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Some facts about quantum chaos

Chaotic phenomena are ubiquitous in nature. While much has been learned about chaos at
a classical level, its characterizations and manifestations at a quantum level are far less
understood, especially in many-body systems.

One key question: how to characterize chaos at quantum level without clear definition of
moving orbits in the phase space?

One possible way is to study so-called out-of-time ordered correlation functions (OTOC) !

If V and W are two generic few-body operators, one can define the following quantity:

C(t) = −
〈
[V (t),W (0)]2

〉
= C1(t)− C2(t)

C1(t) = ⟨V (t)W (0)W (0)V (t)⟩+ ⟨W (0)V (t)V (t)W (0)⟩
C2(t) = ⟨V (t)W (0)V (t)W (0)⟩+ ⟨W (0)V (t)W (0)V (t)⟩

(1)

C1(t) =⇒ time ordered correlation C2(t) =⇒ out-of-time ordered correlation



Typical behavior of OTOC

Physically one can interpret the typical behavior of OTOC as due to scrambling.

• t ≲ tr: C(t) ∼ 1
N

• tr ≪ t ≪ ts: C(t) ∼ 1
N eλt

• t ≫ ts: C(t) = const.

tr: relaxation time ts: scrambling time N : total number of degrees of the system

The exponent λ is the so-called Lyapunov exponent and has been shown to be bounded in a
generic system JHEP 08 (2016) 106 :

λ ≤ λmax =
2πkB
β0ℏ

(2)

The system which saturates this upper bound will be referred to maximal chaos.



Further comments on OTOC

• When separate two operators also spatially, the exponential growth can be generalized
to

C(t, x⃗) ≡ −
〈
[V (t, x⃗),W (0)]2

〉
∼ 1

N
e
λ
(
t− |x⃗|

vB

)
, (3)

vB is often referred to as the butterfly velocity, characterizing the scrambling of an
operator in space.

• Typical calculation of OTOC can be achieved by using following contour (4-point case):

In reality, performing calculations using this kind of contour is quite complicated.



Possible hydrodynamical description of quantum chaos

In this work, two fundamental proposals have been emphasized:

• To leading order in the limit
N → ∞, a coarse-grained
description is allowed in which the
growth of the operator can be
understood as building up a “cloud”
of some effective field σ.

• The chaotic behavior of OTOCs can
be understood from exchanging and
propagation of σ. The only
difference between time ordered and
out-of time-ordered configurations is
in the effective vertex.

There have been various hints for such an effective description (For example, in PRL
117(2016)111601, the Schwarzian is considered as the EFT for a hydrodynamic mode) .
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Basic ideas of EFT construction

Consider a quantum many-body system in a “liquid” phase for which the only gapless
degrees of freedom are those associated with conserved quantities. The effective theory for
these low energy degrees of freedom is hydrodynamics.

This kind of hydrodynamics action is formulated as an effective theory for a general
statistical system in some state ρ0 defined on the closed time path (CTP), which can be
shown in the following:

The effective action defined on such CTP can naturally contain dissipation effects.



Effective actions on CTP

With appropriate external sources introduced, the generating functional defined on CTP can
be directly written as

Z [ϕ1i, ϕ2i] ≡ eW [ϕ1i,ϕ2i] = Tr

[
ρ0P exp

(
i

∫
dt (O1i(t)ϕ1i(t)−O2i(t)ϕ2i(t))

)]
(4)

Typically, generating functional W [ϕ1i, ϕ2i] can not be written as a local functional of
external sources. The non-locality can be interpreted as coming from integrating out certain
gapless modes, which are identified with the desired hydrodynamic modes. Thus, in order to
obtain a local action we need to un-integrate such gapless modes. Due to this, the effective
action IEFT can be defined as

eW [ϕ1,ϕ2] =

∫
Dφ1Dφ2 eiIEFT[ϕ1,ϕ2; φ1,φ2] (5)

φ1,2 can be identified as the desired hydrodynamical modes associated with conserved
currents or energy-momentum tensor.



