Further Study on the Spin and kHz QPOs of Millisecond Pulsars in LMXBs

Yan Y. 闫岩 and Zhang C. M. 祛承民

Yin H. X. 产红星

The 3rd BHAW @ SHAO

Outline

- kHz QPOs in LMXBs (Updated)
- Correlations Between the twin QPOs
- Some models
- Correlations Between Spin Frequencies and kHz QPOs of Millisecond Pulsars in LMXBs
- Further Studies
- Preliminary Conclusion

kHz QPOs by RXTE 1996-2008

Correlations Between the twin QPOs

Figure 1. Plots of (a) v_1 versus v_2 , (b) Δv versus v_2 and (c) v_2/v_1 versus v_2 . The Z [Atoll] fitting line represents the fitted correlation between the pair kHz QPO frequencies for the Z [Atoll] sources as v1 = (724.99 ± 2.52 Hz) $(v_2/1000 \text{ Hz})^{1.86\pm0.03} [v_1 - (683.48 \pm 3.01 \text{ Hz}) (v_2/1000 \text{ Hz})^{1.61\pm0.04}].$

Psaltis et al 1998

 $a = 722 \pm 0.7, b = 1.85 \pm 0.01$ Yin et al. 2005

Table 2. The twin kHz QPO correlation $v_1 = a(v_2/1000$ $Hz)^{p}$.

Sources*	a (Hz)	b
All Z samples	724.99 ± 2.52	1.86 ± 0.03
$Z (\nu_2 < 840 Hz)$	812.09 ± 2.59	2.20 ± 0.10
$Z (\nu_2 > 840 Hz)$	722.72 ± 1.45	1.79 ± 0.03
Sco X-1	721.95±0.69	1.85 ± 0.01
All Atoll samples	683.48 ± 3.01	1.61 ± 0.04
4U 1728-34	667.86±5.59	1.51 ± 0.07
All Z and Atoll samples	699.13 ± 2.23	1.68 ± 0.02

Zhang, C.M., et al., 2006

Correlations between the twin QPOs with spin frequencies

$$v_1 = a(\frac{v_2}{1000Hz})^b Hz$$

 $a = 687.2 \pm 3.47, b = 1.47 \pm 0.03$

 $\nu_2 = A \nu_1 + B$

 $A = 1.069 \pm 0.02, B = 257.07 \pm 13.88$

Follow Belloni 2005

Some models

- Beat model
- Non-linear resonance model
- Relativistic precession model
- Alfven wave oscillation model
- Other models

Beat model

Miller et al. 1998 $V_2 - V_1 = V_{spin}$

Lamb & Miller 2001 $V_2 - V_1 < V_{spin}$

Lamb & Miller 2003

$$\Delta v = v_2 - v_1 \sim const.$$

Non-linear resonance model

- Kluzniak & Abramowicz 2001
- Abramowicz & Kluzniak 2001
- In given radius, orbit frequency and epicyclic frequency form an integral ratio or commensurability.

$$v_2 / v_1 = 3/2$$
 Black hole QPOs: 3:2

Relativistic precession model

Stella & Vietri 1999 Precession Model for KHz QPO

$$v_{2} = v_{kepler}$$

$$v_{1} = v_{precession} = v_{2} \left(1 - \sqrt{1 - \frac{3R_{s}}{r}} \right)$$

$$\Delta v = v_{2} - v_{1} \text{ is not const.}$$

Alfven wave oscillation model

$$v_A(r) = \frac{v_A(r)}{2\pi r} = \frac{1}{2\pi r} \frac{B(r)}{\sqrt{4\pi\rho}} = \frac{B_s (R/r)^3}{2\pi r} \sqrt{\frac{Sv_{ff}}{4\pi M}} \propto \sqrt{S} \quad \text{(Shapiro \& Teukolsky 1983)}$$

Dipole Magnetic Field

$$\rho = \dot{M} / (Sv_{ff})$$

$$v_{ff} = \sqrt{2GM / r} = c \sqrt{R_s / r}$$

$$R_s \sim Schwarzschild radius$$

$$S_{r} = 4\pi r^{2}$$

$$S_{p} = 4\pi R^{2} (1 - \cos\theta_{c}), \sin^{2}\theta_{c} = R / r \equiv X$$

$$R << r, S_{p} \approx \frac{2\pi R^{2}}{r}$$

$$S_{r} = 4\pi R^{2} X^{-2}$$

$$S_{p} = 4\pi R^{2} (1 - \sqrt{1 - X})$$

$$v_{2} = \sqrt{\frac{GM}{4\pi^{2}r^{3}}} = v_{A}(S_{r}) = 1850(Hz)AX^{3/2}$$

$$v_{1} = v_{A}(S_{p}) = v_{2}\sqrt{S_{p}/S_{r}} = v_{2}X\sqrt{1-\sqrt{1-X}}$$

$$\frac{v_{1}}{v_{2}} = X\sqrt{1-\sqrt{1-X}}$$

$$\Delta v = v_{2} - v_{1} = v_{2}(1-X\sqrt{1-\sqrt{1-X}})$$

$$A = \frac{m^{1/2}}{R_6^{3/2}}; \ X = \frac{R}{r}$$

- *m* NS mass in solar mass
- R_6 NS radius in 10^6 cm

Correlations Between Spin Frequencies and kHz QPOs

Spin frequencies detected in 24 LMXBs from 45Hz (Vireal & Strohmayer 2004) to 1122Hz (Kaaret 2007)

Distribution of the spin frequencies of the 22 neutron stars in LMXBs

$\langle \Delta \nu \rangle \sim \nu_s$

Yin et al. 2007

- 1. $v_{2\min} > 1.3v_s$ Only in twin kHz QPO, not single
- 2. $\langle \Delta v \rangle = -(0.19 \pm 0.05)v_s + (389.40 \pm 21.67)Hz$ in 6 atoll sources
- 3. Shift a factor of 1.5, good fit to AMXP

Further studies

Cir X-1 and Sco X-1 are two extreme Z sources.

