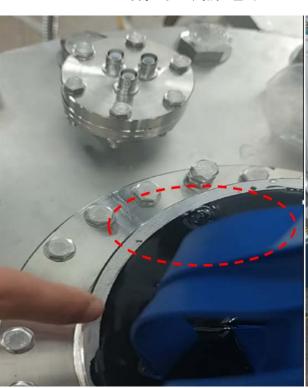


应用于反应堆中微子TPC探测器 研究进展

祁辉荣

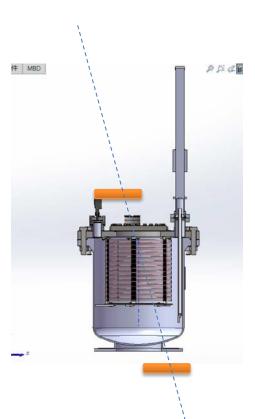

文其林, 管宇铎, 佘信, 侯少静, 徐美杭, 丁雪峰, 郭聪, 姚海峰 2025, 10, 24 IHEP

• 项目进展

- 探测器测试中的问题
- 探测器测试进展

测试进展1 - 探测器腔体真空抽取发现胶封漏点处理

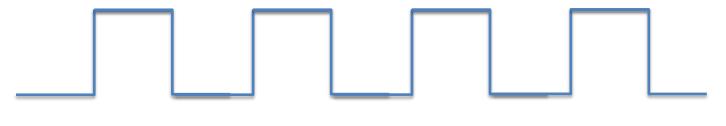
- 探测器腔体真空抽取
 - 发现真空无法进入到 ^-1 Pa
 - 水封检查发现多处胶封漏点(细细的裂纹)
 - 重新清楚边缘的密封胶,可能问题是不锈钢的内圈需要"打毛"处理,增加粘结区域
 - 已重新密封,准备抽取真空
 - 新的传输电缆已经开始制作

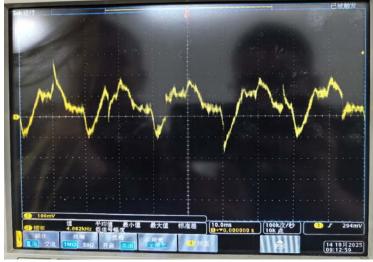


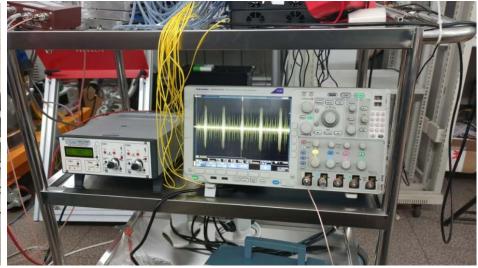
Huirong Oi

测试进展2 - 探测器连接地线带电问题

- 探测器连接地线问题
 - 独立地线来自于3号厅实验外墙埋入地下的一个地线
 - 该地线与探测器、电子学外壳、NIM机箱地(来自市电),二者之间有110V的压差
 - 原因:可能三号厅大厅某处或几处,火线和零线混接的缘故(不影响使用,但与独立地线有压差)




Huirong Qi


测试进展3 - 探测器噪声来源

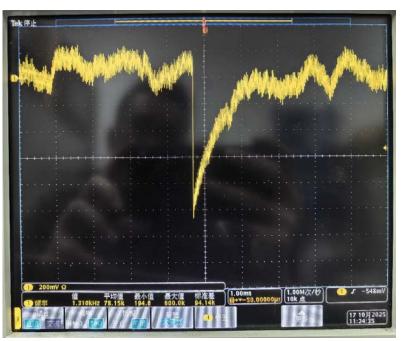
- 探测器信号噪声来源测试 (物资楼实验室电线相对要好很多,单独做的地线)
 - 单独采用脉冲产生器 + 142AH 电荷灵敏前置放大器 + 不同高压连接进行测试 + 断开独立电源地线
 - 情况1- 无任何高压, 仅142AH + 脉冲产生器方波信号: 噪声影响很小
 - 情况2-加载探测器高压,仅142AH + 脉冲产生器方波信号: 噪声影响出现,最大噪声,峰峰值300mV
 - 情况3-加载探测器高压 + 场笼高压,仅142AH + 脉冲产生器方波信号: 噪声影响很大, 40Hz周期噪声

