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Overview of space charge solver 

Source Depositor Field Solver Particle Pusher

FFT, Spectral Method, 

Finite Difference Method ...

Also called Poisson Solver
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Tensor Decomposition 

Consider a N-order tensor 𝒜 ∈ 𝑅𝐼1×𝐼2×...×𝐼𝑁

Define  an operator ×𝑛 which is tensor mapped to tensor，for any matrix 𝑀 ∈ 𝑅𝐼𝑗×𝐼𝑖，it has：

(𝒜 ×𝑖 𝑀)𝐼1𝐼2...𝐼𝑗...𝐼𝑁
= ෍

𝑖=1

𝐼𝑖

𝒜𝐼1𝐼2...𝑖...𝐼𝑁
∗ 𝑀𝐼𝑗𝑖

This operation equates to swapping the involved dimension of the tensor with that of the product 
matrix, i.e., it implements the mapping:

𝑅𝐼1×...×𝐼𝑖×...×𝐼𝑁 → 𝑅𝐼1×...×𝐼𝑗×...×𝐼𝑁

Specifically, if tensor 𝒜 is a square matrix, then the operation becomes:

𝒜 ×1 𝑈 ×2 𝑉 = 𝑈 ∙ 𝒜 ∙ 𝑉𝑇

So this is High-order Singular Value Decomposition, HOSVD.

Singular Value Decomposition
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Solver Algorithm and benchmarking
⚫ The discretized Poisson equation with boundary conditions

𝛻2𝜑(𝑥, 𝑦, 𝑧) = −
𝜌(𝑥, 𝑦, 𝑧)

𝜖0

𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2 +
𝜕2𝜑

𝜕𝑧2
𝑖𝑗𝑘

= ො𝜌𝑖𝑗𝑘

𝜕2𝜑

𝜕𝑥2
𝑖𝑗𝑘

=
𝜑𝑖+1,𝑗,𝑘 −2𝜑𝑖,𝑗,𝑘 +𝜑𝑖−1,𝑗,𝑘

∆𝑥2

The discretized 

Laplace operator

𝜕2𝜑

𝜕𝑦2
𝑖𝑗𝑘

=
𝜑𝑖,𝑗+1,𝑘 −2𝜑𝑖,𝑗,𝑘 +𝜑𝑖,𝑗−1,𝑘

∆𝑦2

𝜕2𝜑

𝜕𝑧2
𝑖𝑗𝑘

=
𝜑𝑖,𝑗,𝑘+1 −2𝜑𝑖,𝑗,𝑘 +𝜑𝑖,𝑗,𝑘−1

∆𝑧2

1

∆𝑥2

⋱ … … … ⋱
⋮
⋮
⋮

−2 1 0
1 −2 1
0 1 −2

⋮
⋮
⋮

⋱ … … … ⋱

⋮
𝜑𝑖−1,𝑗,𝑘

𝜑𝑖,𝑗,𝑘
𝜑𝑖+1,𝑗,𝑘

⋮

= ෍

𝑖=1

𝑁𝑥

𝜑𝑖,𝑗,𝑘(𝐷𝑥)𝑖𝑖’

= 𝜑 ×1 𝐷𝑥

𝜑 ×1 𝐷𝑥 + 𝜑 ×2 𝐷𝑦 + 𝜑 ×3 𝐷𝑧 = ො𝜌

The form of matrix 𝐷𝑋 varies depending on 

the boundary conditions.

Du J Y, et al. 3d space charge solver based on tensor decomposition forhigh-intensity beams [J/OL]. Progress of 

Theoretical and Experimental Physics, 2025, 2025 (4): 043G01.
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Solver Algorithm and benchmarking
⚫ The discretized Poisson equation with boundary conditions

Dirichlet boundary

𝐷𝑥 =
1

∆𝑥2

⋱ … … … ⋱
⋮
⋮
⋮

−2 1 0
1 −2 1
0 1 −2

⋮
⋮
⋮

⋱ … … … ⋱

The handling of Dirichlet boundary condition is rather special: the form of the differential 

operator matrix remains unchanged, and it is only necessary to superimpose the electric potential at the 

boundary onto the charge distribution.

