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» Basic introduction of quantum chaos




Some facts about quantum chaos

Chaotic phenomena are ubiquitous in nature. While much has been learned about chaos at
a classical level, its characterizations and manifestations at a quantum level are far less
understood, especially in many-body systems.

One key question: how to characterize chaos at quantum level without clear definition of
moving orbits in the phase space?

One possible way is to study so-called out-of-time ordered correlation functions (OTOC) !

If V and W are two generic few-body operators, one can define the following quantity:

C(t) == ([V(®), W(0)]*) = C1(t) — Ca(t)
Ci(t) = (V(IOW(OWO)V(#)) + (WO)V )V ()W (0)) (1)
Co(t) = (V(OW (O)V ()W (0)) + (WO)V ()W (0)V (2))

(4 (t) = time ordered correlation  Cs(t) == out-of-time ordered correlation




Typical behavior of OTOC

Physically one can interpret the typical behavior of OTOC as due to scrambling.

o t<t: Ot)~

. o f <t ty Of) ~ e

o >ty C(t) = const.

M W
t,: relaxation time t,: scrambling time AN: total number of degrees of the system

The exponent A is the so-called Lyapunov exponent and has been shown to be bounded in a
generic system JHEP 08 (2016) 106 :
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The system which saturates this upper bound will be referred to maximal chaos.

A < )\max -

(2)




Further comments on OTOC

e When separate two operators also spatially, the exponential growth can be generalized
to

C(t.) = = (V (62, WOP) ~ 7655, ®)

vp is often referred to as the butterfly velocity, characterizing the scrambling of an
operator in space.

e Typical calculation of OTOC can be achieved by using following contour (4-point case):

;
Po 3
4

A Y ™Y

In reality, performing calculations using this kind of contour is quite complicated.



Possible hydrodynamical description of quantum chaos |

In this work, two fundamental proposals have been emphasized:

e To leading order in the limit e The chaotic behavior of OTOCs can
N — o0, a coarse-grained be understood from exchanging and
description is allowed in which the propagation of o. The only
growth of the operator can be difference between time ordered and
understood as building up a “cloud” out-of time-ordered configurations is
of some effective field o. in the effective vertex.

y 1% W w
Ve = f(P©0.0) = oy >< --------- <
v WV w
40

There have been various hints for such an effective description (For example, in PRL
117(2016)111601, the Schwarzian is considered as the EFT for a hydrodynamic mode) .
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Basic ideas of EFT construction

Consider a quantum many-body system in a “liquid” phase for which the only gapless
degrees of freedom are those associated with conserved quantities. The effective theory for
these low energy degrees of freedom is hydrodynamics.

This kind of hydrodynamics action is formulated as an effective theory for a general
statistical system in some state po defined on the closed time path (CTP), which can be
shown in the following:

U(tf’ti)

t; — —o0 tf — OC
Po ; i |
UT(tf’ti)

The effective action defined on such CTP can naturally contain dissipation effects.




Effective actions on CTP

With appropriate external sources introduced, the generating functional defined on CTP can
be directly written as

Z (b oi] = W rda] = Ty [popexp ( [atutsnt - 02i<t>¢m<t>>ﬂ (4)

Typically, generating functional Wg1;, ¢o;] can not be written as a local functional of
external sources. The non-locality can be interpreted as coming from integrating out certain
gapless modes, which are identified with the desired hydrodynamic modes. Thus, in order to
obtain a local action we need to un-integrate such gapless modes. Due to this, the effective
action Igpt can be defined as

eW[¢17¢2] _ ‘/‘D(plD%O2 eiIEFT[¢17¢2§ P1,p2] (5)

1,2 can be identified as the desired hydrodynamical modes associated with conserved
currents or energy-momentum tensor.
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Fluid on the CTP

When discussing fluid with energy-momentum tensor, one interesting picture can be given as
follows:

Physical spacetime, Fluid spacetime Physical spacetime | o A = ( 07 g 1) .

o o e o' = labels fluid
elements
e o9 — “internal clock”
carried by each fluid
’ element

Based on this picture, the hydrodynamical degrees of freedom are given by X {iQ(UA), which
describe motions of fluid elements along two segments of the CTP contour.




