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(a)Capacitance schematic of AC-LGAD with 3 AC pads (b)Sketch of AC-LGADs with 3 AC pads
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(c)Schematic of AC-LGADs with 3 AC pads and oxide-gap isolation (d)Schematic of AC-LGADs with 3 AC pads and air-gap isolation

Fig. 1 Schematic diagrams of AC-LGAD structures: (a) Capacitance schematic
(b) traditional structure, (c) with air-gap isolation, and (d) with oxide-gap isolation

Novel Low-Capacitance AC-LGAD Design: Core Innovations

 Low-k Dielectric Isolation
€ Method: Add trenches (filled with SiO, or air) between resistive
electrodes.

@ Effect: Low-k materials cut electric field coupling, reducing C i er-pad
by over 1000x.

€ Outcome: Minimizes crosstalk, enhances spatial resolution.
 Optimized Isolation Geometry
€ Method: Tune isolation structure depth/width via simulations.
€ Effect: Deeper trenches concentrate electric fields; optimized width
balances isolation & compactness.
€ Outcome: Ideal capacitance reduction, maintains practical sensor
dimensions.

Electric Field Distribution Analysis
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Fig. 4 Electric Field Distributions: Isolation Structures’ Effect

Summary

This poster presents low-capacitance AC-LGAD structure with low-k
dielectric isolation is presented. TCAD simulations show inter-pad
capacitance reduction over 1000x and bulk capacitance by ~ 70%. Vacuum
isolation outperforms SiO, with an additional ~ 30% reduction, effectively
suppressing parasitic capacitance and guiding future sensor design.

Key Parasitic Capacitances in AC-LGAD Sensors

* C1 (Coupling Capacitance, C o,piing)

[0 Location: Metal readout strips ¢> semiconductor gain layer (across

dielectric)

[ Impact: Weakens signal, slows rise time, distorts waveform
[0 Dependence: Dielectric thickness, permittivity, effective area

* C2 (Bulk Capacitance, C p,)

[J Location: p—n junction (n gain layer ¢ p substrate; space charge region as

capacitor)

[0 Impact: Forms low-pass filter (with front-end capacitance) - attenuates

high-frequency signals, degrades timing precision
ES

[0 Dependence: Follows C = relies on gain layer/backplane area,

separation, medium permittivity

* C3 (Inter-Pad Capacitance, C i ier-pad)

[J Location: Adjacent resistive electrodes (via semiconductor bulk, from

inter-electrode electric fields)

[0 Impact: Causes crosstalk = interferes with position reconstruction, limits

spatial resolution

[0 Dependence: Electrode spacing, semiconductor permittivity, thickness

under electrodes

TCAD Simulation of Different Isolation Structure Parameters
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Fig. 2 Effectofdifferentisolationwidthsoncapacitanceparametersatafixeddepthof 4 um.

* Setup: Fixed isolation depth (4 um), tested isolation widths (0—10 pum) to

study capacitance changes.
 Key Trends:
C interpad - Drops by >3 orders of magnitude (width 1510
C ..k : Decreases by ~70% (width 110 um), Fig. 2(c).

 Reason: Larger width lengthens electrode electric field cou
i . S .
weakens field intensity; per C =%, increased d reduces ca

* Minor Impact: Isolation width has little effect on C ., ine-

um), Fig. 2(b).
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Fig. 3 Isolation Depth vs. Capacitance (Air, 1 um Width, 10 kHz)

* Setup: Fixed isolation width(1 um), tested isolation depths(0—4 um) to study

capacitance changes.
e (Observe:

The capacitance reduction at a depth of 0.25 um is far less effective than

that at other depths.
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