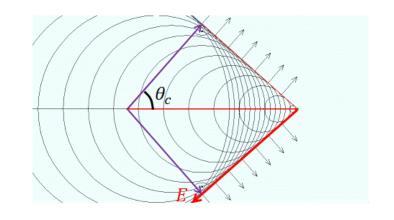
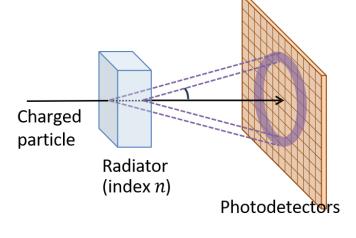

Preliminary consideration of a Cherenkov detector at CEPC


Zhonghua Qin, IHEP CEPC Day, 2025.10.16

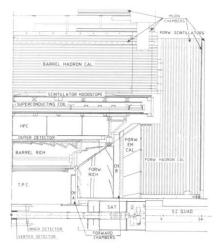

A reminder of Cherenkov detector

 Cherenkov detector is a powerful tool for charged particle identification, especially for particles with a momentum up to several tens of GeV/c where the ToF is not applicable

LHCb RICH-1 (Aerogel+C₄F₁₀ gas radiator) RICH-2 (CH₄ gas radiator)

RICH 2025, Kodai Matsuoka

Threshold:
$$\beta > 1/n$$


Cherenkov angle:
$$\cos \theta_c = \frac{1}{n\beta}$$

Number of photons:
$$\frac{dN_{\gamma}}{dE} = \left(\frac{\alpha}{\hbar c}\right) Z^2 L \sin^2\theta_C \approx 370 \sin^2\theta_C$$
 Separation power:
$$N_{\sigma} \approx \frac{|\textit{m}_1^2 - \textit{m}_2^2|}{2P^2 \sigma[\theta_c(tot)] \sqrt{\textit{n}^2 - 1}}$$

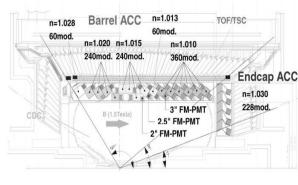
$$N_{\sigma} \approx \frac{|m_1^2 - m_2^2|}{2P^2\sigma[\theta_c(tot)]\sqrt{n^2 - 1}}$$

Cherenkov detector widely used by many experiments

- A lot of high energy particle /nuclear/astrophysics/neutrino physics experiments around the world
- -DELPHI, CLEOIII, BABAR, BELLE I & BELLE II, LHCb, ALICE, COMPASS, STAR, NA62, CLAS12, AMS02... (and many neutrino experiments not listed)

RICH DRIFT CHAMBER (cm)

Instrumented Flux Return 1.5 T Solenoid **DIRC** Radiators e+ (3.1 GeV) Electromagnetic Calorimeter Detector DIRC Standoff Box and Magnetic Shielding



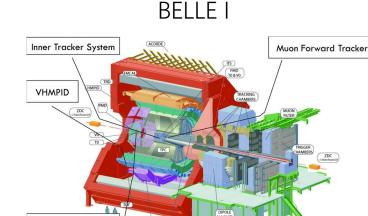
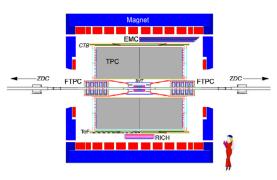
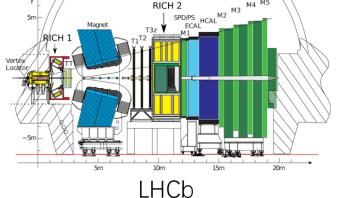

Fig. 3. The CLEO RICH, shown in CLEO-III configuration.

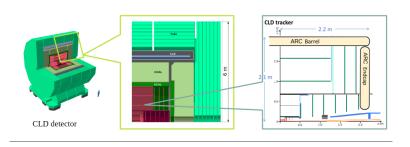
Fig. 1. Schematic drawing of the BELLE-ACC system.


