

TDAQ Progress of CEPC Detector ref-TDR

Fei Li
On behalf of CEPC TDAQ Group

Update After Review

- Comments just before review day and TDR v0.7.3
 - Change safety factor
 - Updated trigger simulation and efficiency
 - Updated trigger rate and data rate
 - Remove the W, tt and high lumi Z modes for all the tables.
 - Text
- Comments after TDR v0.7.3.
 - Changed from pseudorapidity to polar angle as Robert's suggestion
 - Text modification according to auto check script by Joao
- A document for all comments and answer
 - https://docs.qq.com/doc/DSXJIaWticnJsUG95?u=81439efebae44e4a935b b1aeaa2110f7

Simulation of Beam Background

Figure 12.6: Energy distribution of the most energetic supercell, E_{max} , of beam background, $e^+e^- \to Z(\nu\bar{\nu})H(\gamma\gamma)$ and $e^+e^- \to Z(\nu\bar{\nu})H(b\bar{b})$ in (a) ECAL Barrel, (b) HCAL Barrel, (c) ECAL Endcap and (d) HCAL Endcap region.

Safety factor 2

Trigger and Data Rate

Table 12.10: Expected L1 trigger rate for the baseline threshold for the Higgs mode for 50 MW and at the *Z* mode for 12.1 MW. Samples are simulated with CEPCSW. Electronic noise is not added. Pile up event is not added.

Higgs mode	Efficiency(%)	Z mode	Efficiency(%)
Higgs Boson production	>99.9	$qar{q}$	>99.9
$qar{q}$	>99.9	$\mu^+\mu^-$	>99.9
$\mu^+\mu^-$	99.8	$ au^+ au^-$	>99.9
$ au^+ au^-$	99.6	Bhabha	>99.9
Bhabha	99.9		
Di-photon processes Di-photon event rate 9.1 kHz	Efficiency(%) 40.3	Di-photon processes Di-photon event rate Low Lumi: 18.5 kHz	Efficiency(%) 42.9
Beam Background Background event rate 11.4 kHz	Veto efficiency(%) 99.2	Beam Background Background event rate Low Lumi: 90.0 kHz	Veto efficiency(%) 99.3
Total 20.6 kHz		Total Low Lumi: 118.9 kHz	

Running mode SR power	Higgs 50 MW	<i>Z</i> 12.1 MW
Non-empty bunch crossing rate (MHz)	1.34	12
Luminosity $(10^{34}/\text{cm}^2/\text{s})$	8.3	26
Physical event rate (kHz)	0.5	10
L1 triger rate (kHz)	20	120
DAQ readout rate (Gbyte/s)	5.34	11.9
HLT rate (kHz)	1	20
Raw event size (kbyte)	405	333
DAQ storage rate (Gbyte/s)	0.405	6.66