Fluid on the CTP

When discussing fluid with energy-momentum tensor, one interesting picture can be given as
follows:

σA = (σ0, σi):
• σi =⇒ labels fluid

elements
• σ0 =⇒ “internal clock”

carried by each fluid
element

Based on this picture, the hydrodynamical degrees of freedom are given by Xµ
1,2(σ

A), which
describe motions of fluid elements along two segments of the CTP contour.



Hydrodynamical variables on the CTP

Due to the picture discussed before, the proper time square of the motion is given by

−dℓ2s = gsµν
∂Xµ

s

∂σ0

∂Xν
s

∂σ0

(
dσ0
)2 (6)

Thus, the fluid velocity can be given by

uµ
s (σ) =

δXµ
s

δℓs
=

1

bs

∂Xµ
s

∂σ0
, bs =

√
−∂Xµ

s

∂σ0
gsµν

∂Xν
s

∂σ0
, gsµνu

µ
su

ν
s = −1 (7)

Also, when the fluid is charged, the corresponding chemical potential can be written as

µs(σ) = uµ
s (σ)Asµ (Xs(σ)) +

1

bs
∂0φs(σ), (8)

where φs(σ) is the hydrodynamical degree of freedom corresponding to conserved currents.



Symmetry principles

Symmetry is the only guiding principle of EFT construction.

Symmetries from SK contour:
• A Z2 reflection symmetry:

I∗hydro [h1, h2, β] = −Ihydro [h2, h1, β]

• Normalization condition:

Ihydro [h1 = h2, β] = 0

• Well-defined path integral:

Im Ihydro ≥ 0

Symmetries from fluid manifold:
• Reparameterizations of spatial

manifolds of σA:

σi → σ′i (σi
)
, σ0 → σ0

• Time-diffeomorphisms of σ0:

σ0 → σ′0 = f
(
σ0, σi

)
, σi → σi

• Possible diagonal transformation for
charged normal fluid.

Also, for thermal density matrix ρ ∼ e−βH , KMS conditions are also needed.
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System with only energy conservation

To simplify, this work consider a system with only energy conservation, in which case one set

Xi
1,2

(
σ0, σi

)
= σi =⇒ σi = xi (9)

In this particular case, the remaining dynamical variables are then X0
1,2(σ

0, xi) and inverse
temperature β(σ0, xi).

The equation of motion of X0
1,2 equivalent to energy conservations. For notational simplicity,

superscripts 0 will be dropped. In this case, the following external metric components can
be written as

ds2 = gµνdx
µdxν = −e2

(
dt− widx

i
)2

+
(
dxi
)2

, g00 = −e2, g0i = e2wi (10)

with induced metric in the fluid spacetime

ds2 = hABdσ
AdσB = −E2

(
dσ − vidx

i
)2

+
(
dxi
)2

E = e∂σX, vi =
1

∂σX
(wi − ∂iX)

(11)



Energy-momentum tensor and effective action

The stress tensor of the full system can be computed using the variation of IEFT:

E = −T̂ 0
0 = − 1√

−g

(
e
δIEFT

δe
− wi

δIEFT

δwi

)
, J i = −T̂ i

0 =
1√
−g

δIEFT

δwi
, (12)

with E energy density and J i energy flux.

All the formalism discussed before is based on fluid manifold. In some cases, writing the
action directly in physical spacetime is helpful.

Introducing X = 1
2 (X1 +X2) and Xa = X1 −X2, where X can be interpreted as describing

physical motions while Xa quantum statistical noises. To write the action in physical
spacetime one identify X = t and then invert X(σ, xi) to obtain σ(t, xi). Thus, in physical
spacetime the most general Lagrangian can be written as

LEFT [σ,Xa] = −H∂tXa −Gi∂iXa +
i

2
M1 (∂tXa)

2
+

i

2
M2 (∂iXa)

2
+O

(
a3
)
. (13)



Further comments on effective action LEFT

All the expansion coefficients in the LEFT (H, Gi, · · · ) are the functional of field σ(t, xi).

The dependence on σ of H, Gi is only through the local inverse temperature β

β =
β0

∂tσ
(14)

and its derivative, e.g.
H = H

(
β, ∂tβ, ∂

2
i β, . . .

