Fe II and H β Emission-lines of SDSS Quasars: New Clues to Geometry and Kinematics of Broad Line Region

Chen Hu^{1,2}

Jian-Min Wang, Luis C. Ho, Yan-Mei Chen, Hao-Tong Zhang Wei-Hao Bian, Sui-Jian Xue

¹National Astronomical Observatories, CAS

²Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, CAS

2008.04

1 Introduction

2 Evidence for inflow to the central black hole

- Data and spectral fitting
- Results

3 Evidence for Intermediate-line region

- Sample and emission-line fitting
- results

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary

The stratification of the Broad Line Region

McIntosh, et al, 1999, ApJ, 517, L73

< ロ > < 同 > < 回 > < 回 >

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary

Fe emission in optical and UV spectral

Vanden Berk et al. 2001, AJ, 122, 549

• Excitation mechanics? Origin?

< A.

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary

Where is the Fe II emission region?

Similar widths and profiles of Fe II and H β :

Boroson & Green, 1992, ApJS, 80, 109

Further than $H\beta$ emission region:

Matsuoka et al. 2007, O I and Ca II Popović 2007, extensive Fe II emission region, intermediate width

The variability of Fe lines:

Vestergaard & Peterson 2005, NGC 5548 Wang et el. 2005, NGC 4051

Low amplitude of variability and long response timescale

< D > < P > < D > <</pre>

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary Data and spectral fitting Results

Sample selection

- SDSS DR5, z < 0.8, 14918 Type I Quasars (Schneider et al. 2007, AJ, 134, 102)
- S/N > 10
- $\chi^2 < 4$
- $\bullet~H\beta_{BC}$ FWHM error < 10% and [O $\scriptstyle\rm III$] peak shift error < 100 $km~s^{-1}$
- $EW_{Fe} > 25 \text{ Å}$

4480 quasars

・ 同 ト ・ ヨ ト ・ ヨ ト

Data and spectral fitting Results

The overview of spectral fitting

- Galactic extinction correction and redshift correction
- Occomposition of the continuum spectrum
 - A single power law
 - Balmer continuum + high order Balmer lines
 - Fe emission lines
- Emission-line fitting
 - We ignore the host galaxy starlight component

→ Ξ →

Data and spectral fitting Results

Continuum decomposition

Continuum decomposition

$$F_{\lambda} = F_{\lambda}^{\text{PL}}(F_{\lambda}(5100), \alpha) + F_{\lambda}^{\text{BaC}}(F_{\text{BE}}, \tau_{\text{BE}}) + F_{\lambda}^{\text{Fe}}(F_{\text{Fe}}, \text{FWHM(Fe)}, V_{\text{Fe}})$$

7 free parameters

Previous studies often:

- fix *v*_{Fe} free FWHM_{Fe}: e.g., *Boroson & Green 1992; Marziani et al. 1996; McLure & Jarvis 2002; Dietrich et al. 2003; Greene & Ho 2005; Woo et al. 2006*
- fix both *v*_{Fe} and FWHM_{Fe}: e.g., *Netzer & Trakhtenbrot 2007; Salviander et al. 2007*

Introduction Evidence for inflow to the central black hole

Data and spectral fitting

Examples of continuum decomposition

Introduction Evidence for inflow to the central black hole

Data and spectral fitting

Examples of continuum decomposition

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary Data and spectral fitting Results

Monte-Carlo simulation: shift

A (10) A (10)

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary Data and spectral fitting Results

Monte-Carlo simulation: width

Data and spectral fitting Results

Comparison with conventional methods

F-test: compare with

- A, fix v_{Fe} free FWHM_{Fe}: 58% sources have significance more than 3σ
- B, fix both v_{Fe} and FWHM_{Fe}: 87%

Table: Effect of Fe Template-fitting Method on Other Parameters

Model	L(Hβ _{BC})	FWHM(H β_{BC})	ν _{Hβ}	L _[O III]	FWHM _[O III]	V _[O III]
(1)	(2)	(3)	(4)	(5)	(6)	(7)
A	-2.30%(3.15%)		-23.2(37.4)	2.52%(40.7%)	0.51%(19.2%)	2.45(35.6)
B	-1.66%(3.25%)		-2.36(57.9)	1.79%(51.9%)	0.51%(24.4%)	5.17(41.1)