DFI PHI

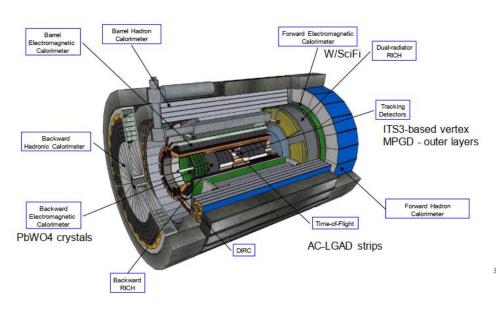
CELOIII

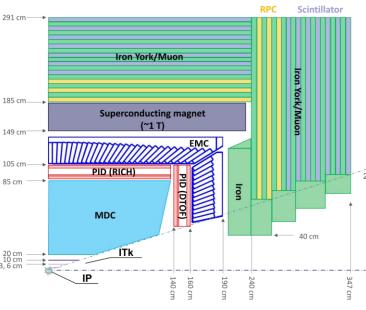

BABAR

Forward Calorimeter

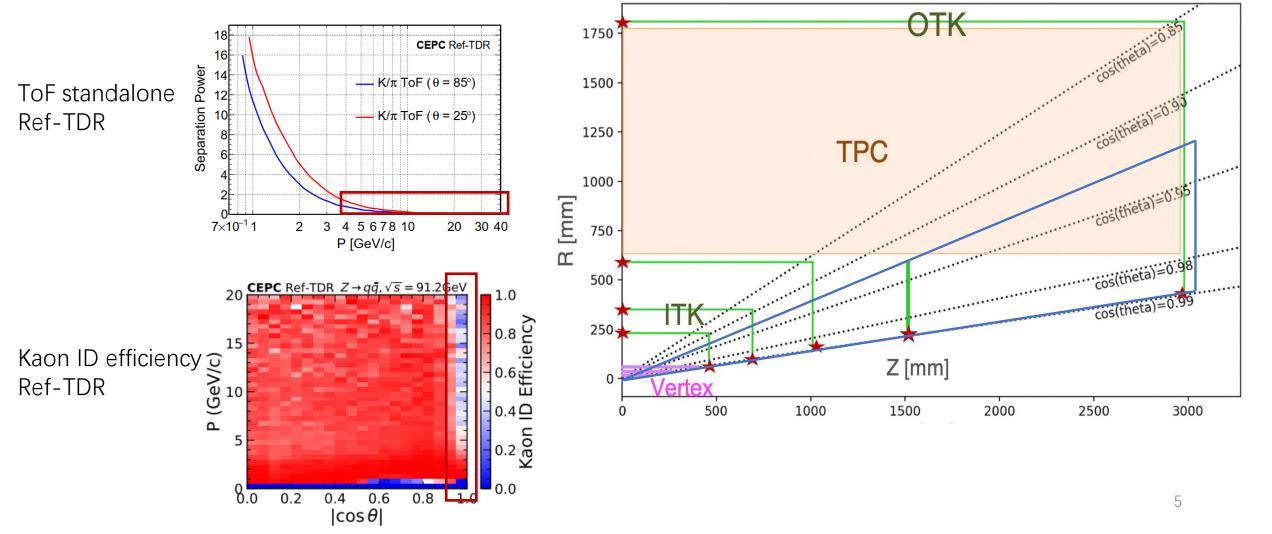

Proposed also by the future experiments

● Such as FCC-ee, EIC, STCF ···

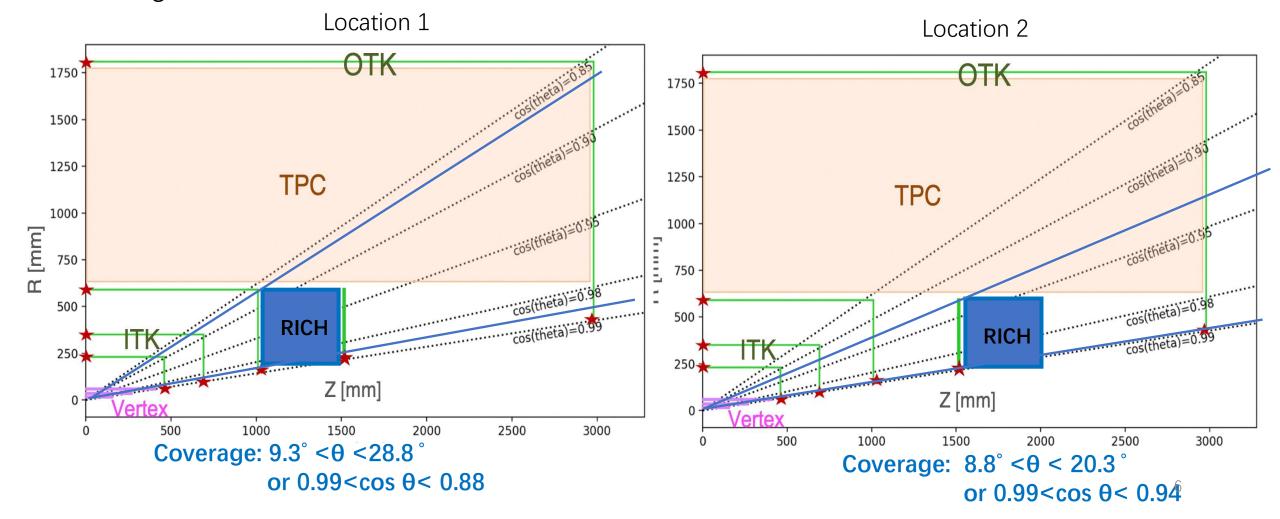

Design of Array of RICH Cells (ARC)


- The ARC was designed to be integrated with the CLD detector, between the tracker and the ECAL
- The ARC thickness is 20 cm, the barrel length is 4.4 m and the endcaps are placed as the bases of the barrel

FCC-ee (CLD detector concept)