)
(15)

The quantities H and Gi are respectively the dynamical part of the energy density and
energy flux

Er = H + · · · , J i
r = Gi + · · · (16)

The equations of motions that follow from LEFT then reduce to energy conservation

∂tH + ∂iGi = 0, Xa = 0 (17)



Near-equilibrium expansion

The equilibrium configuration is always the solution of energy conservation

σ = t, β = β0, Xa = 0 (18)

Expanding around such configuration one has

σ = t+ ϵ
(
t, xi

)
, β = β0 + δβ, δβ = β0 (1− ∂tϵ) , Xa = −ϵa

(
t, xi

)
(19)

Thus, at linear order in δβ, one can write H and Gi as

H = f1δβ = −β0f1∂tϵ, Gi = h1∂iδβ = −β0h1∂i∂tϵ (20)

where f1 and h1 are differential operators. By doing so, the quadratic action can be written
as

Lhydro = ϵaKϵ− i

2
ϵaMϵa, K = β0

(
f1∂t + h1∂

2
i

)
∂t, M = M1∂

2
t +M2∂

2
i (21)

and EOM becomes (
f1∂t + h1∂

2
i

)
∂tϵ = 0, ϵa = 0 (22)



Shift symmetry in 0+1-dimension

Key proposal in this work: imposing certain additional symmetry on the action
gives rise to exponentially growing behavior of hydrodynamic variable σ(t, xi) !

First consider a quantum mechanical system (0+1-dimension). Introducing an auxiliary
variable u(σ(t)) through (the λ here is just Lyapunov exponent)

u = e−λσ, σ = − 1

λ
log u (23)

The shift symmetry can thus be expressed as the invariance of LEFT under

u → u+ a (24)

for arbitrary constant a. At the linearized level (perturbation near equilibrium solution),
this symmetry corresponds to the following solution

σ = t− a

λ
eλt + · · · , (25)

which one wish to propose as the origin of the chaotic behavior.



Structure of LEFT with shift symmetry

To characterize hydrodynamical theories with shift symmetry, note that for H to be
invariant under such symmetry, H should depend on u(σ) only through derivatives, i.e.

H = H
(
∂tu, ∂

2
t u, · · ·

)
(26)

Accordingly, one can expand H in derivatives (primes denote t derivatives)

H = a1
u′′

u′ +
a2
2

u′′2

u′2 + a3

(
u′′

u′

)′

+ · · · =⇒ (27)

H =

(
−a1λβ0

β
+

λ2β2
0a2

2β2

)
+

(
−a1

β
+ λβ0

a3 + a2
β2

)
β′ +

1
2a2 + a3

β2
β′2 − a3β

′′

β
(28)

Setting a1 = 0 and a3 = −a2, then H is related to Schwarzian (AdS2/SYK!)

H = −a2 Sch(u, t) = a2

(
1

2

u′′2

u′2 −
(
u′′

u′

)′
)

= a2

(
λ2β2

0

2β2
− β′2

2β2
+

β′′

β

)
(29)



General shift symmetry

More generally, the shift symmetry can be written as

u
(
t, xi

)
→ u

(
t, xi

)
+ f

(
t, xi

)
(30)

for certain class of functions f(t, xi). Suppose f satisfies a general differential equation

∂tf = κ (∂i) f, (31)

where differential operator κ(∂i) built from spatial derivatives (constant solution is always
allowed). At linearized level of perturbation around equilibrium state,

σ(t, xi) = t− f

λ
eλt =⇒ ∂tϵ = −feλt − 1

λ
κ (∂i) fe

λt ≡ λ̃ (∂i) ϵ (32)

is the solution of EOM, which exhibits the desired exponential growth.

In general, different chaotic systems can have different κ(∂i) and thus λ(∂i).