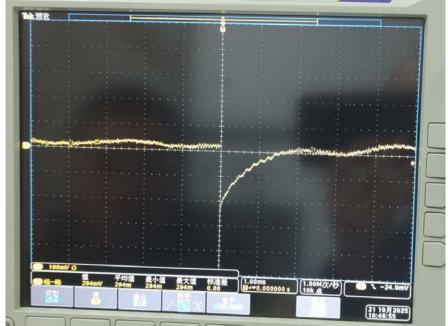
情况1 情况2 情况3

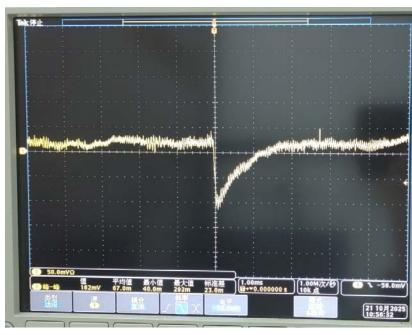
Huirong Qi

测试进展4 - 探测器噪声来源

- 探测器信号噪声来源测试(郭聪已经开始调研10万伏以上的高压)
 - 更换CAEN的高压电源,噪声水平与情况2类似,主要仍然是来自于地线噪声
 - 只能加载到6kV的高压@1mA
 - ISEG的高压、Spellman的高压,Glassman的高压纹波非常小 5mV@pp, CAEN的高压稍大 10mV@pp
 - PandaX实验组,采用的是Glassman 高压
 - CEPC TPC实验中采用的是 ISEG高压

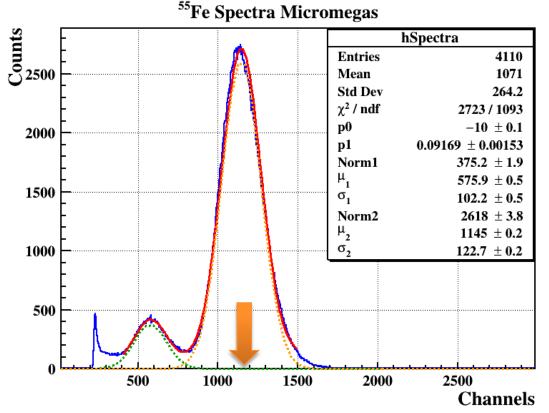





Huirong Oi

测试进展5 - 物资楼109实验室并行测试进展

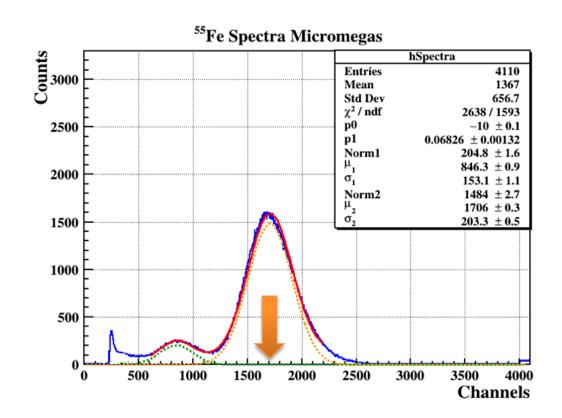
- Micromegas探测器并行测试
 - 利用通好工作气体(T2K)的平板探测器
 - 漂移距离仅14mm,漂移电压600V,采用Fe-55放射源(1mCi)
 - Mesh网通过142加载高压测试信号
 - 噪声水平峰峰 $220 \text{mV} \rightarrow$ 噪声水平峰峰20 mV (读出条悬空 \rightarrow 读出条铜带连接接地),显著降噪
 - 分别测量了T2K气体,以及CF4气体的探测器信号


噪声峰峰值220mV + T2K气体 + 输出信号

噪声峰峰值20mV + T2K气体 + 输出信号

噪声峰峰值20mV + CF4气体 + 输出信号

测试进展6 – 并行实验测量平板Micromegas测量Fe-55能谱


- Micromegas探测器并行测试
 - 漂移距离仅14mm,采用Fe-55放射源(1mCi)
 - Mesh网通过142加载高压测试信号
 - 噪声水平峰峰20mV, T2K工作气体, Fe-55放射源 + 1mm直径准直孔, 准直厚度9mm铝板
 - Mesh测量的能谱,清晰的单逃逸峰与全能峰(这是Fe-55放射源在100mm×100mm Mesh上测量)

Mesh电压 + 430V + 噪声峰峰值20mV + T2K气体 + Fe-55放射源+ 输出能谱

测试进展7 – 并行实验测量平板Micromegas测量Fe-55能谱

- Micromegas探测器并行测试
 - 漂移距离仅14mm, 采用Fe-55放射源(1mCi)
 - Mesh网通过142加载高压测试信号
 - 改变不同Mesh高压,增益线性变化,Fe-55能谱也线性移动

⁵⁵Fe Spectra Micromegas hSpectra 4110 Entries Mean Std Dev χ^2 / ndf 2517 / 2343 -10 ± 0.1 1500 0.03782 ± 0.00054 թ1 Norm1 134.1 ± 1.0 1166 ± 1.4 σ_{i} 219 ± 1.6 Norm2 921.1 ± 1.7 1000 2385 ± 0.5 σ_2 318.4 ± 0.8 500 500 1500 2500 3000 3500 4000 1000 2000 Channels

Mesh电压 + 435V + 输出能谱

Mesh电压 + 440V + 输出能谱

Many thanks!