational Complexity**: High-intensity ion accelerators exhibit strong nonlinear space charge effects, requiring minutes to hours per simulation.
- **2.Simulation-Reality Mismatch**: Discrepancy between numerical simulations and actual accelerators, making it difficult to closely integrate numerical simulations with accelerator operations.

CONTENTS

- 1 Background and Challenges
 - 2 Physical Modeling
 - **3** High Performance Computing
 - 4 Machine Learning Techniques
 - **5** Verification and Application
 - 6 Summary

Space Charge Effect



Modified PICNIC algorithm: S-PICNIC

1. Fully utilize the symmetry of bunch

The solution of space charge field is divided into two parts:

- the solution of symmetric space charge field
- the correction of asymmetric field component
- 2. Neglecting operations that contribute less to the space charge field
 - Setting thresholds: $TH = RTH \times Central$ node charge
 - Ignoring the contribution of charges below the threshold to the space charge field

The higher the bunch symmetry, the faster the solving speed.

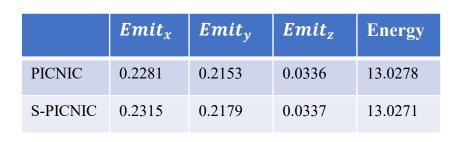
Evaluation Metrics

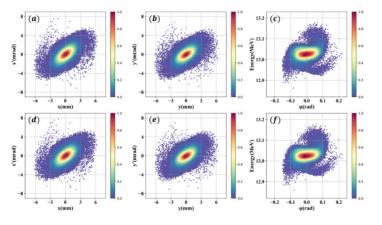
• To quantify the precision loss from ignoring low-charge grid points

$$MRE = (MRE_p + MRE_v)/2$$
 Quantify the difference between two bunch

$$MAE_{P} = \frac{1}{3} \left(\frac{\sqrt{\frac{1}{N_{P}} \sum_{i=1}^{N_{p}} (x_{i} - x_{0i})^{2}}}{xSize} + \frac{\sqrt{\frac{1}{N_{P}} \sum_{i=1}^{N_{p}} (y_{i} - y_{0i})^{2}}}{ySize} + \frac{\sqrt{\frac{1}{N_{P}} \sum_{i=1}^{N_{p}} (z_{i} - z_{0i})^{2}}}{zSize} \right) MAE_{v} = \frac{1}{3} \left(\frac{\sqrt{\frac{1}{N_{P}} \sum_{i=1}^{N_{p}} (v_{xi} - v_{x0i})^{2}}}{v_{x}Size} + \frac{\sqrt{\frac{1}{N_{P}} \sum_{i=1}^{N_{p}} (v_{yi} - v_{y0i})^{2}}}{v_{y}Size} + \frac{\sqrt{\frac{1}{N_{P}} \sum_{i=1}^{N_{p}} (v_{zi} - v_{z0i})^{2}}}{v_{z}Size} \right)$$

Space Charge Effect


Test result


• Change *RTH* from 0.05%to20%, observation of the relation between speed and error

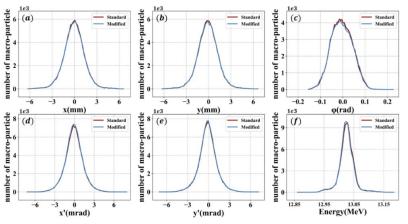
Speed up ratio -	T_1
Speed up ratio =	T_2

 T_1 and T_2 are the time taken by the standard algorithm and the modified algorithm to solve the SC field, respectively

