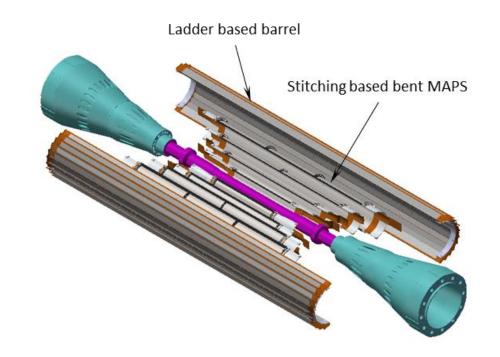


Status of CMOS pixel sensor chips for the CEPC VTX

Ying Zhang, Zhijun Liang, Wei Wei, Yunpeng Lu

On behalf of the CEPC vertex detector study group

Content


- CEPC Vertex detector requirements
- Working plan for the TDR
- Design status of the first stitched chip
- Discussion on spatial resolution

Vertex Requirement

- Inner most layer need to be positioned as close to beam pipe as possible
 - Challenges: Radius (11.1 mm) is smaller compared with ALICE ITS3 (18 mm)
 Requiring wafer-scale stitched Monolithic Active Pixel Sensors (MAPSs)

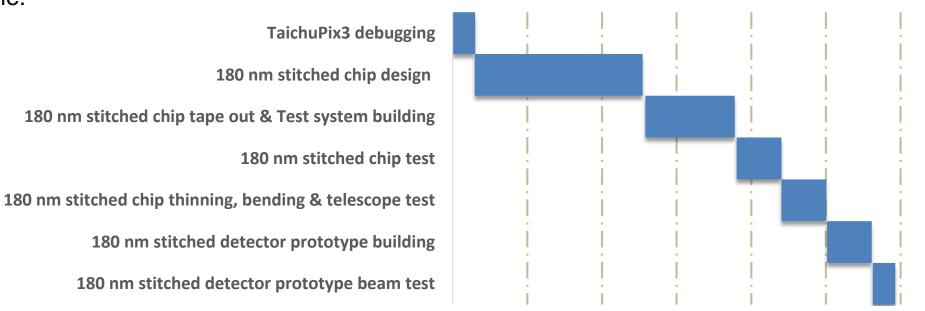
Table 4.2: Vertex Detector Design Parameters

Parameter	Design		
Spatial Resolution	~ 5 μm		
Detector material budget	$\sim 0.8\%~X_0$		
First layer radius	11.1 mm		
Power Consumption	< 40 mW/cm ² (air cooling requirement)		
Time stamp precision	100 ns		
Fluence	$\sim 2 \times 10^{14} \text{ Neq/cm}^2 \text{ (for first 10 years)}$		
Operation Temperature	~ 5 °C to 30 °C		
Readout Electronics	Fast, low-noise, low-power		
Mechanical Support	Ultralight structures		
Angular Coverage	$ \cos\theta < 0.99$		

Ref: CEPC Detector Ref-TDR

Working plan for the TDR

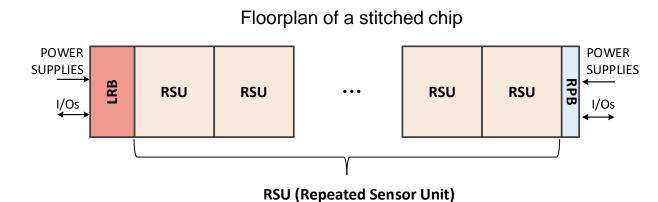
- Development of wafer-scale stitched MAPSs
 - Develop a wafer-scale stitched sensor prototype with 180 nm process to keep R&D risks and costs within reasonable bounds.

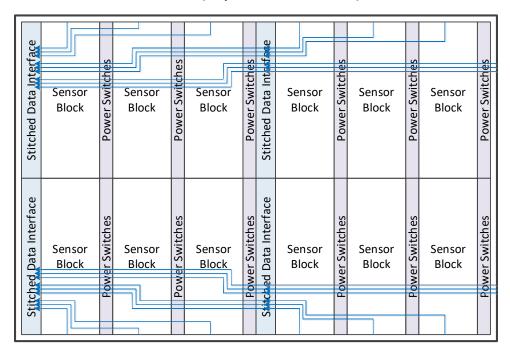

2025/7

2026/2 2026/8

2027/3 2027/9

2025/1

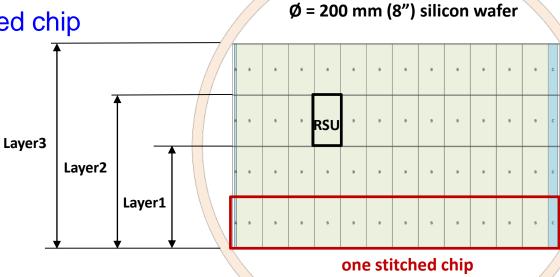




- The second-generation stitching chip will transition to 65 nm/55 nm process
 - Baseline: TPSCo's 65 nm technology
 - Alternative: HLMC's 55 nm technology
 - Timeline: Depending on available time of the technology