Hydrodynamical variables on the CTP

Due to the picture discussed before, the proper time square of the motion is given by

oXtroxY
o0 0o0

(do®)? (6)

—dgf = Ospv

Thus, the fluid velocity can be given by

SXE 1 0XK OXI  OXY ,
u?(a) = (%5 = l: 950 ) bs = \/m» gs#uugus =-1 (7)

Also, when the fluid is charged, the corresponding chemical potential can be written as

1s(0) = u(0) Ay (Xo(0)) + iaogoxa), (8)

where ¢, (o) is the hydrodynamical degree of freedom corresponding to conserved currents.

LSS




Symmetry principles

Symmetry is the only guiding principle of EFT construction.

Symmetries from SK contour: Symmetries from fluid manifold:

o A 75 reflection symmetry: e Reparameterizations of spatial
manifolds of o*:
Iivaro [P1yh2, 8] = —Inyaro [h2, ha, B] , o
o' — o (O’Z) , ol —=o”
e Normalization condition:

e Time-diffeomorphisms of oY
Ihydro [hl = h?vﬁ] =0

o’ =0 =f(c%0"), o' =
e Well-defined path integral:
e Possible diagonal transformation for

Im Ihyaro >0 charged normal fluid.

Also, for thermal density matrix p ~ e## KMS conditions are also needed.




Contents

» Hydrodynamics th for cha




System with only energy conservation

To simplify, this work consider a system with only energy conservation, in which case one set

{"2 (6% 0")=0" = o' =2 9)
In this particular case, the remaining dynamical variables are then X 82(00, 2') and inverse
temperature 3(c?, x?).

The equation of motion of X ?,2 equivalent to energy conservations. For notational simplicity,
superscripts 0 will be dropped. In this case, the following external metric components can
be written as

ds® = gudatde” = —e? (dt - widwi)2 + (daci)2 . goo = —€%,  goi = 2w, (10)
with induced metric in the fluid spacetime

ds® = hABdO'AdO'B = _F? (da — v,,;dxi)z + (da:i)2

1 (11)

E=ed,X, wvi= 9.X (w; — 0; X)




Energy-momentum tensor and effective action

The stress tensor of the full system can be computed using the variation of Igpr:

A 1 ( 0lgpT 5IEFT> i 1 8lgpr
70— e W R - :

de wi ow;

with £ energy density and J*¢ energy flux.

All the formalism discussed before is based on fluid manifold. In some cases, writing the
action directly in physical spacetime is helpful.

Introducing X = %(Xl + Xs) and X, = X; — X5, where X can be interpreted as describing
physical motions while X, quantum statistical noises. To write the action in physical
spacetime one identify X = ¢ and then invert X (o, %) to obtain o(¢,2%). Thus, in physical
spacetime the most general Lagrangian can be written as

Lepr [0, Xe] = —H8, X, — G;0; X, + %Ml (0, X.) + %MQ (3iX)°+0 (.  (13)




Further comments on effective action Lgpt

All the expansion coefficients in the Lgpr (H, G;, -+ ) are the functional of field o(t, z?).

The dependence on ¢ of H, G; is only through the local inverse temperature 3

_ o
B=30 (14)
and its derivative, e.g.
H=H(B,0:8,078,...) (15)

The quantities H and G; are respectively the dynamical part of the energy density and
energy flux _
E=H+---, j,?:Gi‘F"' (16)

The equations of motions that follow from Lgpr then reduce to energy conservation

OWH +0,G; =0, X,=0 (17)




Near-equilibrium expansion

The equilibrium configuration is always the solution of energy conservation
o=t, B=P»0, X,=0 (18)
Expanding around such configuration one has
oc=1t+¢€ (t,LL‘i) , B=pBo+p, d8=70(1—0e), X,=—¢€ (t,:L’i) (19)
Thus, at linear order in §/3, one can write H and G; as
H = f108 = —pBofi10e, Gi=h10;08 = —Boh10;0€ (20)

where fi; and h; are differential operators. By doing so, the quadratic action can be written
as

Liyaro = €aKe — %ea]V[ea, K =By (/10 + 10?) 0, M = Myd? + Myd?  (21)

and EOM becomes
(flat + hlaf) atE = 0, €q — 0 (22)




Shift symmetry in 0+41-dimension

Key proposal in this work: imposing certain additional symmetry on the action
gives rise to exponentially growing behavior of hydrodynamic variable o(t,z?) !