simulation conditions

Macro-particle number: 99940

Intensity: 5mA


Frequency: 162.5MHz Initial energy: 1.52MeV

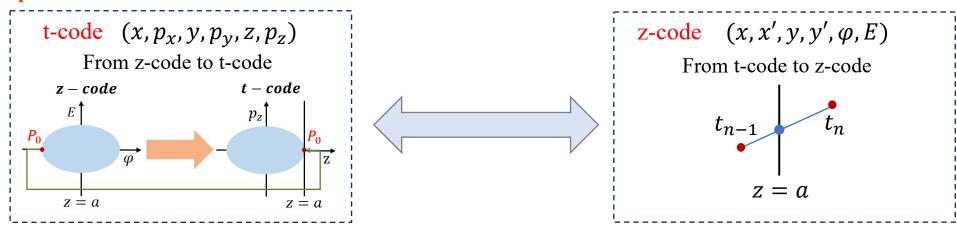
length: 13.07m

Grid: $22 \times 22 \times 22$

 $\Delta t = 1/(frequency * 100)$

 $RMS_x = 1.48mm$ $RMS_y = 0.66mm$

Particle Motion


T-code and Z-code

- T-code with time as independent variable $(t \to t + \Delta t)$, and the program saves the distribution of bunch at time t
- Z-code with position as independent variable ($z \to z + \Delta z$), and the program saves the distribution of bunch on the z=a plane.

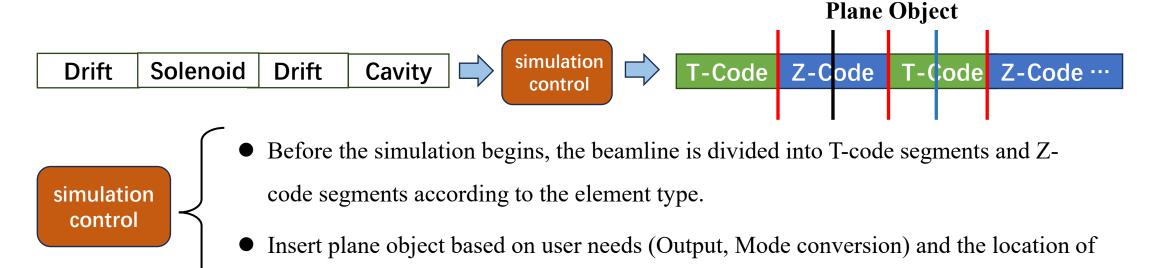
Using conditions

- Z-code is used in hard-edged components to use the transfer matrix.
- T-code is used in field map components for more accurate space charge effects calculation.

1. High-precision conversion between z-code and t-code

Key: Ensure that the parameters of the particle passing through the z=a plane are consistent with those before the Conversion.

Key: by backing up the bunch information from the previous moment, interpolate to obtain the particle parameters at the z = a plane


Particle Motion

2. Code design that adapts to switching between two modes

Define plane object

- Functions such as bunch output, mode conversion, and thin lens elements are integrated into plane object.
- The bunch will stop at a plane when it encounters a plane object, and will continue to transfer from the plane after executing the operation

Unify the implementation of functions and elements across different modes.

special components (Thin lens).

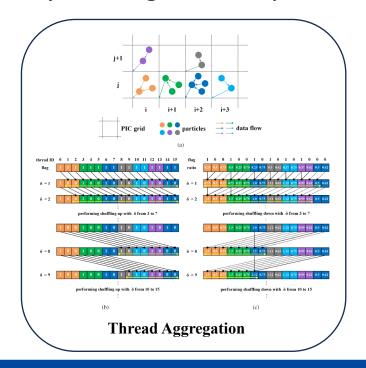
CONTENTS

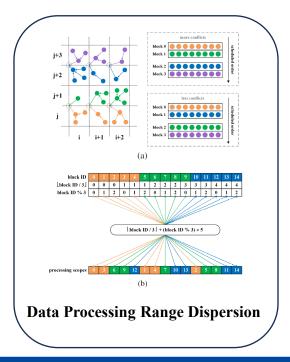
- 1 Background and Challenges
 - 2 Physical Modeling
 - **3** High Performance Computing
 - 4 Machine Learning Techniques
 - **5** Verification and Application
 - 6 Summary

High Performance Computing

AVASX: An ultra-high-speed GPU-based version using CUDA.

Computational bottleneck


Particle-in-cell (PIC) methods require **numerous particles** to accurately capture the underlying physics.




Solution

GPU-Accelerated High-Performance Beam Dynamics Simulation

Key Challenges: Memory Access Conflicts in Atomic Operations on GPU Global Memory

High Performance Computing

Performance Evaluation

Memory workload metrics, compute and memory throughputs, execution durations, and performance improvements of different kernels in charge deposition calculation.