Contents

▶ Basic introduction of quantum chaos
▶ Quantum hydrodynamics and SK EFT
▶ Hydrodynamics theory for chaotic systems
▶ Correlation functions and pole skipping
▶ Summary and discussion



Near-equilibrium two-point functions in chaos EFT

The near-equilibrium two-point functions of the hydrodynamical mode σ in the chaos EFT
will clarify the implications of the various shift symmetries. The definitions are as follows

GR(x) = i ⟨ϵ(x)ϵa(0)⟩ GA(x) = i ⟨ϵa(x)ϵ(0)⟩ = GR(−x), GS(x) = ⟨ϵ(x)ϵ(0)⟩ (33)

In particular, at finite temperature, the fluctuation-dissipation relations (⇐⇒ KMS
conditions) should be satisfied

GS(x) = − i

2
coth

iβ0∂t
2

(GR(x)−GA(x)) (34)

The shortcut of calculation of the retarded Green’s function is just inverting the differential
operator K = β0

(
∂tf1 + h1∂

2
i

)
∂t in the ϵaKϵ term in effective action, with appropriate

boundary condition:

GR(x) = −
∫
C

ddk

(2π)d
e−iωt+ikix

i

K
(35)



General structure of GR in chaos EFT

Assuming the system has a general shift symmetry, then f1 and h1 in operator K can be
written in a form

f1 =
(
∂t − λ̃

(
∂2
i

))
a
(
∂t, ∂

2
i

)
, h1 =

(
∂t − λ̃

(
∂2
i

))
b
(
∂t, ∂

2
i

)
(36)

For convenience, one will denote

D
(
∂t, ∂

2
i

)
≡ −

b
(
∂t, ∂

2
i

)
a (∂t, ∂2

i )
= DE +O

(
∂t, ∂

2
i

)
(37)

The leading order term DE can be interpreted as energy diffusion constant. Thus, in
momentum space, the operator K can be written as

K = iβ0ωa(ω, k)(ω − iλ̃(k))
(
ω + iD(ω, k)k2

)
, k2 = k2i (38)

Pole structure: upper half ω-plane =⇒ ω = iλ̃, lower half ω-plane =⇒ ω + iD(ω, k)k2 = 0.



Examples of different situations

• (0+1)-dimensional systems =⇒ the exponential term comes from the pole at ω = iλ:

K = iβ0ω
2a(ω)(ω − iλ) =⇒ GR(t) = θ(t)

(
ceλt + · · ·

)
, c = − 1

β0a(iλ)λ2
(39)

• General λ̃(k) =⇒ performing the ω integral at pole ω = iλ̃:

GR = −θ(t)
1

β0

∫
dd−1k

(2π)d−1

eλ̃(k)t+ikix
i

λ̃(λ̃+ k2D(iλ̃, k2))a(iλ̃, k2)
(40)

If λ̃+ k2D(iλ̃, k2) = 0 has a solution at some −k2C < 0, then define

λ̄ = λ̃(−k2C), vB = λ̄/kC =⇒ GR = cθ(t)e
λ̄
(
t− |x⃗|

vB

)
+ · · · (41)

Butterfly velocity vB can be extracted directly from the retarded Green’s function!



Phenomenon of pole skipping

Pole skipping is the generic characteristic phenomenon in quantum chaos system. =⇒
"fingerprint" of the quantum scrambling in frequency space!

The physical definition of pole skipping:

GR(ω, k) =
A(ω, k)

B(ω, k)
=⇒ A(iλ, ikC) = 0 and B(iλ, ikC) = 0 (42)

hold at some critical imaginary momentum k = ikC .
At that particular momentum (imaginary),
the pole is in fact skipped (the black circle on
the blue line).
The importance of pole skipping is that one
can directly calculate Lyapunov exponent λ
and butterfly velocity vB , without the need to
calculate OTOCs. cf. JHEP 05 (2017) 125



Pole skipping from chaos EFT

The hydrodynamic origin of chaos predicts the phenomenon of pole-skipping in the response
functions of the energy density and flux.

In chaos EFT, two-point functions of the energy density E and flux J i can be expressed by
two-point functions of σ field:

GEE
R = β2

0f1h1∂t∂
2
i GR, GEJ i

R = −β2
0f1h1∂

2
t ∂iGR

GJ iE
R = −β2

0h1f1∂
2
t ∂iGR, GJ iJ j

R = −β2
0h

2
1∂

2
t ∂j∂iGR

(43)

By using the knowledge of GR(ω, k), one find (No exponential behavior any more!)