ePIC detector at EIC

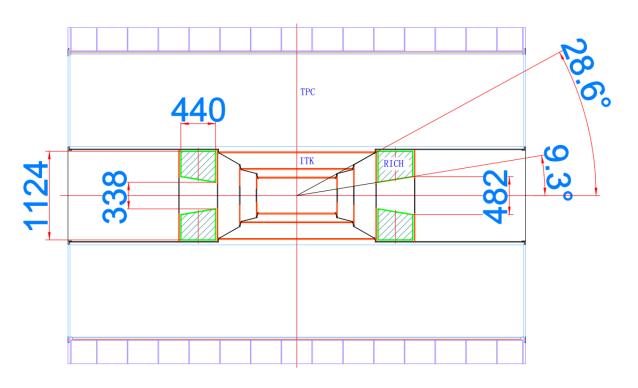
STCF

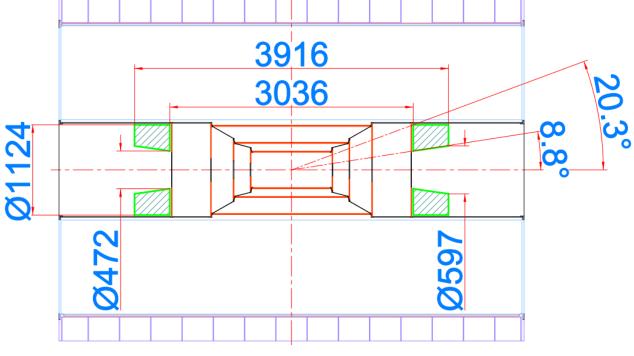

Motivation of the Cherenkov detector for CEPC

 A Cherenkov detector at CEPC is helpful, for high momentum PID(up to 20 GeV/c) at the endcap or forward region where there is only a short track or even no track in TPC (dN/dx not good)

Possible location of the Cherenkov detector at CEPC

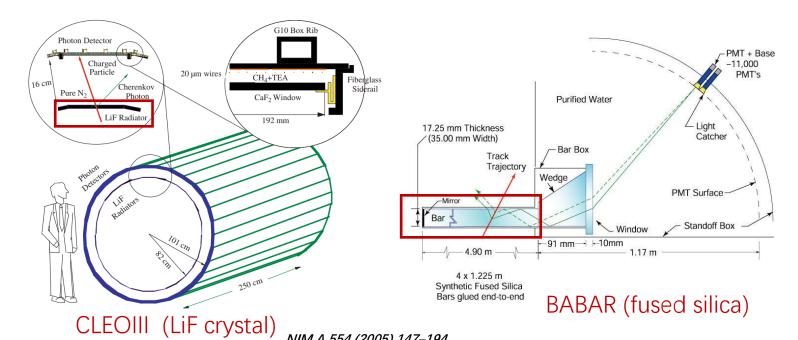
- Two possible locations without changing the other detector design in ref-TDR
- Depending on physics requirement, Cherenkov detector performance and also material budget

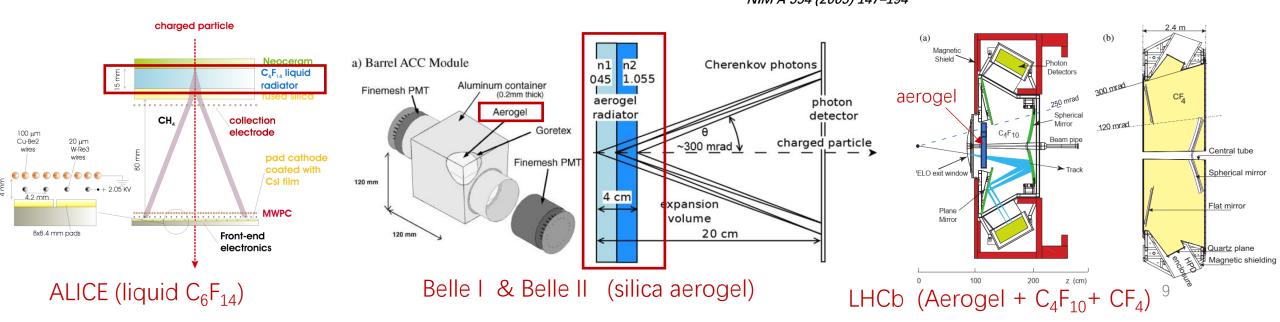



An overall view for the locations

The drawing of the two locations

From Jian Wang, mechanics group

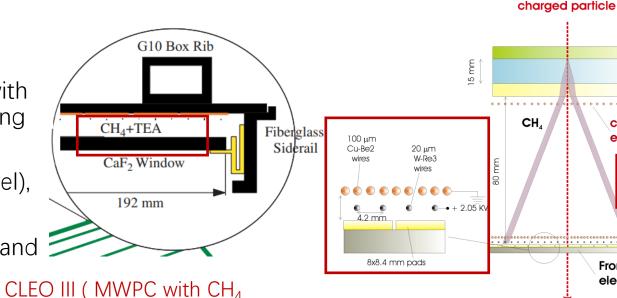

	Inner diameter	Outer diameter	Total area (two endcaps)
Radiator	33.8 cm	112.4 cm	1.81 m ²
Photon detector	48.2 cm	112.4 cm	1.62 m ²


	Inner Diameter	Outer diameter	Total area (two endcaps)
Radiator	47.2 cm	112.4 cm	1.64 m ²
Photon detector	59.7 cm	112.4 cm	1.43 m ²

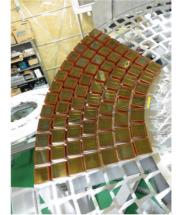
Investigation of technologies used for Cherenkov detector

Radiator

- Solid-state or liquid: LiF, NaF,
 fused Silica, C₆F₁₄(liquid)
- Gaseous: CF_4 , C_4F_{10} , C_5F_{12}
- Aerogel (silica aerogel)
- Hybrid: aerogel + gas



Investigation of technologies used for Cherenkov detector


+TEA(triethylamine)