Employed		Threads to L1 cache			che to ache	Excessive	Compute	Memory	Duration	Performance
kernel	Memory requests	Requested sectors	Hit rate (%)	Memory requests	Requested sectors	sector rate (%)	throughput (%)	throughput (GB/s)	(us)	improvement $(\%)$
kernel-3	250,000	7,832,161	0%	7,691,097	7,832,161	9.9	6.92	51.96	463.01	-
kernel-4	250,016	7,814,976	0%	7,673,911	7,814,976	9.9	14.31	51.96	463.74	-0.16
kernel-5	251,904	7,822,528	0%	7,681,463	7,822,528	9.9	14.37	52.07	463.49	-0.1
kernel-6	250,000	7,832,737	0%	7,692,102	7,832,737	9.9	7.55	56.82	426.5	8.56
kernel-7	250,000	7,869,016	0%	7,842,952	7,869,016	not provided	5.87	19.48	1230	-62.36
kernel-8	250,016	997,324	0%	992,204	997,324	0.01	29.95	167.78	143.55	222.54
kernel-9	251,904	1,004,876	0%	999,756	1,004,876	0.01	56.05	307.71	78.4	490.57
kernel-10	250,016	997,324	0%	992,204	997,324	0.01	45.79	250.32	96.67	378.96
kernel-11	251,904	1,004,876	0%	999,756	1,004,876	0.01	64.63	356.47	68.06	580.3

580% Improvement in Charge Deposition Performance

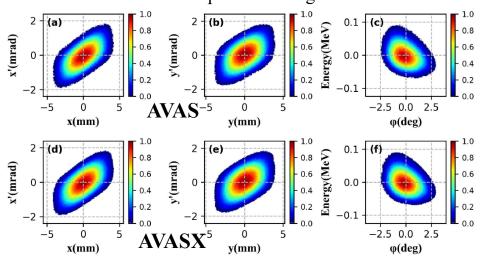
A100 GPU vs. 56 Core CPU

$N_p = 1,000,000$	CAFe	CiADS
AVASX	16.58 s	45.98 s
AVAS	2.17 h	7.04 h
Speedup	472	550

CAFe

Length: 16.27m f = 162.5MHz

Intensity: 0.27mA $\Delta t = \frac{1}{100*f}$


CiADS

Length: 202.75m f = 162.5MHz

Intensity: 5mA $\Delta t = \frac{1}{100*f}$

Verification

Phase space distributions of the bunch at the exit of the CAFe superconducting section

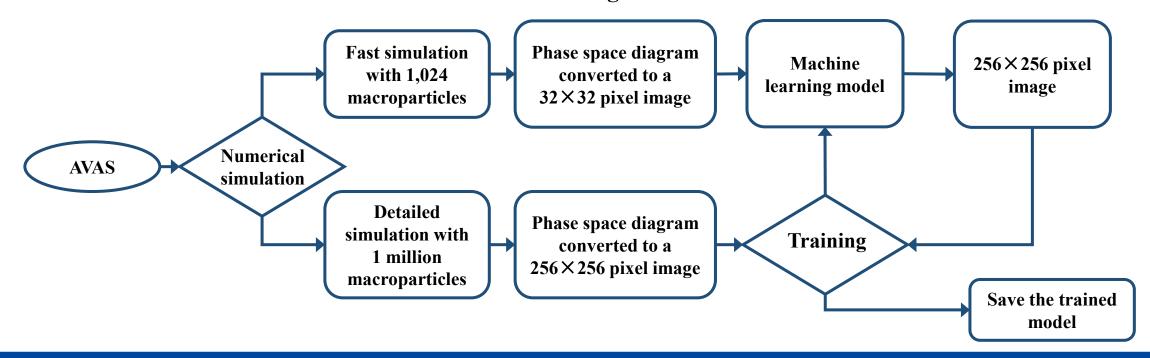
Bunch parameters at the exit of the CAFe superconducting section, simulated by AVASX and AVAS.