Design of the first 180 nm stitched chip

- Main goal: feasibility validation of the stitching technology.
- Chip architecture:
 - 1D stitching along the beam direction.
 - Each chip consists of multiple RSUs (Repeated Sensor Unit), 1 LRB (Left-end Readout Block) and 1 RPB (Right-end Power Block).
 - An RSU is composed of multiple independent sensor blocks, each transmits low-speed serialized data to the left edge of chip.
 - Most of RSU circuits derived from TaichuPix-3.
 - LRB acts as data collector and high-speed data interface with external, needing new design.
 - REB contains only pads for power supply.

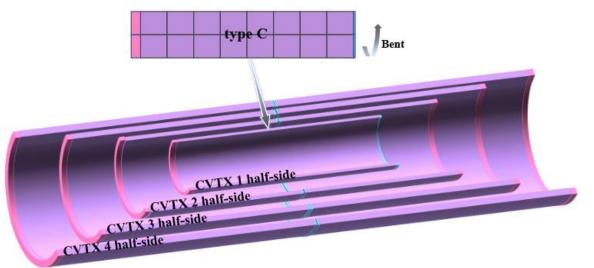


Design of the first 180 nm stitched chip

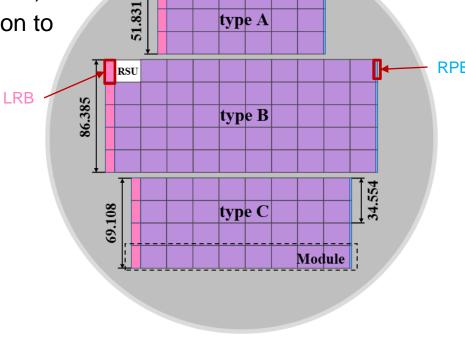
Design status

- Preliminary design of stitching floorplan done
 - Four stitched chips per wafer
 - Forming three semi-cylinder layers with the same length
- Preliminary architecture design of the stitched chip finished
 - Chip size
 - Specific RSU floorplan
 - Data transmission scheme
- Detailed circuit design ongoing

Stitching plan for a 200 mm wafer



Design of the final stitching plan


Vertex detector design for TDR

- Inner four layers are constructed by curved stitched sensors
- Three types stitched sensors with different sizes on a wafer
 - Sharing same components (RUS, LRB, RPB)
 - One Type C sensor forms a semi-cylindrical for layer1 (CVTX1)

 Two Type A/Type C/Type B sensors oriented along z-direction to form halves for Laye2/Layer3/Layer4

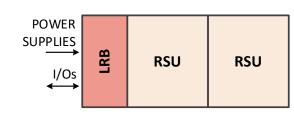
Design team

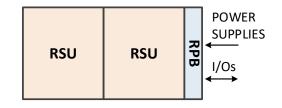
Overall architecture

- Backbone data & power: Wei Wei, Ying Zhang, Siqi Deng

Most faculties from TaichuPix & JadePix design teams

RSU

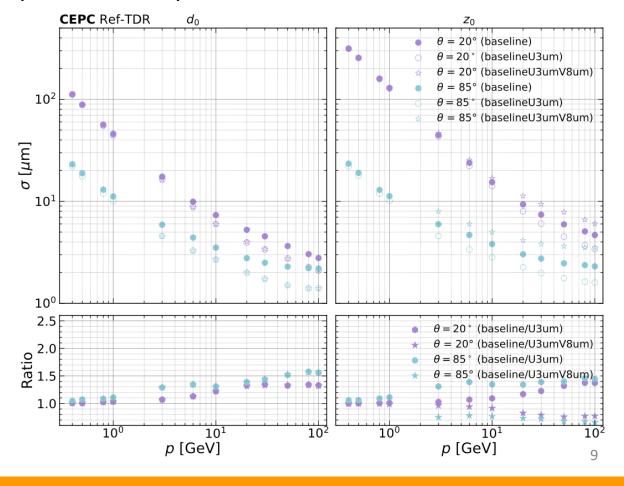

- IHEP: Wei Wei(overall + digital), Ying Zhang (pixel), Siqi Deng(pixel), Mujin Li(digital)
- CCNU: Ping Yang (biasing)


LRB

- Data interface: Xiaomin Wei + std(3) (NPU)
- Slow Control + Monitoring: Liang Zhang (SDU)
- Digital: Yunpeng Lu + std(1) (IHEP)