Photon detector

- Gaseous chamber: TPC-like / MWPC filled with photoionizing gas (TEA) or photocathode coating (CsI)
- PMT: dynode PMT (fine-mesh, metal channel), MCP PMT
- Hybrid detector: HPD(hybrid photon detector) and HAPD(hybrid avalanche photon detector)
 - SiPM (proposed but not yet used)

Multi-anode HAPD (Belle II endcap)

MCP PMT (Hamamatsu R10754-07-M16), Belle II barrel(iTOP)

HPD (LHCb RUN1&2)

Neoceram

C₆F₁₄ liquid

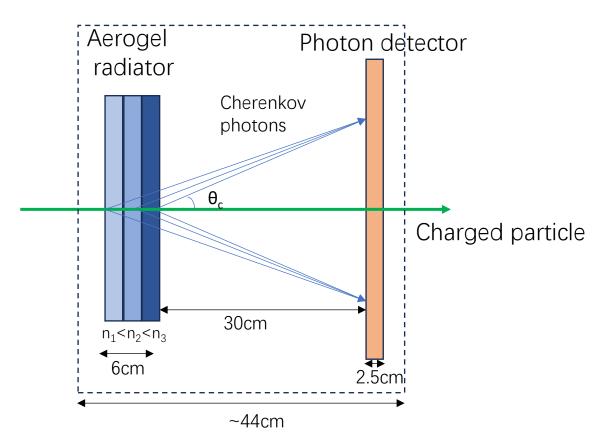
radiator

pad cathode

coated with Csl film

collection

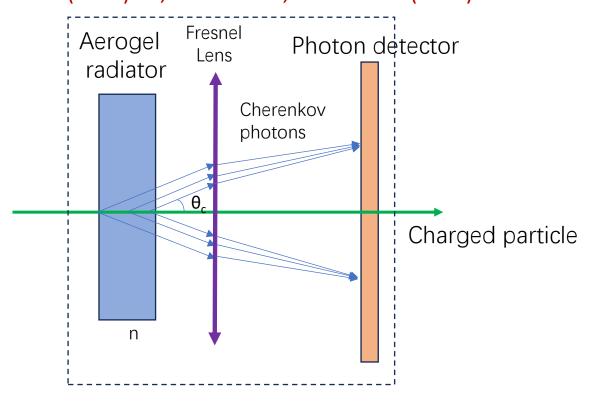
electrode


Front-end

electronics

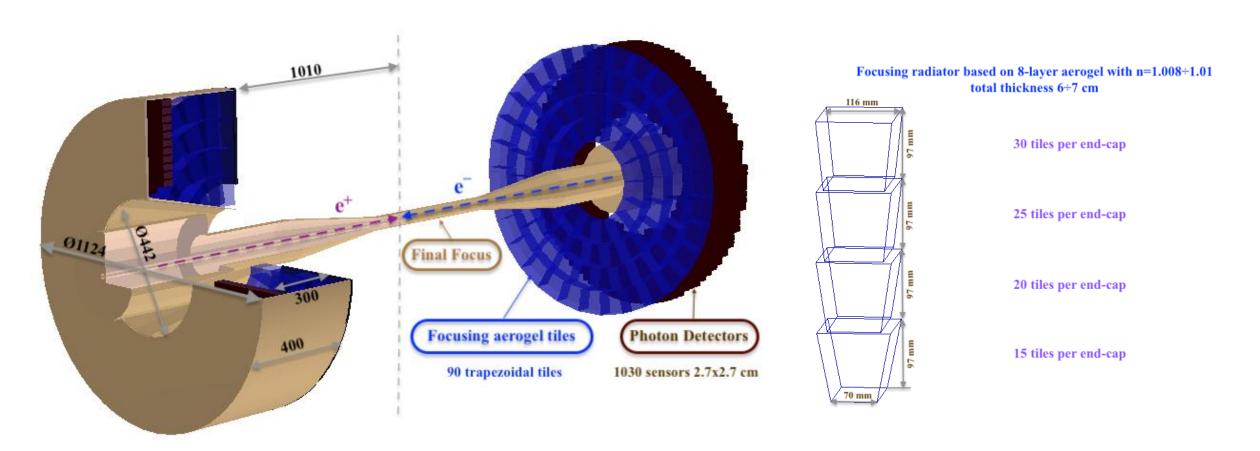
Multi-anode metal-channel dynode PMT (LHCb RUN3)

Possible design of CEPC Cherenkov detector


• The proximity focusing method:

Option1:

Multiple layers of aerogel with varying n, overlapped ring for different emission points

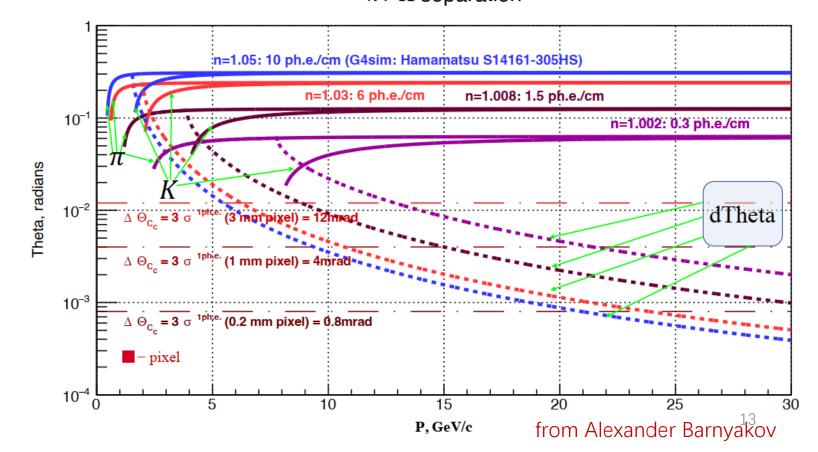

Reference: T.Iijima, NIM A548 (2005) 383; A.Yu.Barnyakov, NIM A553 (2005) 70; D. Sharma, NIM A1061 (2024) 169080