GEE
R (ω, k) = β0

(ω − iλ̃(k))k2b(ω, k)

ω + iD(ω, k)k2
(44)

Key lessons from GEE
R : pole skipping ⇐⇒ ω − iλ̃(k) = 0, ω + iD(ω, k)k2 = 0 =⇒ λ and vB



General structure of OTOCs in large N limit

One can expand the generic few-body operator V (t) in power series of ϵ(t) = σ(t)− t as

V (t) = V̂ (t) + L(1)[V̂ ϵ](t) +O
(
ϵ2
)

with L(1)[V̂ ϵ] =

∞∑
n,m=0

cnm∂n
t V̂ ∂m

t ϵ (45)

Higher terms in ϵ will be neglected as they give subleading corrections in 1/N .

By using such expansion, a general 4-point function can be factorized into 2-point functions
of ϵ in the leading order of large N limit:

Gi1i2i3i4 ∼ ⟨PVi1 (t1)Vi2 (t2)Wi3 (t3)Wi4 (t4)⟩ ⇒ 1 +
〈
Bi1i2

V (t1, t2)B
i3i4
W (t3, t4)

〉
(46)

With effective vertex for V̂ V̂ coupling to ϵ BV defined as (BW is similar with V → W )

Bi1i2
V =

1

gV

(
L
(1)
t1 [gV (t12)ϵi1(t1)] + L

(1)
t2 [gV (t12)ϵi2(t2)]

)
, gV (t12) ≡

〈
PV̂i1 (t1) V̂i2 (t2)

〉
(47)



Shift symmetry for effective vertex

Require the effective vertex respect the shift symmetry, then it should be invariant under
ϵi → ϵi + ceλt with c some constant. This implies that

L
(1)
t1

[
gV (t12) e

λt1
]
+ L

(1)
t2

[
gV (t12) e

λt2
]
= 0 (48)

After introducing

Feven (λ, t) =
∑

n even

fn(λ)∂
n
t gV (t), Fodd (λ, t) =

∑
n odd

fn(λ)∂
n
t gV (t) (49)

where fn =
∑

m cnmλm, then shift symmetry implies that

Feven (λ, t)

Fodd (λ, t)
= − tanh

λt

2
(50)

Key point: shift symmetry =⇒ the distinct behaviors of TOCs and OTOCs.



TOCs and OTOCs

Considering the following case (Left: TOCs, Right: OTOCs):

Contribution of the exponential mode:

G4 − 1 ∼ BW [ϵ̃ (t3) , ϵ̃ (t4)]

ϵ̃ (t3) = c12e
λt3 , ϵ̃ (t4) = c12e

λt4

c12 = c+L
(1)
t1

[
gV e

−λt1
]
+c−L

(1)
t2

[
gV e

−λt2
]
= 0

Contribution of the exponential mode:

H4−1 ∼ L
(1)
t2 L

(1)
t4

[
gV (t12) gW (t34) e

λt42
]

H4 − 1 ∼ eλ(t3+t4−t1−t2)/2 + · · ·

Exponential growth in OTOCs!
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Summary

• Quantum chaos can be effectively described by using hydrodynamic EFT and such EFT
provides a unified formalism without involving any microscopic details.

• With a shift symmetry, the hydrodynamic theory has a mode which grows exponentially
in time, and exhibits ballistic spreading with a butterfly velocity vB .

• The shift symmetry prevents correlation functions of the energy density and flux, and
TOCs of generic operators from having such exponential growth behavior.

• Correlation functions of energy-density and energy flux can be calculated by correlation
functions of hydrodynamical mode.

• Pole skipping phenomenon in the energy density and flux two point functions can be
used to extract Lyapunov exponent λ and butterfly velocity vB directly without
involving OTOCs.



Open questions

• In this paper, only system with energy conservation is considered =⇒ Can the
discussion be generalized to systems with full energy-momentum conservation, with
other conserved quantities, or with additional light modes?

• The precise scope of the applicability of such hydrodynamic description?
• Many systems considered in the previous studies are related to the maximally chaotic

system. Are maximally chaotic systems distinguished from general chaotic systems?
• How can some possible stringy effects, which may lead the Lyapunov exponent to

deviate from the maximal value, be incorporated in such hydrodynamical EFT
formalism?

• Deeper understanding of shift symmetry is needed, especially its physical origin and
nature. How can this shift symmetry be identified on the gravity side in holographic
systems?
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