𝜕2𝜑

𝜕𝑥2
1𝑗𝑘

=
𝜑0𝑗𝑘 −2𝜑1𝑗𝑘 +𝜑2𝑗𝑘

∆𝑥2 = ො𝜌1𝑗𝑘

−2𝜑1𝑗𝑘 + 𝜑2𝑗𝑘

∆𝑥2 = ො𝜌1𝑗𝑘 −
𝜑0𝑗𝑘

∆𝑥2

‘shell’
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Solver Algorithm and benchmarking
⚫ The discretized Poisson equation with boundary conditions

Period boundary

Neumann boundary

𝐷𝑥 =
1

∆𝑥2

⋱ … … … 1
⋮
⋮
⋮

−2 1 0
1 −2 1
0 1 −2

⋮
⋮
⋮

1 … … … ⋱

𝐷𝑥 =
1

∆𝑥2

⋱ 2 … … ⋱
1
⋮
⋮

−2 1 0
1 −2 1
0 1 −2

⋮
⋮
1

⋱ … … 2 ⋱

𝐷𝑥 =
1

∆𝑥2

⋱ … … … ⋱
⋮
⋮
⋮

−2 1 0
1 −2 1
0 1 −2

⋮
⋮
⋮

⋱ … … … ⋱

Free boundary same as Dirichlet boundary which ‘shell’ is zero 
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Solver Algorithm and benchmarking
⚫ The discretized Poisson equation with boundary conditions

Irregular boundary 

𝜑 ×1 𝐷𝑥 + 𝜑 ×1 𝐷𝑦 + 𝜑 ×1 𝐷𝑧 = ො𝜌

𝜑∗ ×1 (𝐼𝑦⨂𝐷𝑥 + 𝐷𝑦⨂𝐼𝑥) + 𝜑 ×2 𝐷𝑧 = ො𝜌∗

where，⨂ is Kronecker product

𝐼𝑥,𝑦 ∈ 𝑅𝑁𝑥,𝑦×𝑁𝑥,𝑦 is Identity matrix

𝜑∗, ො𝜌∗ ∈ 𝑅𝑁𝑥𝑁𝑦×𝑁𝑧

We need to rebuild 

the operator matrix
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Solver Algorithm and benchmarking
⚫ Algorithm construction

𝜑 ×1 𝐷𝑥 + 𝜑 ×2 𝐷𝑦 + 𝜑 ×3 𝐷𝑧 = ො𝜌

𝜑 = 𝒮 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3)

𝜑 ×1 𝐷𝑥 + 𝜑 ×2 𝐷𝑦 + 𝜑 ×3 𝐷𝑧 = ො𝜌

𝜑 ×1 𝐷𝑥 = (𝒮 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3)) ×1 𝐷𝑥

= 𝒮 ×1 (𝐷𝑥 ∙ 𝑈(1)) ×2 𝑈(2) ×3 𝑈(3)

𝜑 ×1 𝐷𝑥 = 𝒮 ×1 (𝑈(1) ∙ 𝛬𝑥) ×2 𝑈(2) ×3 𝑈(3)

𝜑 ×2 𝐷𝑦 = 𝒮 ×1 𝑈(1) ×2 (𝑈(2) ∙ 𝛬𝑦) ×3 𝑈(3)

𝜑 ×3 𝐷𝑧 = 𝒮 ×1 𝑈(1) ×2 𝑈(2) ×3 (𝑈(3) ∙ 𝛬𝑧)

ො𝜌 = 𝒦 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3)