Code	Particle number	Emittance $(\pi \cdot mm \cdot mrad)$			Bunch size (mm)			Energy (MeV)
Couc		$emit_x$	$emit_y$	$emit_z$	$size_x$	$size_y$	$size_z$	Energy (WeV)
AVASX	1,000,000	0.148	0.152	0.134	1.585	1.486	0.914	16.95
	10,000,000	0.149	0.152	0.134	1.585	1.486	0.914	16.95
AVAS	1,000,000	0.148	0.152	0.134	1.584	1.485	0.914	16.95
	10,000,000	0.149	0.152	0.134	1.584	1.486	0.914	16.95

CONTENTS

- 1 Background and Challenges
 - 2 Physical Modeling
 - **3** High Performance Computing
 - 4 Machine Learning Techniques
 - **5** Verification and Application
 - 6 Summary

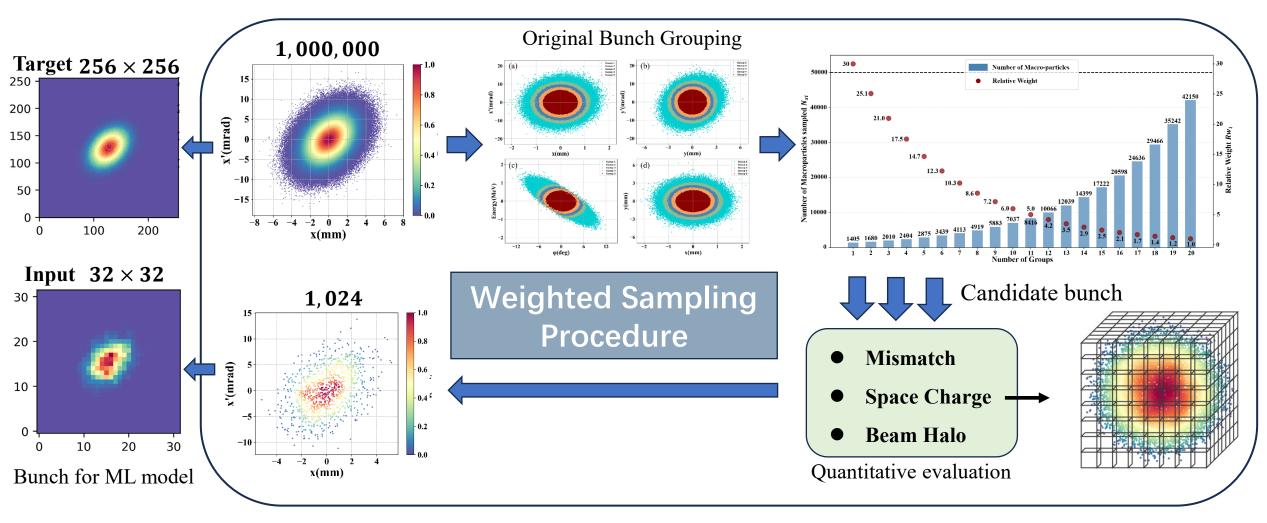
Physics-Guided Deep Learning Architecture for Beam Phase Space Super-Resolution


Key Challenge Method

Incorporating Physical Constraints into Machine Learning to Enhance Model Generalization and Interpretability

Coarse-grained simulation results obtained through rapid numerical simulations are employed to guide machine learning networks in generating refined results consistent with large-scale multi-particle simulations.