First consider a quantum mechanical system (0-+1-dimension). Introducing an auxiliary
variable u(o(t)) through (the A here is just Lyapunov exponent)

1
u=e 9, U:fxlogu (23)

The shift symmetry can thus be expressed as the invariance of Lgpr under
u—=u+a (24)

for arbitrary constant a. At the linearized level (perturbation near equilibrium solution),
this symmetry corresponds to the following solution
a

o=t—seM e, (25)

which one wish to propose as the origin of the chaotic behavior.




Structure of Lgpr with shift symmetry

To characterize hydrodynamical theories with shift symmetry, note that for H to be
invariant under such symmetry, H should depend on u(o) only through derivatives, i.e.

H = H (dyu,0}u, ) (26)
Accordingly, one can expand H in derivatives (primes denote ¢ derivatives)
u’ as w2 u 4
H:a1w+2u’2+a3(u’) +. = (27)
a1 \Bo )\253@) < ay agz + a2> ,  sastas _,  azf’
H=|- + + -5+ A8 p+ g - 28
( B 267 g EE 5 @

Setting a; = 0 and a3 = —ag, then H is related to Schwarzian (AdSs/SYK!)

"2 AN 232 2 "
H = —ay Sch(u,t) = ag <;Z’2 - (Z) > =as (26520 - 2552 + %) (29)




General shift symmetry

More generally, the shift symmetry can be written as
u(t,z') = u(t,2’) + f(t,2") (30)
for certain class of functions f(t,z°). Suppose f satisfies a general differential equation
Ouf = k() I, (31)

where differential operator x(9;) built from spatial derivatives (constant solution is always
allowed). At linearized level of perturbation around equilibrium state,

500 fe

o(t,x")y =t — §e>‘t = Oje = —fe — A (9;) € (32)

is the solution of EOM, which exhibits the desired exponential growth.

In general, different chaotic systems can have different x(9;) and thus A\(9;).
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Near-equilibrium two-point functions in chaos EFT

The near-equilibrium two-point functions of the hydrodynamical mode ¢ in the chaos EFT
will clarify the implications of the various shift symmetries. The definitions are as follows

Gr(z) =ile(r)ea(0))  Galz) =ilea(2)e(0)) = Gr(—x), Gs(x) = (e(x)e(0))  (33)

In particular, at finite temperature, the fluctuation-dissipation relations (<= KMS
conditions) should be satisfied

Gg(x) = —% coth o0

(Gr(z) — Ga(z)) (34)

The shortcut of calculation of the retarded Green’s function is just inverting the differential
operator K = (3, (8t fi+ hlf)f) 0y in the ¢,Ke term in effective action, with appropriate

boundary condition: v
ddk e—iwt+ik,;:1c7

G = - 35

R(@) /C @rd K (35)




General structure of Gi in chaos EFT

Assuming the system has a general shift symmetry, then f; and h; in operator K can be
written in a form

fi=(00=X(22)) a(2,02), b= (00— X(02)) b (3. 0%) (36)
For convenience, one will denote
b (0,02

The leading order term Dp can be interpreted as energy diffusion constant. Thus, in
momentum space, the operator K can be written as

K = ifowa(w, k)(w — iA(k)) (w+iD(w, k)k?), k? = k? (38)

Pole structure: upper half w-plane = w = i\, lower half w-plane = w + iD(w, k)k? = 0.




Examples of different situations

e (0-+1)-dimensional systems = the exponential term comes from the pole at w = i\:

1
e General S\(k) = performing the w integral at pole w = iA:
1 d9-1% Ak)t+ik;z®
Gr = _H(f)i/ d—1 x/~ ‘ N -~ (40)
Bo S (2m)4=1 XX + k2D(i), k2))a(i), k2)
If X + k2D(i), k?) = 0 has a solution at some —k2 < 0, then define
o _ A(-121)
A= AN—k&), vp=ANkc = Gr=cl(t)e A (41)

Butterfly velocity vp can be extracted directly from the retarded Green’s function!




Phenomenon of pole skipping

Pole skipping is the generic characteristic phenomenon in quantum chaos system. —
"fingerprint" of the quantum scrambling in frequency space!

The physical definition of pole skipping:

Alw, k)
B(w, k)

Grlw, k) = — A(i\,ikc) =0 and B(i),ikc) =0 (42)

hold at some critical imaginary momentum k = ik¢.