𝐷𝑥 = 𝑈(1) ∙ 𝛬𝑥 ∙ 𝑈(1),−1

𝒮 ×1 𝛬𝑥 + 𝒮 ×2 𝛬𝑦 + 𝒮 ×3 𝛬𝑧 = 𝒦

𝒮𝑖𝑗𝑘 =
𝒦 𝑖𝑗𝑘

𝛬𝑥,𝑖𝑖 + 𝛬𝑦,𝑗𝑗 + 𝛬𝑧,𝑘𝑘

Final form
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Solver Algorithm and benchmarking
⚫ Time complexity of algorithm

Algorithm Time complexity

FD 𝑂(𝑁6)

Green & FFT 𝑂(40𝑁3𝑙𝑜𝑔2𝑁)

ADI 𝑂(𝑁3 𝑙𝑜𝑔2𝑁 3𝑙𝑜𝑔2(1/𝜖))

TDM 𝑂(3𝑁4)
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Solver Algorithm and benchmarking
⚫ Benchmarking: open boundary

𝜌(𝑟) =
𝑄

2𝜋 3/2𝜎3
𝑒−𝑟2/(2𝜎2)

𝜑(𝑟) =
1

4𝜋𝜖0

𝑄

𝑟
𝑒𝑟𝑓

𝑟

2𝜎

TDM Solver Compare to Analytical Solution

Random Distribution Green & FFT Solver

Compare to FFT SolutionTDM Solver
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Solver Algorithm and benchmarking
⚫ Benchmarking: transverse round dirichlet boundary，longitude open boundary

𝜌(𝑟, 𝑧) =
𝑄

2𝜋𝑙𝜎2 𝑒−𝑟2/(2𝜎2) 𝐻(𝑧 +
𝑙

2
) − 𝐻(𝑧 −

𝑙

2
)

For a continuous beam with a transverse Gaussian distribution, the electric 

field it generates within a circular ideal conducting vacuum chamber is:

𝐸(𝑟) =
𝜆

2𝜋𝜀0

1 − 𝑒−𝑟2/(2𝜎2)

𝑟

In reality, infinitely long beam streams do not exist. Therefore, by increasing 

the beam length, the electric field generated at the central slice of the beam can be 

used to approximate that of an infinitely long beam.

The central slice
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Solver Algorithm and benchmarking
⚫ Benchmarking: transverse round dirichlet boundary，longitude period boundary

For a beam comprising multiple micro-pulses, with transverse Dirichlet 

boundary conditions applied, the space charge force can generally be calculated 

using longitudinal periodic boundary conditions, owing to the periodic micro-

pulse structure and the approximate uniformity of parameters across individual 

micro-pulses.

Assume there are seven micro-pulses in total.

1. The seven micro-pulses are treated as a single entity and solved using 

transverse Dirichlet boundary conditions and longitudinal open boundary 

conditions.

2. Only the central micro-pulse is solved, using transverse Dirichlet 

boundary conditions and longitudinal periodic boundary conditions.

The results from both methods, as shown in the figure, are consistent. 

Therefore, for this type of multi-micro-pulse structure, it is sufficient to employ 

longitudinal periodic boundary conditions for the solution.
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Some Applications
⚫ Simulation code
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Some Applications
⚫ Application: image charge effect

image charge effect

oscillation mode

envelope Instability
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Some Applications
⚫ Application: compare to Imapct-z 𝑄𝑒 = 0 𝑝𝐶 𝑄𝑒 = 100 𝑝𝐶

Angular Dispersion-induced Microbunching

ADM

𝑧1 = 𝑧0 + 𝑚51𝑥 + 𝑚52𝑝𝑥 + 𝑚56𝛿

Modulation

Initial Parameters Value

𝑬𝒌 22.717 MeV

𝛾 45.46

𝑧0 900 fs
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Some Applications
⚫ Application: compare to Pyorbit

CSNS/RCS lattice

csns\rcs with fourfold symmetry produces structural resonances that 

satisfy the resonance condition,

𝑚𝑄𝑥 + 𝑛𝑄𝑦 = 4 × 𝑝, (𝑚, 𝑛, 𝑝 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)

Montague resonance，

2𝑄𝑥 − 2𝑄𝑦 = 0
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Thank you !
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