Numerical Simulation Guidance + Machine Learning Model



Physics-Guided Deep Learning Architecture for Beam Phase Space Super-Resolution

Numerical Simulation Guidance

Physics-Guided Deep Learning Architecture for Beam Phase Space Super-Resolution

Machine Learning Model

Sample size

Training set	Independent test set		
800×200	200×200		

800 simulation runs, each outputting 200 bunch distributions along the beamline

Data set

CAFe Superconducting Section

Macro-particle number: 1,000,000

1024

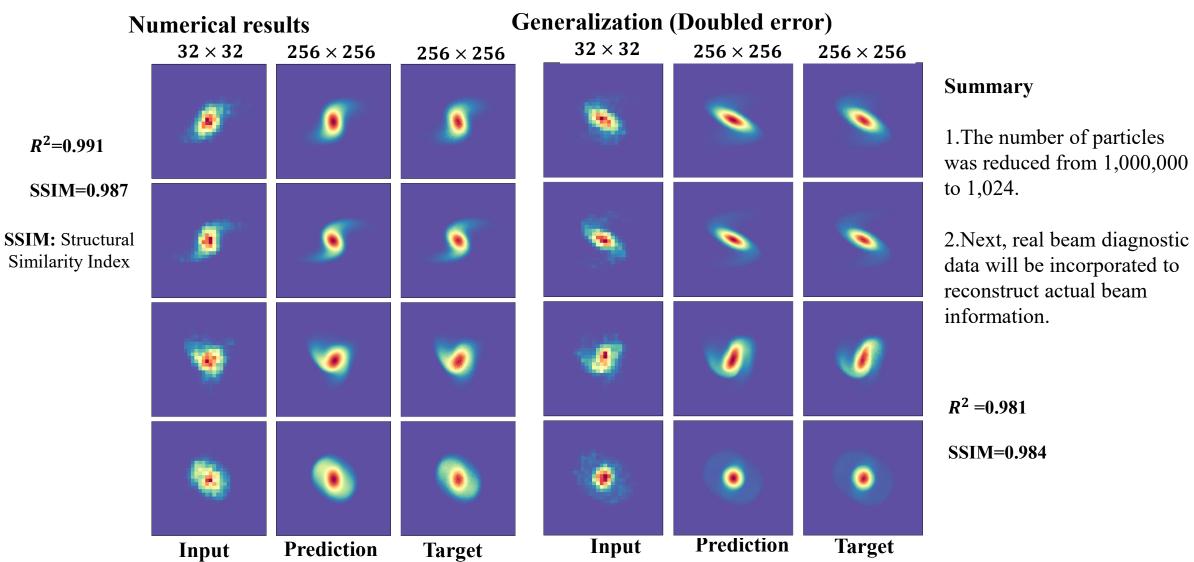
Intensity: 5mA

Frequency: 162.5MHz

Length: 13 m

Error boundaries of elements

Element Type	Cavity	Solenoid
Rotation Error	∓4mrad	$\mp 2mrad$
Translation Error	∓1.0 <i>mm</i>	∓0.5 <i>mm</i>
Field amplitude Error	∓1%	∓4%
Phase Error	$\mp 1 deg$	