Option 2:

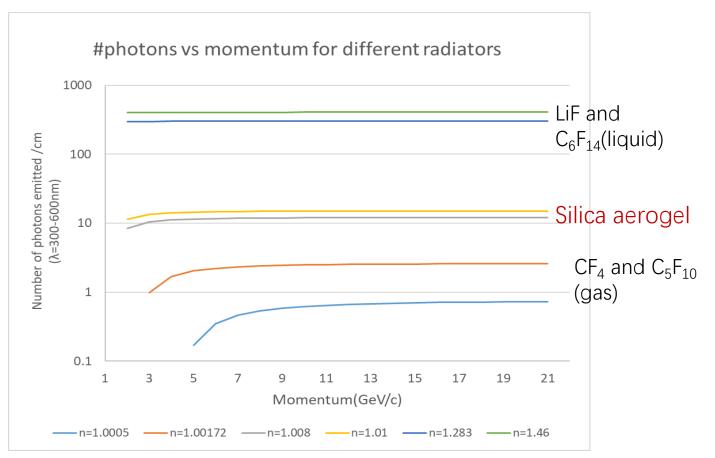
A single layer of aerogel, focused by a Fresnel lens.

A 3D sketch of the Cherenkov detector

from Alexander Barnyakov, BINP


Why uses aerogel as the radiator

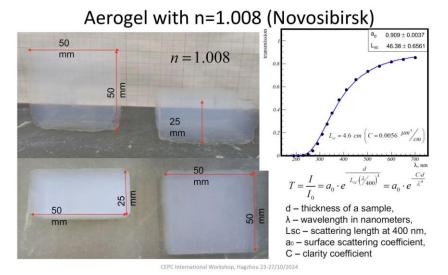
- Generally, to have PID for 3-20 GeV/c:
 - Solid-state/liquid radiator are excluded, due to very large n (1.3 or larger)
- Gaseous radiator is also not applicable, due to very small n (1.001 or smaller)
 - Aerogel can have adjustable n (1.0x ~1.00x) , so it's a good candidate $_\pi$ / $_K$ separation

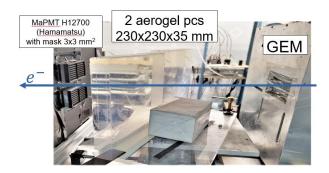


Aerogel from BINP

With aerogel (n=1.008) π/K can be separated better than 3σ up to 20 GeV/c (if $\sigma_{\theta}^{1pe} < 4 \text{mrad}$)

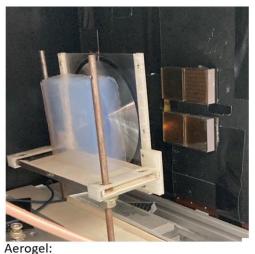
Some calculation on the number of photons emitted from different radiators

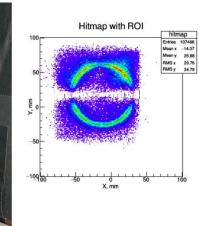


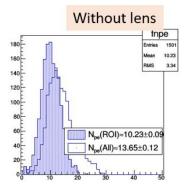

Radiators	Refractive index	Number of photon (p=20GeV, λ= 300-600 nm)
Fused silica, LiF, NaF (solid state)	1.46, 1.392, 1.334	300-400 photons /cm
C ₆ F ₁₄ (liquid)	1.283	~300 photons/cm
C_5F_{12} , C_4F_{10} , CF_4 , (gaseous)	1.00172, 1.0014, 1.0005,	0.7 – 2.6 photons/cm
Silica Aerogel	1.01 – 1.001 (adjustable)	1.5 -15 photons/cm

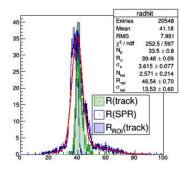
$$\begin{split} \frac{dN_{\gamma}}{dE} &= \left(\frac{\alpha}{\hbar c}\right) Z^2 L \sin^2 \theta_C \\ &\approx 370 \sin^2 \theta_C \; (\text{eV}^{\text{-1}} \, \text{cm}^{\text{-1}}) \end{split}$$

Past and ongoing R&Ds on aerogel

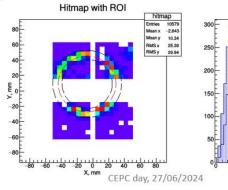

By Alexander Barnyakov from BINP

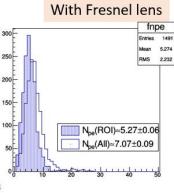


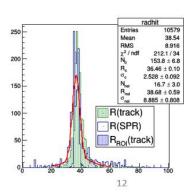



Single photon Cherenkov angle resolution is investigated with relativistic electrons at BINP beam test facilities "Extracted beams of VEPP-4M complex".