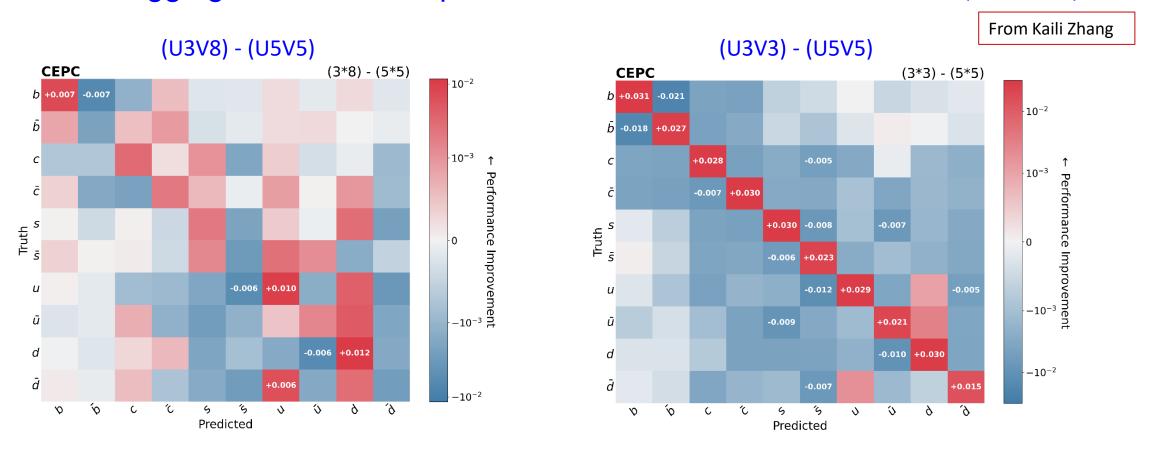
Floorplan of a stitched chip

Verification & test



Study on spatial resolution

Impact parameter resolution simulations with different spatial resolutions: U3V8/U3V3 vs. U5V5 (Baseline)


From Tianyuan Zhang

- Motivation: choosing pixel size according to requirements of spatial resolution
 - U represent $r\varphi$ direction, V represent z direction
- The differences are more noticeable at high momentum.
- For U3V8, σ_{d_0} improved up to 55%, σ_{z_0} decreased up to 35%.
- For U3V3, σ_{d_0} improved up to 55%, σ_{z_0} increased up to 52%.

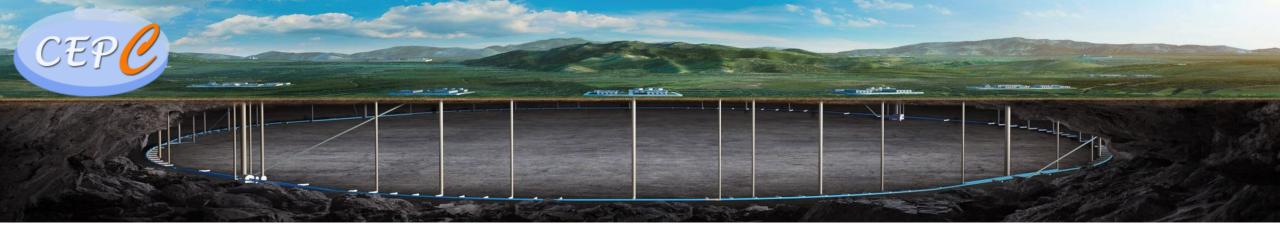
Study on spatial resolution

Flavor tagging with different spatial resolutions: U3V8/U3V3 vs. U5V5 (Baseline)

- Performance of U3V8 is comparable with U5V5 (baseline).
- Performance of U3V3 improved about 3% comparing to U5V5.

Study on spatial resolution

Performance comparison of different choices


	Spatial resolution	Pixel size (theoretical)	Impact parameter resolution	Metric (Ave. M ₁₁)	RSU Power density*
Baseline	U5V5	25 μm x 25 μm	< 3 μ m @ d_0 < 5 μ m @ z_0	0.5865	40 mW/cm ²
	U3V8	16 μm x 40 μm	Increased max. 55% @ d_0 Decreased max. 35% @ z_0	0.5895	40 mW/cm ²
	U3V3	16 μm x 16 μm	Increased max. 55% @ d_0 Increased max. 52% @ z_0	0.6127	56 mW/cm ²

*Calculated with same sensitive area Only pixel power differences considered

- Open discussion
 - Is a spatial resolution of 3 μ m necessary for $r\varphi/z$ directions?

Summary

- CEPC vertex detector requires wafer-scale monolithic pixel sensors for the inner four layers.
 - First stitched chip based on 180 nm process under designing
 - Feasibility validation of the stitching technology
 - Architecture and functionality validation of the main circuits
 - Pixel pitch is 25 μm
 - Next generation stitched chip expected to transition to 65/55 nm
 - Process availability needs to be further confirmed
 - Final pixel size needs to be decided

Extra slides

Submission cost

- TJ 180 nm process: 0.3-1 M RMB for MPW; 4.0 M RMB for NRE.
- TPSCo 65 nm process: 7.0 M RMB for NRE; No MPW.