・ 同 ト ・ ヨ ト ・ ヨ

Data and spectral fitting Results

Systemic redshift: using [O III]

Data and spectral fitting Results

Error of the Fe II velocity shift and width

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Data and spectral fitting Results

Distribution of Fe II emission shifts

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary Data and spectral fittin Results

Fe II emission FWHM

Chen Hu chenhu@bao.ac.cn Fe II and Hβ Emission lines

Data and spectral fitting Results

The physical driver of $v_{\rm Fe}$

 $v_{\rm Fe}$ vs. log($L_{\rm bol}/L_{\rm Edd}$)

 $\log(v_{\rm Fe})$ vs. $\log(L_{\rm bol}/L_{\rm Edd})$

Chen Hu chenhu@bao.ac.cn Fe II and H β Emission lines

Data and spectral fitting Results

Correlations with radio and X-ray properties

Chen Hu chenhu@bao.ac.cn Fe II and Hβ Emission lines

Evidence for inflow to the central black hole Evidence for Intermediate-line region Summary Data and spectral fittin Results

Composite spectra

Chen Hu chenhu@bao.ac.cn Fe II and H_β Emission lines

Evidence for inflow to the central black hole Evidence for Intermediate-line region Data and spectral fittir Results

Composite spectra

Chen Hu chenhu@bao.ac.cn Fe II and H_β Emission lines

Sample and emission-line fitting results

$H\beta$ profile

- Broad line AGN: one Gaussian is not good.
 - Two Gaussian: e.g. Netzer & Trakhtenbort 2007
 - Gauss-Hermite: e.g. Salviander et al. 2007
- NLS1:
 - Lorentzian
 - Lorentzian + very broad Gaussian component: e.g. *Véron-Cetty et al. 2004*
 - Two Gaussian: e.g. Mullaney & Ward 2008

Introduction Evidence for Intermediate-line region

Sample and emission-line fitting

Examples

z=0.334 spSpec-52252-0567-071.fit

spSpec-52252-0567-071.fit z=0.334

< □ > < 同 > < 回 > < 回

Fe II and HB Emission lines Chen Hu chenhu@bao.ac.cn

Sample and emission-line fitting results

$H\beta$ profile fitting

• The narrow component is forced to have the same profile as [O III].

- For the conventional broad component:
 - Using only one Gaussian: $H\beta_{BC}$
 - Using two Gaussian: $H\beta_{VBC}$ + $H\beta_{IC}$

• I > • = > •

Sample and emission-line fitting results

$H\beta$ profile fitting

Sample and emission-line fitting results

Examples

Chen Hu chenhu@bao.ac.cn Fe II and

Introduction Evidence for Intermediate-line region

Sample and emission-line fitting

Examples

Chen Hu chenhu@bao.ac.cn

Fe II and HB Emission lines

Sample and emission-line fitting results

Examples

Chen Hu chenhu@bao.ac.cn Fe II and H_β Emission lines

Sample and emission-line fitting results

The kinematics of $H\beta_{IC}$ and Fe II are same

< ロ > < 同 > < 回 > < 回 >

Sample and emission-line fitting results

${\rm H}\beta_{\rm IC}$ and ${\rm H}\beta_{\rm VBC}$ are two kinematically different components

Chen Hu chenhu@bao.ac.cn Fe II and H β Emission lines

< □ > < 同 > < 回 > < 回

Sample and emission-line fitting results

ILR and VBLR have different emission

< □ > < 同 > < 回 > < 回

Summary

- The majority of quasars show redshifted Fe II emission lines.
- FWHM(Fe) is systematically narrower than FWHM(H β_{BC}).
- The shift of Fe II increases with decreasing Eddington ratio.
- Conventional Hβ broad line region consists of two component: very broad line region (VBLR) and intermediate-line region (ILR) which is associated with the Fe II emission.
- We suggest that Fe II and the $H\beta_{IC}$ both trace an inflowing component at the outer portion of the BLR.

Future works

- Fe II shift variability
- Variability of each H β components
- Fe II/H β_{IC} : physical condition of the ILR
- Outflow (C IV) + disk (H β_{VBC}) + inflow (H β_{IC} +Fe II)

・ 同 ト ・ ヨ ト ・ ヨ

THANK YOU!

Chen Hu chenhu@bao.ac.cn Fe II and H β Emission lines

イロト イ団ト イヨト イヨト