Testing Higgs *CP* properties at the CEPC with an additional ISR correction parameter

Egor Vasenin, 2025 September, 29th, IHEP Supervisor: Dr Alexey Drutskoy

Outline

- 1. Motivation
- 2. Theoretical framework
- 3. CEPC description
- 4. Experimental procedures
- 5. Results
- 6. Plans

Motivation

- The Higgs boson is predicted to be a scalar particle ($J^{CP}=0^{++}$) under the SM of particle physics. As a result, any observation of charge-parity violation (CPV) in Higgs would be a sign of physics BSM and could account for the explanation of the observed baryon asymmetry of the universe.
- The hypothesis of pure spin-1 or pure spin-2 Higgs has been excluded by ATLAS and CMS at 99% CL
- Their results show exclusion of the pure CP-odd scalar structure of the top quark Yukawa ($t\bar{t}H$) coupling at 3.9 σ (3.2 σ) and the fractional contribution of the CP-odd component is measured to be $f_{CP}^{H\bar{t}t}=0.00\pm0.33$.
- However, small anomalous contributions were not excluded!

Theoretical framework

We study HZZ vertex in $e^+e^- \rightarrow HZ$ process. It is sensitive to CP-properties as Z bosons are vector particles

Higgs Characterization model:

$$H = \cos \psi_{CP} \cdot |0^{+}\rangle + \sin \psi_{CP} \cdot |0^{-}\rangle$$

$$\mathcal{L}^{V} = \cos \psi_{CP} \cdot \kappa_{SM} \frac{g_{HZZ}}{2} Z_{\mu} Z^{\mu} - \sin \psi_{CP} \cdot \frac{1}{4\Lambda} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

Theoretical framework

$$\mathcal{L}^{V} = \cos \psi_{CP} \cdot \kappa_{SM} \frac{g_{HZZ}}{2} Z_{\mu} Z^{\mu} - \sin \psi_{CP} \cdot \frac{1}{4\Lambda} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$$

If we fix the total cross section of the $e^+e^- \to HZ$ process at $\sqrt{s}=240$ GeV, then $\frac{\kappa_{AZZ}}{\Lambda}$ is fixed and ψ_{CP} is the only degree of freedom

Another approaches, EFT:

$$\mathcal{L}^{V} = c_{ZZ}HZ_{\mu}Z^{\mu} + c_{Z\tilde{Z}}HZ_{\mu\nu}\tilde{Z}^{\mu\nu}$$

or
$$\mathcal{L}_{CPV} = \frac{H}{v} \left(\tilde{c}_{ZZ} \frac{g_1^2 + g_2^2}{4} Z_{\mu\nu} Z^{\mu\nu} \right)$$

$$\psi_{CP} \approx \tan \psi_{CP} = -0.31 \cdot \tilde{c}_{ZZ}$$

Previous works

- IHEP: arXiv:2203.11707 1σ upper limits on \tilde{c}_{ZZ} = [-0.08,0.07]
- ECFA: arXiv:2506.15390 constraint on f_{CP}^{HZZ} $f_{CP}^{HZZ}=\pm 4.3\times 10^{-5} \rightarrow \tilde{c}_{ZZ}\approx 0.02$
- ATLAS: $f_4 = 0.15 \rightarrow \tilde{c}_{ZZ} \approx 1.24$

These constraints can be upgraded with our method

Software

- WHIZARD v3.1 with Higgs Characterization UFO model is used for event generation. ISR effects are taken into account in WHIZARD
- PYTHIA6 performs hadronization
- DELPHES with CEPC card is used for detector fast simulation

Samples with different $\tilde{c}_{Z\!Z}$ from 0 to 1 are generated with $\sqrt{s}=240$ GeV and statistics of 5.6 ab⁻¹

Reconstruction, angular distributions

- We choose $Z \to \mu^+ \mu^-$, $H \to \text{incl}$ channel for analysis. Z boson is reconstructed from 2 muons, Higgs boson is not reconstructed in this analysis.
- Three angular distributions $\theta_1, \theta_2, \varphi$ are used for analysis

Method

Angular distributions: red line -0^+ , blue line -0^- , green line -50/50

Angular distributions

Blue line corresponds to pure 0^+ state, points correspond to $\tilde{c}_{ZZ}=1.2$

Experimental proceduresISR energy shift

- ISR energy shift is defined as $\Delta=240-\sqrt{s}$, where \sqrt{s} is event total energy
- As Higgs boson is not reconstructed, event energy is calculated in approximation of $\sum \vec{p} = 0$, then $E(H) = \sqrt{p(H)^2 + M_H^2} = \sqrt{p(Z)^2 + M_H^2} \text{ and } \sqrt{s} = E(H) + E(Z)$
- $M(\mu^+\mu^-) > 88$ cut is required to suppress FSR effects

Event energy resolution

- Pictures show 2D histogram of reconstructed event energy vs true energy taken from MC generator collection
- Top picture shows resolution without $M(\mu^+\mu^-) > 88$ cut
- Bottom picture shows resolution with cut (suppressed FSR effects)

Cross section dependence

Total cross section from \sqrt{s} form depends on Higgs CP-properties

$$e^+e^- \rightarrow Z' \rightarrow HZ$$

$$1^- \to 0^+ 1^- \text{ or } 1^- \to 0^- 1^- \text{ (p-wave)}$$

ISR energy shift distributions are proportional to cross section, therefore are sensitive to CP state of Higgs boson

ISR energy shift distributions

Blue line corresponds to pure 0^+ state, dots correspond to $\tilde{c}_{ZZ}=1.2$,

Likelihood approach

 Previous analyses used angular likelihood approach to calculate significance

• However, in events with large ISR energy shift $\Delta > 15$ angular distribution flattens

Likelihood approach

- We construct likelihood function from two $L_{\rm angular}$ and $L_{\rm ISR}$ so the total likelihood $L=L_{\rm angular}\times L_{\rm ISR}$
- . $L_{
 m angular}=\prod_{i,j,k}{
 m Poiss}(\mu_{ijk}\,|\,N_{ijk})$, where i,j,k are bins in 3D histogram for $\varphi,\cos\theta_1,\cos\theta_2$ for $\Delta>15~{\rm GeV}$
- $L_{\rm ISR} = {\rm Poiss}(\mu\,|\,N)$, where μ and N are just number of events for $\Delta > 15$
- μ is obtained by generating x100 events and scaling

Results

- This plot shows signal significance as a function of CPodd Higgs admixture value
- From pure angular analysis we obtain 1σ upper limit on $\tilde{c}_{ZZ}=0.087$
- ISR method improves upper limit to $\tilde{c}_{Z\!Z}=0.72$ which is 20% better

Plans

- Generate background processes samples
- Optimize cuts to suppress background processes
- Calculate upper limits on $\tilde{c}_{Z\!Z}$ for CEPC