Initial bunch error

Current	Beam	Emittance
Error	mismatch	growth
∓2.5 <i>mA</i>	50%	50%

Physics-Guided Deep Learning Architecture for Beam Phase Space Super-Resolution

CONTENTS

1 Background and Challenges

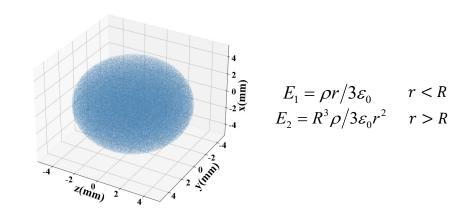
2 Physical modeling

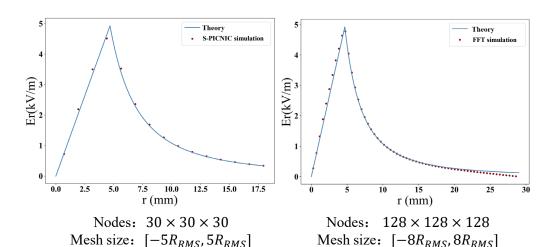
3 High Performance Computing

4 Machine Learning Techniques

5 Verification and Application

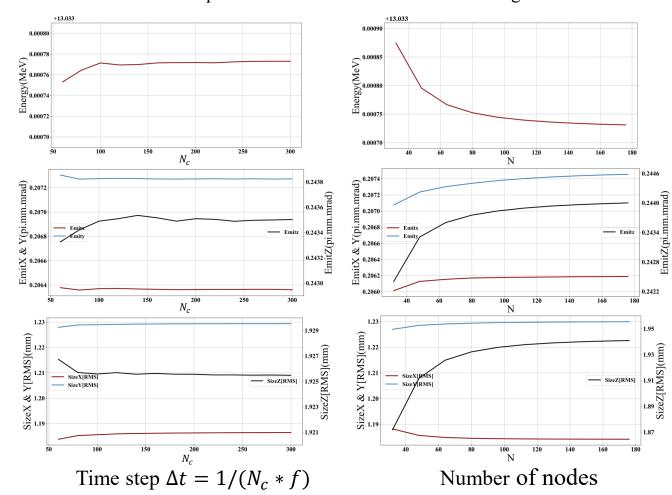
6 Summary




Verification

Analytical Solution Test

Radial Field Distribution of a Uniform Spherical Bunch



Convergence test

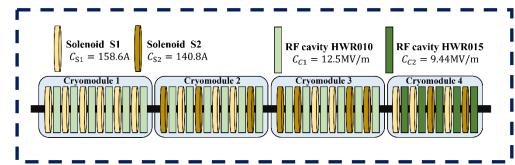
Beam Transport Simulation in the CAFe Superconducting Section

I = 5mA, Freq = 162.5MHz, E = 1.5MeV, Total length 13.07m

Verification

Benchmark

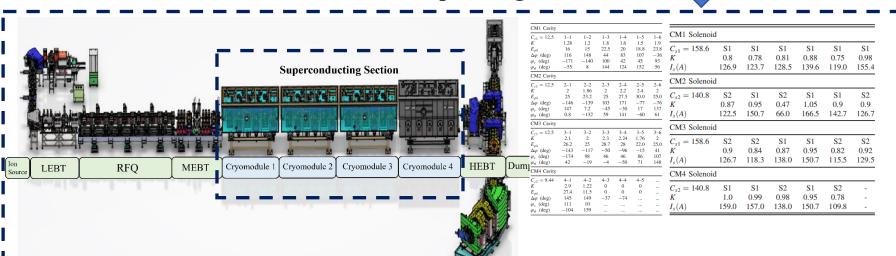
Beam Transport Simulation Through the 100 mA Beamline



