Jet Energy Resolution Validation

Shuo Han, Minqia Li, Kaili Zhang, Hao Zhu 1 IHEP

Performance for Single μ-

- Single μ events generated by ParticleGun.
- At four data points: 1GeV, 5GeV, 20GeV, 100GeV(20000 events at each point).
- Reconstructed by CEPCSW25.3.7.
- Radiation and Misidentification
- \circ In single μ samples, we can find photons and electrons in truth particles(Probably originate from bremsstrahlung or decays).
- The condition is more complex in misidentification. The muons are mainly identified as Kaons or additional muons.

Radiation

*	Row	*	Instance	*	PF0_E	*	MCP_E	*	PF0_PID98	*	MCP_Pdgid *
****	******* 3947	**	******* 0	**	*********** 4.9383506*	*	**********	**	******** 13	***	**********
*	3947	*	1	*		*	0.2609523	*		*	11 *
*	3947	*	2	*		*	0.1759054	*		*	22 *
*	3947	*	3	*		*	0.1319380	*		*	11 *
*	3947	*	4	*		*	0.0439674	*		*	-11 *
*	5056	*	Θ	*	4.9765462	*	5.0011164	*	13	*	13 *
*	5056	*	1	*		*	0.2889061	*		*	11 *
*	5056	*	2	*		*	0.1380625	*		*	22 *
*	5056	*	3	*		*	0.1235175	*		*	22 *
*	5056	*	4	*		*	0.0137638	*		*	11 *
*	5056	*	5	*		*	0.1097537	*		*	-11 *
*	5056	*	6	*		*	0.0533321	*		*	11 *
*	5056		7	*		*	0.0847304	*		*	-11 *
	<u>dentific</u>	ca	tion								
*	6154	*	Θ	*	4.9915385	*	5.0011160	*	13	*	13 *
*	6154	*	1	*	0.1880006	*		*	130	*	*
*	2683	*	0	*	0.0061209	*	5.0011162	*	130	*	13 *
*	2683	*	1	*		*	0.4084821	*		*	22 *
*	2683	*	2	*		*	0.4066747	*		*	11 *
Type	<cr> t</cr>	to	continue	10	g to quit	=	==>				and the second
*	2683	*	3	*		*	0.2395342	*		*	22 *
*	2683	*	4	*		*	0.1500151	*		*	22 *
*	2683	*	5	*		*	0.0132165	*		*	11 *
*	2683	*	6	*		*	0.1367986	*		*	-11 *
*	2683	*	7	*		*	0.0060356	*		*	11 *
*	2683	*	8	*		*	0.2334985	*	1	*	-11 *
*	12055	*	Θ	*	4.5510788	*	5.0011162	*	13	*	13 *
*	12055	*	1	*	0.4688858	*	0.4463900	*	13	*	11 *
*	12055	*	2	*		*	0.2222753	*		*	22 *
*	12055	*	3	*		*	0.1421084	*		*	2 11 *
*	12055	*	4	*		*	0.0801668	*		*	² -11 *

Performance for Single μ -

- Reconstruction Efficiency.
- \circ $\Delta R < 0.04$, $\Delta E/E < 0.03$, PFO with correct ID.

DataPoint	1GeV	5GeV	20GeV	100GeV
Efficiency	92.91%	97.14%	96.52%	95.46%

- Energy Resolution
- $\circ \Delta E = E(PFO) E(Truth Particle).$
- \circ Resolution = $\Delta E/E$ (Use TwoSidedCB to fit the $\Delta E/E$).
- \circ Show a good performance on μ reconstruction.
- Resolution rises at high energy region.

We are generating single photon samples for further research.