

Measurements of decay branching fractions of the Higgs boson to hadronic final states at the CEPC

¹Yanping Huang, ¹Xiaotian Ma, ^{1,2}Zuofei Wu, ¹Shuo Han ¹Institute of High Energy Physics ²Nanjing University

Status

- To evaluate sensitivity of Higgs hadronic decay BR in jet-level (JOI) and compare with our previous result in event-level
 - Measurements of decay branching fractions of the Higgs boson to hadronic final states at the CEPC with luminosity of 21.6 ab⁻¹
 - Using $Z(\mu\mu)$ H signal samples and two-fermion and four-fermion background samples
 - Compare sensitivity of BR of $H \rightarrow b\bar{b}/c\bar{c}/gg/s\bar{s}$

Event selection (I)

- At least two muons with opposite charge. (muon ID @ BEST WP and E > 10 GeV)
 - \triangleright Choose the muon pair closest to the Z boson mass.
- $|\cos\theta_{\mu^+\mu^-}| < 0.996$: to further reduce the two-fermion backgrounds.
- $N_{\rm charged} > 7$: to reduce the backgrounds.
- $M_{\mu\mu}$ in Z-mass window [75 GeV, 105 GeV].
- $M_{\mu\mu}^{\text{recoil}} \text{ in } H\text{-mass window [120 GeV, 140 GeV]}. \quad M_{\mu\mu}^{\text{recoil}} = \sqrt{(\sqrt{s} E_{\mu^+} E_{\mu^-})^2 (\overrightarrow{P_{\mu^+}} + \overrightarrow{P_{\mu^-}})^2}$

The cutflow selection efficiency

Process	$b\overline{b}$	$c\overline{c}$	gg	WW*	ZZ*	ss	$(ZZ)_{sl}$
Muon pair	96.9%	96.7%	96.7%	96.7%	96.7%	96.6%	21.1%
Isolation	90.3%	90.3%	90.5%	90.4%	90.7%	90.5%	19.7%
$ \cos\theta_{\mu\mu} < 0.996$	90.0%	90.0%	90.2%	90.1%	90.4%	90.1%	3.0%
$N_{\rm tracks} > 7$	90.0%	90.0%	90.2%	90.1%	90.4%	90.1%	3.0%
Z mass window	86.4%	86.4%	86.5%	86.4%	86.7%	86.5%	1.4%
H mass window	82.4%	82.3%	82.5%	82.4%	82.8%	82.4%	0.7%

Event selection (II)

- Require 2 jets to have the same flavor. (JOI @ BEST WP)
 - \triangleright After removing two muons from Z, use eek_t algorithm to reconstruct 2 jets
- \rightarrow $H \rightarrow b\overline{b}$ selection:

Process	$H \rightarrow b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\overline{s}$	$(ZZ)_{sl}$
Rel. Eff.	87.2%	0.1%	0.8%	17.9%	0.0%	0.0%	17.0%

 \rightarrow $H \rightarrow c\overline{c}$ selection:

Process	$H \rightarrow b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\bar{s}$	$(ZZ)_{sl}$
Rel. Eff.	0.1%	67.1%	0.8%	8.8%	4.1%	0.1%	11.9%

ightharpoonup H
ightharpoonup gg selection:

Proc	ess	$H o b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\overline{s}$	$(ZZ)_{sl}$
Rel. I	Eff.	1.3%	1.2%	40.5%	10.6%	14.1%	2.9%	1.7%

 \rightarrow $H \rightarrow s\bar{s}$ selection:

Process	$H \rightarrow b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\overline{s}$	$(ZZ)_{sl}$
Rel. Eff.	0.0%	0.2%	1.8%	3.5%	1.6%	31.7%	8.3%

Statistical uncertainty

Use toyMC method, matrix method, least square fit and gaussian fit to estimate statistical uncertainties

$$\begin{bmatrix} N_{s1} \\ N_{s2} \\ \dots \\ N_{b1} \\ N_{b2} \\ \dots \end{bmatrix} = \left(M_{\text{mig}}^T M_s \right)^{-1} \times \begin{bmatrix} n_{s1} \\ n_{s2} \\ \dots \\ n_{b1} \\ n_{b2} \\ \dots \end{bmatrix}$$

- (ToyMC method) Sampling for 40k times according to Poisson distribution (SM BRs), efficiency matrix (M_s) and Multinomial distribution (M_7) to get n_s and n_b
- ightharpoonup Minimize $\chi^2 = \sum_{i=0}^3 \frac{(Y_i \eta_i)^2}{\sigma_i^2}$ to get BRs of signals (in which $\sigma(H \to WW^*/ZZ^*)$ and $\sigma((ZZ)_{sl})$ are fixed to SM values)
- > Fit with gaussian function

Comparison of results

* Results of the measured Higgs branching fractions with relative statistical and systematic uncertainties:

1	XX 71 . 1	D . 1		•		1 1
	With	Particle 1	e Fransi	former in	i event	level

Sig	$H o b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\overline{s}$
Branching fraction	57.7%	2.91%	8.57%	2.64%	21.5%	4.4×10^{-4}
Rel. Stat. Un.	0.3%	2.2%	1.3%	7.6%	1.1%	93.5%

 \triangleright With JOI BEST WP and double jet-tagging method $(\bar{q}\bar{q}/qq/q\bar{q}/gg)$

Sig	$H \rightarrow b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\overline{s}$
Branching fraction	57.7%	2.91%	8.57%	/	/	4.4×10^{-4}
Rel. Stat. Un.	0.3%	4.5%	2.1%	/	/	471.7%

 \triangleright With JOI BEST WP and single jet-tagging method $(q/\bar{q}/g)$ for jet with max p_T)

Sig	$H \rightarrow b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\overline{s}$
Branching fraction	57.7%	2.91%	8.57%	/	/	4.4×10^{-4}
Rel. Stat. Un.	0.3%	5.1%	2.3%	/	/	452.8%

Back up

$$Eff. = \frac{S}{N_{truth}}$$

$$purity = \frac{S}{S + B}$$

$$Rel.Stat.Un. = \frac{\sqrt{S + B}}{S} = \frac{1}{\sqrt{Eff. \times purity \times N_{truth}}}$$
 with purity un. = 0.39%

```
with purity un. = 0.39% with purity un. = 2.25% with purity un. = 1.29% with purity un. = 7.15% with purity un. = 1.12% with purity un. = 88.83%
```

with purity un. = 0.45% with purity un. = 4.77% with purity un. = 2.18% with purity un. = 497.49% with purity un. = 0.44% with purity un. = 5.36% with purity un. = 2.25% with purity un. = 468.50%

- eff*purity estimations compatible with our ToyMC method
 - Not consider correlations
 - ParT vs JOI double/single tagged

	Process	$H \rightarrow b\overline{b}$	$H \rightarrow c\overline{c}$	$H \rightarrow gg$	$H \rightarrow ZZ^*$	$H \rightarrow WW^*$	$H \rightarrow s\overline{s}$	$(ZZ)_{sl}$
	Theo. N	84376	4255	12532	1887	14287	64	12020184
	Simu. N	495000	494500	371500	497250	497000	494250	11801264
· /5	^				:1			

2025/9/29

maxt@ihep.ac.cn

ParT event level

The migration matrix

The purity matrix

JOI jet level – double tagged

The migration matrix

The purity matrix

Maybe add JOI score as a training variable, and that should improve our results

JOI jet level – single tagged

The migration matrix

The purity matrix

Maybe add JOI score as a training variable, and that should improve our results