At that particular momentum (imaginary),
5 , the pole is in fact skipped (the black circle on
' g the blue line).
The importance of pole skipping is that one
can directly calculate Lyapunov exponent A
: and butterfly velocity vp, without the need to
R B calculate OTOCs. cf. JHEP 05 (2017) 125




Pole skipping from chaos EFT

The hydrodynamic origin of chaos predicts the phenomenon of pole-skipping in the response
functions of the energy density and flux.

In chaos EFT, two-point functions of the energy density £ and flux J* can be expressed by
two-point functions of ¢ field:

G55 = B3 frh10,02G, 657 = —B3 fih10;9,Gr

i (43)
G% ¢ = —Bim (10;0,Gr, G T = —B3hi070;0,Gr
By using the knowledge of Gr(w, k), one find (No exponential behavior any more!)
— k) k2b(w, k

w+iD(w, k)k?

Key lessons from G&°: pole skipping <= w — i\(k) = 0, w + iD(w, k)k? = 0 = X and vp




General structure of OTOCsSs in large A limit

One can expand the generic few-body operator V(¢) in power series of €(t) = o(t) — t as
V(t)=V(t)+ LOWVE({) +0 (¢®)  with LOV[Ve = Z Cam PV Oe (45)

Higher terms in € will be neglected as they give subleading corrections in 1/N.

By using such expansion, a general 4-point function can be factorized into 2-point functions
of € in the leading order of large N limit:

Girigigia ~ (PVi, (1) Vi, (t2) Wi, (t3) Wi, (ta)) = 1+ (B (t1,t2) Big™* (ts,t4))  (46)

With effective vertex for V'V coupling to € By defined as (B is similar with V' — W)

Birt = giv (LS) lgv (tr2)ei, (1)) + L8 [gv (t12)er, (m)]) , gv (tie) = <7’VM (t1) Vi, (ta )(27)




Shift symmetry for effective vertex

Require the effective vertex respect the shift symmetry, then it should be invariant under
€; — €; + ce* with ¢ some constant. This implies that

Lill) [gv (tlg) BAtl] + Lg) [gv ('[712) eM2] =0 (48)
After introducing
chcn Z fn t gV ) Fodd Z fn t gV ) (49)
n even n odd

where f, =3 camA™, then shift symmetry implies that

ovcn (/\ t) At
—— = —ta nh —
Foaa (N t) (

Key point: shift symmetry = the distinct behaviors of TOCs and OTOCs.




TOCs and OTOCs

Considering the following case (Left: TOCs, Right: OTOCs):

V(ty W(ts) _V(tlz

¥ A~ v
=
ﬁ
N

0 C v, W (ta) Po ( X
p 2/ Y 4 ov(t2)< )
W(ts)
Contribution of the exponential mode: Contribution of the exponential mode:
Gy — 1~ By [€(t3),€(t4)] Hy—1~ LE?L&) [gv (t12) gw (t34) €42

€(t3) = 5126)‘t3, €(ty) = 6126)\t4 Hy—1~ eMtatta—ti—t2)/2 4+

C12 = C+L§}) [gvefA“H&Lg) [Qvei/\tz} =0 Exponential growth in OTOCs!
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Quantum chaos can be effectively described by using hydrodynamic EFT and such EFT
provides a unified formalism without involving any microscopic details.

With a shift symmetry, the hydrodynamic theory has a mode which grows exponentially
in time, and exhibits ballistic spreading with a butterfly velocity vp.

The shift symmetry prevents correlation functions of the energy density and flux, and
TOCs of generic operators from having such exponential growth behavior.

Correlation functions of energy-density and energy flux can be calculated by correlation
functions of hydrodynamical mode.

Pole skipping phenomenon in the energy density and flux two point functions can be
used to extract Lyapunov exponent A and butterfly velocity v directly without
involving OTOCs.




Open questions

e In this paper, only system with energy conservation is considered = Can the
discussion be generalized to systems with full energy-momentum conservation, with
other conserved quantities, or with additional light modes?

e The precise scope of the applicability of such hydrodynamic description?

e Many systems considered in the previous studies are related to the maximally chaotic
system. Are maximally chaotic systems distinguished from general chaotic systems?

e How can some possible stringy effects, which may lead the Lyapunov exponent to
deviate from the maximal value, be incorporated in such hydrodynamical EFT
formalism?

e Deeper understanding of shift symmetry is needed, especially its physical origin and
nature. How can this shift symmetry be identified on the gravity side in holographic
systems?
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