The (b) represents an obvious tendency of increasing firstly (Cir X-1) and then decreasing (Sco X-1) with the frequency. That is consistent with AWOM (A=0.65) and RPM (m=2).

(C) acts a good fit of detected data and can reject 3:2 relationship

0.29 ratio

$$v_{2} = 1850AX^{3/2}(Hz) = 1295(\frac{A}{0.7})X^{3/2}(Hz)$$

$$v_{1} = v_{2}X^{4/3} \left[1 - \sqrt{1 - X}\right]^{1/2}$$

$$\frac{v_{2}}{v_{1}} = f(X) / X^{5/4}, f(X) = \left[1 + \sqrt{1 - X}\right]^{1/2}$$

$$1 \le f(X) \le 1.4$$

$$\Delta v = v_{2} - v_{1} = v_{2} \left[1 - X^{5/4} / (1 + \sqrt{1 - X})\right]^{1/2}$$

$$= (1850A)F(X)$$

$$F(X) = X^{3/2} \left[1 - X^{5/4} / (1 + \sqrt{1 - X})\right]^{1/2}$$

The ratio between the maximum peak separation and maximum upper frequency versus the maximum upper frequency diagram. $v_2(\max) = 1850A$ and $\Delta v(\max) = 525A$ $\frac{\Delta v(\max)}{v_2(\max)} = 0.29$

The ratio of twin kHz QPOs asymptotically decreases with X; the separation function shows its maximum to occur at X=0.7.

Distribution of $\Delta v / v_s$

The ratio concentration around 0.5 and 1.0 is not clear

Anti-correlation: Yes or No?

If the anti-correlation is between $\langle \Delta \nu \rangle$ and \mathcal{V}_s real, we can use it to infer the averaged kHz QPO peak separations of sources or to roughly estimate the spin frequency (Z sources).

Name	Spin frequency (Hz)	Estimate average separation (Hz)
EXO 0748-676	45	380
XB 1254-690	95	370
XTE J1739-285	1122	160

However, this anti-correlation is still a conjecture since it is based on data from only six sources.

But if this result were confirmed, it means that the spin frequency would play a role in the mechanism that produces the kHz QPOs

Sources (1)	$\nu_2^{(2)}$ (Hz)	$\frac{\Delta \nu^{(3)}}{(\text{Hz})}$	$\nu_2/\nu_1^{(4)}$ (Hz)	$\nu_s^{(5)}$ (Hz)	$\Delta \nu / \nu_s$	$\operatorname{References}^{(*)}$
Millisecond pulsars						
XTE J1807-294 SAX J1808.4-3658	$353-587 (587) \\ 694 (725)$	179-247 195	1.51-2.78 1.39	$ \begin{array}{r} 191 \\ 401 \end{array} $	$0.94-1.29 \\ 0.49$	[1] [2]
Atoll sources						
4U 1608-52 4U 1636-53 4U 1702-43 4U 1728-34 KS 1731-260 4U 1915-05 IGR J17191-2821 SAX J1750.8-2900 4U 0614+09 Acl V 1	802-1099 (1099) 971-1192 (1230) 1055 1085 (1085) 582-1183 (1183) 1169 (1205) 514-1055 (1265) 1030 (1030) 1253 (1253) 449-1162 (1162??) 1074 1082 (1082)	224-327 217-329 333 271-359 266 290-353 330 317 238-382 278-280	1.26-1.69 1.24-1.51 1.46 1.31-1.89 1.29 1.49-2.3 1.47 1.34 1.38-2.93 1.25 1.25	619 581 330 363 524 270 294 601 415	$\begin{array}{c} 0.36\text{-}0.53\\ 0.37\text{-}0.57\\ 1.01\\ 0.75\text{-}0.99\\ 0.51\\ 1.07\text{-}1.31\\ 1.12\\ 0.53\\ 0.57\text{-}0.92\\ 0.51\\ 0.51\end{array}$	[3] [4] [6] [7] [8] [9] [10] [11]

Table 1. Ten sources with the twin kHz QPOs and spin frequencies. dn average ? nu2/nu1 average ?

$$V_2 \ge 1.3 V_s$$
 $X_{\min} = (1.3 V_s / 1850 A)^{2/3}$

We obtain a constrain condition for the ratio of twin kHz QPOs

$$\frac{v_2}{v_1} \le \left[1 + \sqrt{1 - X_{\min}}\right]^{1/2} / X_{\min}^{5/4}$$

The domain which can produce the twin kHz QPOs

$$v_{s} = 1850A \left(\frac{R}{R_{co}}\right)^{3/2}$$

45 Hz	Lowest spin frequency	
619 Hz	Highest burst frequency	
716 Hz	Highest radio spin frequency	
1122 Hz	Highest spin frequency	
1330 Hz	Highest kHz QPO frequency	

Conclusion

- Z, Atoll, AMXP, are systemically different or not?
- 0.29 ratio which is to obtain an average value to measure the separation over spin frequency
- Estimate the separation or the spin frequency
- Some correlations of twin kHz QPOs

THANKS FOR YOUR "PATIENCE". **IT IS URGENT TO HAVE** IIC D