Verification

Experimental Verification

Numerical Simulation



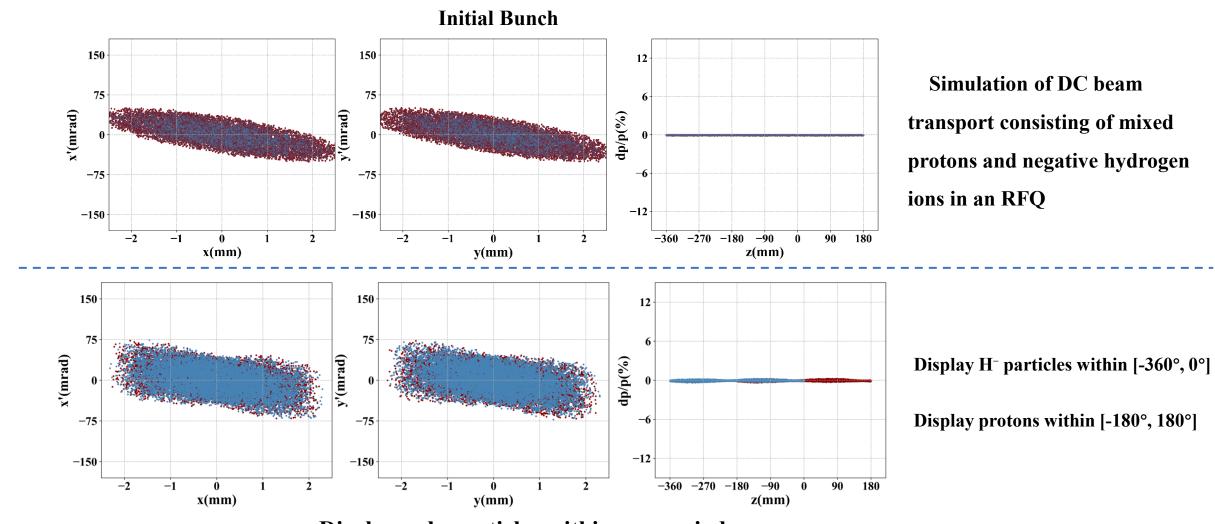
Parameter Calibration

$$\begin{cases} I_{s,i} = C_{s,i}K_i \\ E_{pk,i} = C_{c,i}K_i \end{cases},$$

$$\varphi_{\rm rf} = \varphi_v + \Delta\varphi + n \times 360.$$

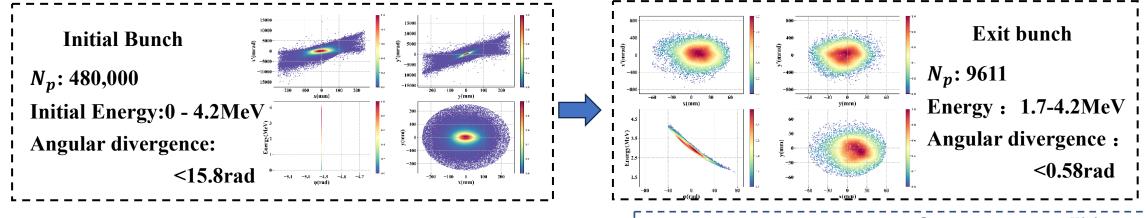
Preset Accelerator Operating Parameters

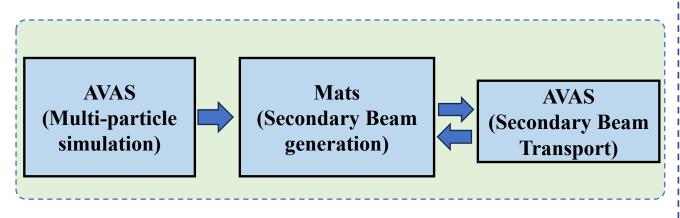
⁴⁰ Ar¹²⁺ Simulated Energy: 186.6 MeV

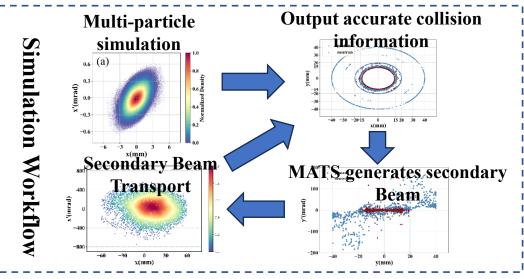

Measured Energy: 187.5 MeV

Energy Deviation < 0.5%, with No Observable Beam Loss

Multi-bunch transmission

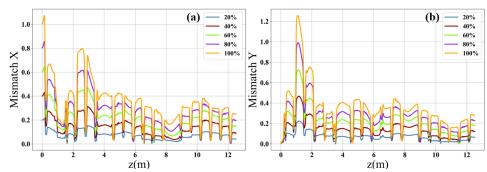

Display only particles within one period




Muon Beam Transport

Simulate beam transport with large energy spread and angular divergence

Multi-physics Simulation

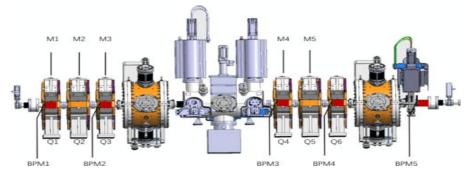


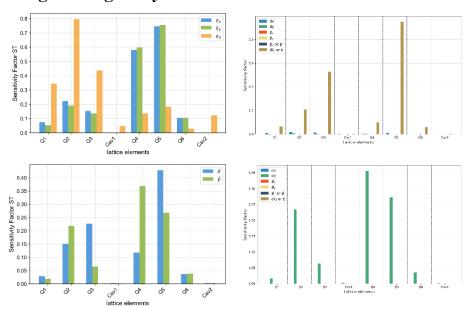
Error study

Beam parameter sensitivity analysis

Relationship between entrance bunch mismatch and mismatch along the beamline

Analysis of elements error effects on beam transport

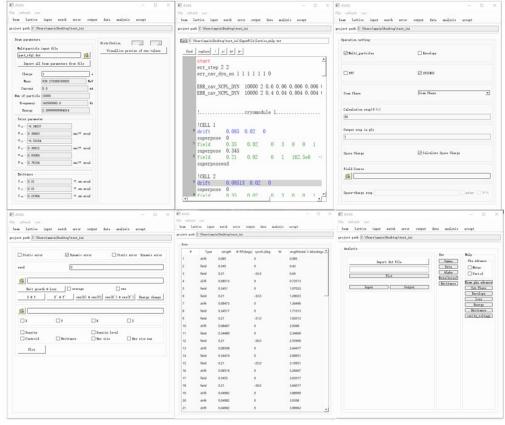

Translation and rotation errors of elements

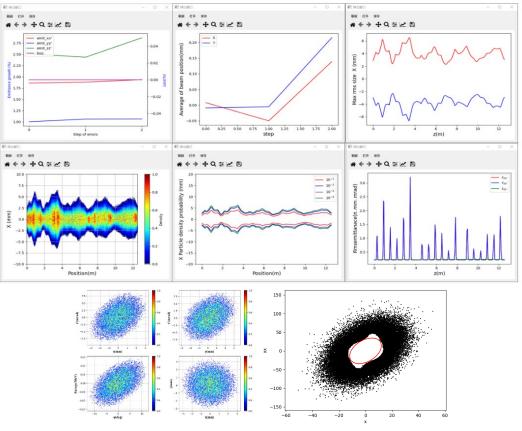

Variation of longitudinal phase width along the beamline with different RF cavity Epk and phase errors

Engineering analysis

Sensitivity-based quantitative analysis of the error-beam quality relationship

Engineering analysis of the CAFe2 MEBT section





Desktop software

AVAS is a cross-platform software supporting Windows and Linux systems, incorporating a variety of accelerator elements. It features comprehensive capabilities including multi-particle tracking simulation, error analysis, acceptance calculation, transport of particles with large energy spread and angular divergence, and mixed-species beam transport.