Some results of beam tests at the BINP with mRICH design






- n=1.028
- L_{sc}(400nm)=48.2±0.7 mm
- Thickness=40mm

Fresnel lens:

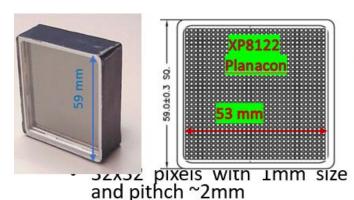
- Acrilic (PMMA)
- L_f=6"
- Manufacturer: Edmund PMT:
- 4 Hamamatsu H12700
- pixel 6x6 mm

Consideration of the photon detector

General requirements

- -low dark noise/single photon detection capability
- -high detection efficiency
- -high magnetic field tolerance (3 Tesla)
- small material budget (location inside TPC and ITK)
- good time resolution (time resolved Cherenkov detector?)
- relatively good position resolution
- reasonable cost
- low risk on construction and operation

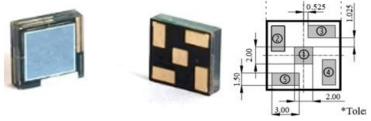
Possible photon sensors


- -Gaseous detector (MWPC, MPGD)
- -PMT(dynode/MCP PMT)
- -HPD/HAPD
- -SiPM

Past and ongoing R&D for photon detector

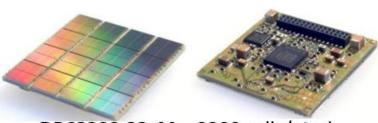
Investigation of the photon sensor (by Xiaolong)

MCP PMT


Planacone XP8122

- To decreas readout electronics channels it is possible to develop 'spread delay lines' or 'chrge sharing' approaches
- Expected spatial resolution as small as

$$\sigma_x \approx \frac{1}{\sqrt{12}} \approx 0.3 \mu m$$


PSS-SiPM or LG-SiPM

- PSS 11-3030-S (from NDL, China)
- 3x3 or 6x6mm SiPM is read out by 4 digitizers
- Position is reconstructed by charge sharing among 4 pads connected to resistive plane of the SiPM
- Declared resolution for single photon hit is about

 $\sigma_x \approx 200 \mu m$

Digital PC

- DPC3200-22-44 3200 cells/pixel (from Philips)
- Each microcell is connected through controled lattch and could be switched On or Off for readout
- Output data are 'timestamp' of the first fired microcells and total 'number' of fired microcells
- Output data could be changed to 'timestamp' and 'serial number' of fired microcell and then spatial resolution will be determined microcell sizes:

 $\sigma_x \le 50,25,12 \mu m$

Investigation of MCP PMT as photon sensor

For Belle II, barrel RICH (iTOP)

MICROCHANNEL PLATE PHOTOMULTIPLIER TUBE R10754-07-M16.

Fffective area:

Anode matrix:

Anode size:

OE: ~20%

HV: 2.7kV

 4×4

23mm x 23mm

5 28mmx5 28mm

TTS (FWHM): 75ps

FEATURES

- ●16 matrix multianode
- Small dead space
- Fast time response
- High magnetic field immunity
- Long life time

APPLICATIONS

- High energy physics
- Multichannel time resolved fluorescence detection measurement
- Light detection and ranging

SPECIFICATIONS

	Parameter	Description / Value	Uet
Spectral response)	160 to 850	nm
Wavelength of ma	ximum response	380	nm
Window material		Synthetic silica	_
Photocathode	Material	Multialkali	_
FIIOlocaliiode	Minimum effective area	23 × 23	mm
Dynode	Dynode structure	2 stages Microchannel plate	_
Dyriode	Channel diameter	10	μm
Number of anode	pixels	16 (4 × 4 matrix)	
Anode pixel size	·	5.28 × 5.28	mm
Operating ambien	t temperature ®	-30 to +45	°C
Storage temperatu	ıre ®	-30 to +50	°C

MAXIMUM RATINGS (Absolute maximum values)

Parameter		Value	Unit
Supply voltage	Between anode and cathode	2700	V
Average anode curr	ent	2	μА

CHARACTERISTICS (at 25 °C 2200 V)

CHARACTERIS	o 1105 (at 25 °C, 2200 V)				
	Parameter	Min.	Typ.	Max.	Unit
Cathode sensitivity	Luminous (2856 K)	80	110	_	μA/lm
Cathode sensitivity	Blue sensitivity index	_	7.5	_	_
Anode luminous ser	sitivity	22	110	_	A/lm
Gain		_	1 × 10 ⁶	_	_
Dark current (After 3	0 minutes storage in darkness)	_	5	30	nA
	Rise time	_	195	_	ps
Time response	Fall time	_	310	_	ps
rime response	Width	_	400	_	ps
	T.T.S. (FWHM) ®	_	75	_	ps

A No condensation

VOLTAGE DISTRIBUTION RATIO AND SUPPLY VOLTAGE

Electrode		K	1st M	CP-in	1st M	CP-out	2nd M	ICP-in	2nd M	CP-out	F	•
Distribution ra	atio		1	£	5		5		5	3	į.	
Supply valleges 2000 V. K. Cathoda, D. Anada												

subject to change without notice. No patent rights are granted to any of the circuits described herein. @2020 Harnamatsu Photonics K.K.