Graphical user interface

Data post-processing

Cloud simulation platform

Computing resources of Dongjiang Laboratory Supercomputing Center

CPU Infrastructure: 14,000+ cores providing peak performance of 1.820 PFLOPS in single precision (FP32) and 0.910 PFLOPS in double precision (FP64);

GPU Infrastructure: 72 NVIDIA A100 40GB SMX4 and 88 A100 40GB PCIe accelerators with aggregate performance exceeding 0.456 PFLOPS (FP32) and 0.228 PFLOPS (FP64).

CiADS superconducting segment

 N_p : 1,000,000

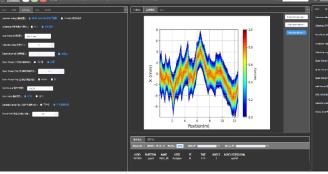
Length: 202.75m

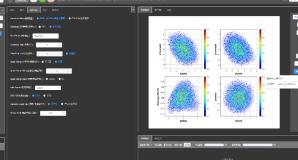
Beam intensity: 5mA

Frequency: 162.5MHz

Initial energy: 2.1MeV

time step: $\Delta t = 1/(f * 100)$


Output energy: 621.1MeV


Simulation time

 $7.04h \implies 45.98s$

User login

Project management

Parameter Settings

Data post-processing

Summary

Key Innovations

- **S-PICNIC Algorithm**: 3.9× speedup by exploiting bunch symmetry
- **Hybrid T-code/Z-code**: Seamless switching between tracking modes for optimal accuracy
- **GPU Acceleration (AVASX)**: 470-550× faster than CPU, reducing simulation time from hours to seconds
- Physics-Guided ML: Super-resolution model (R²=0.991) enabling fast multi-particle predictions

Verification & Applications

- ➤ Validated against analytical solutions, TraceWin, Impact-T (< 1.5% deviation)
- \triangleright Experimental verification: < 0.5% energy error, no beam loss
- ➤ Applications: Error analysis, multi-bunch transport, mixed-species beams, muon beamlines

Emil:

qixin2002@impcas.ac.cn

lizhongyi@gdlhz.ac.cn

(Function developmen)

tianyuan08@impcas.ac.cn

(GPU-Accelerated)

jinchao@impcas.ac.cn

(Physical modeling)

Thanks for your attention

Email: jinchao@impcas.ac.cn