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are

N6021光电倍增管 N6021 MCP-PMT

Application

医学影像/Specialized Medical Imaging Cherenkov - RICH, TOF, TOP, DIRC 高能物理/High Energy Physics

Specifications

国土安全/Security

玻璃材料/Window material

倍增结构/Multiplier structure

阳极结构/Anode structure

光电阴极/Photocathode material

N6021

peak wavelength

光谱范围/Spectral response

积分灵敏度/Luminous sensitivity

量子效率@410nm/QE @410nm

工作电压/Supply voltage

辐射灵敏度/Radiant sensitivity@410nm

暗计数/Dark count rate@0.2pe(单阳极)

能量分辨率/Charge resolution 单光电子谱峰谷比/Peak to valley ratio

渡越时间弥散/TTS(0)σ(SPE)

遊越时间弥散/TTS@σ (MPE)

上升时间/Rise time

脉冲宽度/Pulse width

下降时间/Fall time

储藏温度/Storage temperature

量子效率峰值波长/Quantum efficiency

AVG glass

双碱/Bialkali

8 × 8

Min.

2片微通道板型/2 MCP

Тур.

280-650

380

60

21

72

2000

2 × 10⁶

500

35

3

300

650

800

50

15

-30~+50

-50~+50

Max.

2500

5000

Unit

nm

μA/lm

%

mA/W

Hz

ps

DS

Features

High Speed 増益高 High Gain 噪声低 Low Noise

Effective area: 46mm x 46mm Anode matrix:

8 x 8

Anode size:

5 75mmx5 75mm

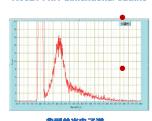
QE: 21%

TTS (σ)

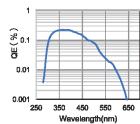
15ps(MPE) 50ps(SPE)

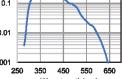
dark noise rate: 500 Hz/anode

18


HV: 2 kV

46MIN


SQ51

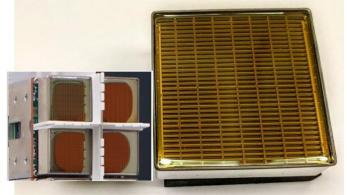

"FPMT", NNVT&IHEP

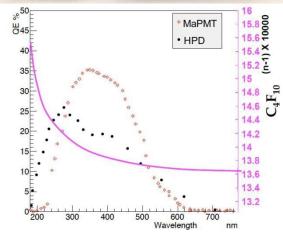
N6021 光电倍增管外型结构 N6021 PMT dimentional outline

Typical single photoelectron spectrum

Typical spectral response chara

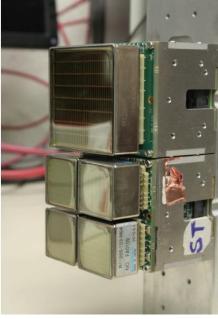
B Transit-time spread (T.T.S.) is the fluctuation in transit time between individual pulse and specified as an FWHM (full width at half maximum) with the incident light having a single photoelectron state. This value includes the jitter of the electronics about 30 ps.


Investigation of Multi-anode Dynode PMT


For LHCb RUN3

MultiAnode PhotoMultipliers

LHC6


- Hamamatsu MaPMTs
 - 3100 R13742 and 450 R13743, including spares
 - Super-bialkali photocathode
 - **UV** glass window
 - Minimum gain 1×10⁶ at 1 KV
 - 1:4 pixel gain spread in 1" PMTs, 1:3 pixel gain spread in 2" PMTs
 - Low dark count rate
 - Single photon spectrum well separated from the noise pedestal
- Higher QE of MaPMT in the green
 - Chromatic error reduction
- Sensitive to magnetic fields
 - Shielding applied

Nucl. Inst. Meth. A 876 (2017) 206-208

- Effective area: 23mm x 23mm (1") or 46mm x 46 mm (2")
- Anode matrix: 8 x 8
- Anode size: 2.88mm x 2.88mm or 5.76mmx5.76mm
- OE: 35%
- High voltage: 1.1 kV

HAMAMATSU

TENTATIVE DATA SHEET

Dec. 2015

MULTIANODE PHOTOMULTIPLIER TUBE

R13742

Exclusive for HPF-BS/ CERN and HPI/ INFN MILANO (for LHCb/RICH)

Super Bialkali Photocathode (SBA), UV Window, 1 Inch Square 8 x 8 Multianode and Fast Time Response

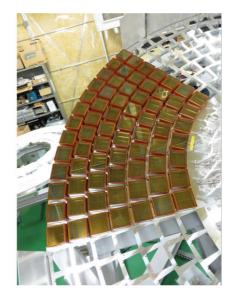
General

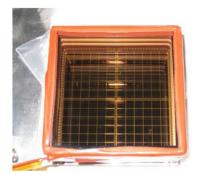
	Parameter	Description	Unit
Spectral Re	esponse Range	185 to 650	nm
Peak Wave	elength	350	nm
Photocatho	ode Material	Bialkali	-
Window	Material	UV Glass	-
window	Thickness	0.8	mm
Dynode	Structure	Metal Channel Dynode	-
Dynode	Number of Stage	12	-
Anode	Number of Pixels	64 (8 x 8 Matrix)	-
Anooe	Pixel Size	2.88 x 2.88	mm
Effective A	rea	23 x 23	mm
Dimension:	al Outline (W x D x H)	26.2 x 26.2 x 17.4	mm
Packing De	ensity (Effective Area / External Size)	77	%
Weight		27	g
Operating /	Ambient Temperature	-30 to +50	deg C
Storage Te	mperature	-80 to +50	deg C

Maximum Ratings (Absolute Maximum Values)								
Parameter	Value	Unit						
Supply Voltage (Between Anode and Cathode)	1100	V						
Average Anode Output Current in Total	0.1	mA						

Investigation of HPD and HAPD

 HPD(Hybrid Photon Detector) for LHCb Run1 and Run2


Effective area: 70mm in diameter


PD size: ~2.5mm x 2.5mm

QE: 27%

High voltage: 20 kV

 HAPD(Hybrid Avalanche Photon Detector) for Bellell endcap RICH (customized)

Effective area: 70mm x70mm

APD matrix: 12 x 12

APD size: ~5mm x 5mm

QE: 28%

High voltage: 8.5 kV

PRODUCT VARIATIONS

●R10467U Series

Type No.	Spectral response	Photocathode	Window material	Window type	Effective area	T.T.S.(Transit Time Spread) *1 (FWHM)
R10467U-06	220 nm to 650 nm	Bialkali	Synthetic silica	Plano-concave	φ6 mm	50 ps
R10467U-07	220 nm to 870 nm	Multialkali	Synthetic silica	Plano-concave	φ6 mm	30 ps
R10467U-40	300 nm to 740 nm	GaAsP	Borosilicate glass	Flat	φ3 mm	90 ps
R10467U-42	300 nm to 840 nm	Extended red-GaAsP	Borosilicate glass	Flat	φ3 mm	130 ps
R10467U-50	380 nm to 900 nm	GaAs	Borosilicate glass	Flat	φ3 mm	130 ps

●R11322U-40

Туре No.	Spectral response	Photocathode	Window material	Window type	Effective area	T.T.S. (Transit Time Spread) *1 (FWHM)
R11322U-40	300 nm to 740 nm	GaAsP	Borosilicate glass	Flat	<i>ϕ</i> 5 mm	170 ps

●R14713U-07

Type No.	Spectral response	Photocathode	Window material	Window type	Effective area	T.T.S. (Transit Time Spread) *1 (FWHM)
R14713U-07	220 nm to 870 nm	Multialkali	Synthetic silica	Plano-concave	φ3 mm	20 ps

●H13223-40

Type No.	Spectral response	Photocathode	Window material	Window type	Effective area	T.T.S. (Transit Time Spread) *1 (FWHM)
H13223-40	300 nm to 740 nm	GaAsP	Borosilicate glass	Flat	φ3 mm	90 ps

^{*1:} At the single photon state and the full illumination on photocathode, specified as FWHM (Full Width at Half Maximum)
These Values include the jitter of the electronics about 30 ps.

Table 1Requirement for the HAPD performance.

Item	Typical	Requirement
QE ($\lambda = 400 \text{ nm}$)	28%	≥24%
Bias Voltage	250-500 V	
High voltage	-8.5 kV	
Dark current (bias)	1-100 pA	<1 µ A / channel
Dark current (HV)		<300 pA
Avalanche gain	40	>30
Bombardment gain	1800	>1500
Number of bad channels		≤10

A preliminary summary of photon detector

Photon detector types	Quantum efficiency	Spatial resolution	Dark noise rate	Time resolution	Magnetic field tolerance	Radiation tolerance	Material budget	Cost estimation	Risk on construction & operation
Gaseous chamber (MWPC, MPGD)	poor (~28% at VUV region, 160- 170nm)	good (~1-2 mm, charge centroid method)	good (~1 Hz/cm ²)	poor (~1-50 ns)	poor (due to charged particles drifting)	good (no silicon)	good (~4% X0)	Good (several 10 RMB/cm ²)	poor (complex with gas, high voltage, pho- tocathode)
PMT (dynode or MCP PMT)	medium (~20-35% at 400nm)	medium (~3-5 mm with multi-anode)	good (~5-100 Hz/cm ²)	medium for dynode(~20 0-500ps); good for MCP(<50ps)	medium (specially designed dynode or MCP)	good (no silicon)	poor (~10% X0)	poor (~1000 RMB/ cm ²)	good (simple for construction and running)
HPD and HAPD	medium (~25-30 % at 400 nm)	medium (~2.8-6 mm with multi- anode)	medium (~2.5-5 KHz/cm ²)	medium (~50-200ps)	medium (with high voltage)	medium (partially silicon)	poor (~10% X0)	poor (~1000 RMB/cm ²)	medium (high voltage 8-20kV needed)
SiPM	good (~45-50% at 400nm)	medium (~3-6 mm depending on the size)	poor (~10 MHz /cm², room temperatur e)	medium (~50-100ps)	good (small thickness)	poor (atom displace- ment)	good if no cooling (~4% X0); poor if with cooling (~10% X0)	medium if no cooling (~100 RMB/ cm²); poor with cooling	good (simple for construction and running)

[•] No clear conclusion, need more investigation

Summary and next step

- A Cherenkov detector for CEPC will be beneficial even though it's challenging
- Some consideration and design for the Cherenkov detector have been done but at early stage.
- R&D on aerogel from Russia group is helpful
- More investigation on photon detector is needed
- A lot of things (mechanical supporting, cooling, cabling, readout electronics, etc.) need to be considered

Thanks a lot to Xiaolong, Jianchun and Alexander Barnyakov for useful discussion and input!