

CPV in
$$\Lambda_b^0 \to pK^-\pi^+\pi^-$$

and $\Lambda_b^0 \to J/\psi p\pi^-$ decays

Xinchen Dai on behalf of the LHCb Collaboration

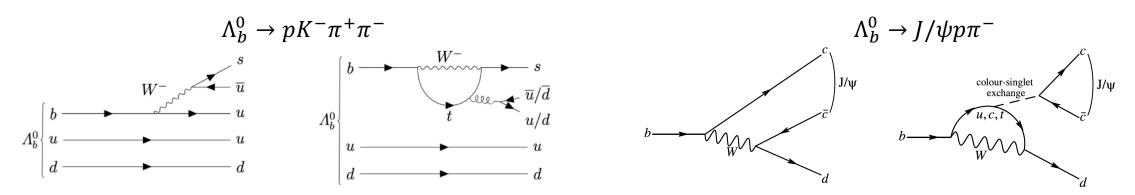
CLHCP 2025 2025年11月1日

xdai@cern.ch

Introduction

- > CPV is one of the necessary conditions for baryogenesis
- > CPV is well established in meson decays
 - > not enough to account for the baryogenesis
 - ➤ Need contribution from New Physics
- ➤ The Standard Model predicts similar CP violation in baryon and meson decays
 - ➤ Large CPV in (b-)baryons is possible
- ➤ Baryon CP violation has rarely been observed
 - ➤ Theory: Unknown underlying mechanisms?
 - > Experiment: Limited by statistics

Decays	Measurements	Data	References
$\Lambda_b^0 \to p K_s^0 \pi^-$	A_{CP}	$1 \; {\rm fb^{-1}}$	JHEP 04 (2014) 087
$\Lambda_b^0 \to \Lambda h h'$	A_{CP}	3 fb^{-1}	JHEP 05 (2016) 081
$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$	TPA energy test	3 fb ⁻¹ 6.6 fb ⁻¹	NP 13 (2017) 391 PRD 102 (2020) 051101
$\Lambda_b^0 \to p K^- \mu^+ \mu^-$	A_{CP}	3 fb^{-1}	JHEP 06 (2017) 108
$\Lambda_c^+ \to p h^- h^+$	A_{CP}	3 fb^{-1}	JHEP 03 (2018) 182
$\Lambda_b^0 \to p K^-/p \pi^-$	A_{CP}	3 fb^{-1}	PLB 787 (2018) 124
$\Lambda_b^0 \to ph^-h^+h^-$	TPA	3 fb^{-1}	JHEP 08 (2018) 039
$\Lambda_b^0 \to ph^-h^+h^-$	A_{CP}	3 fb^{-1}	EPJC 79 (2019) 745
$\Xi_b^- \to p K^- K^-$	Amplitude	5 fb^{-1}	PRD 104 (2020) 052010
$\Xi_c^+ \to p K^- \pi^+$	kNN	3 fb^{-1}	EPJC 80 (2020) 986
$\Lambda_b^0 \to p D^0 K^-$	Miranda S_{CP}^i	9 fb^{-1}	PRD104 (2021) 112008
$\Lambda_b^0 \to \Lambda \gamma$	Polarization	3 fb^{-1}	PRD105 (2022) L051104
$\Lambda_b^0 o ph^-$	A_{CP}	9 fb^{-1}	PRD111 (2025) 092004
$\Lambda_b^0 \to \Lambda_c^+ h^-$	Decay parameter	9 fb^{-1}	PRL 133 (2024) 261804
$\Lambda_b^0 \to \Lambda h h'$	A_{CP}	9 fb^{-1}	PRL 134 (2025) 101802
$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	A_{CP}	9 fb ⁻¹	Nature 643 (2025) 1223
$\Lambda_b^0 \to p K_s^0 h^-$	A_{CP}	9 fb ⁻¹	arXiv:2508.17836
$\Lambda_b^0 \to J/\psi ph$	A_{CP} , TPA	6 fb ⁻¹	arXiv:2509.16103


2025/10/20 2

Introduction

> The only source of CPV in SM is through CKM mechanism

$$\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + O(\lambda^4)$$

Interference of two amplitudes (with different strong&weak phases) generates CP violation

$$\mathcal{A}_{CP} = \frac{|A(\Lambda_b^0)|^2 - |A(\bar{\Lambda}_b^0)|^2}{|A(\Lambda_b^0)|^2 + |A(\bar{\Lambda}_b^0)|^2} = \frac{2\sin\Delta\delta\sin\Delta\phi}{|A_{\rm T}/A_{\rm L}| + |A_{\rm L}/A_{\rm T}| + 2\cos\Delta\delta\cos\Delta\phi}$$

2025/10/21 3

CP violation measurement

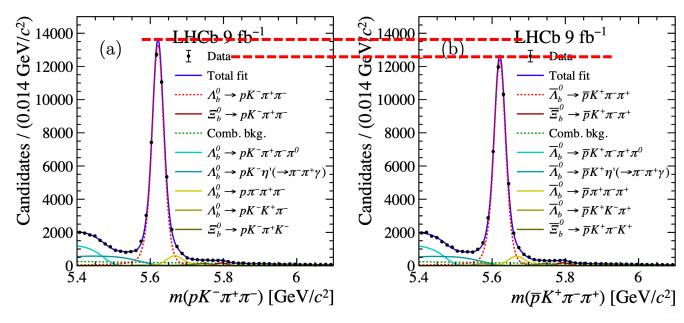
- > CP violation appears as a difference in decay rates between particles and antiparticles
- ➤ In experiment, we measure the asymmetry in event yields instead of decay widths.

$$A_{raw} = \frac{N(\Lambda_b^0 \to X) - N(\bar{\Lambda}_b^0 \to \bar{X})}{N(\Lambda_b^0 \to X) + N(\bar{\Lambda}_b^0 \to \bar{X})}$$

Nuisances asymmetries from production and detection (including PID&Trigger asym.) must be accounted

$$A_{raw} = A_{CP} + A_{prod} + A_{det}$$

➤ A control channel is introduced to cancel the leading-order nuisance asymmetries, and the CP asymmetry difference between the two modes is given by


$$\Delta A_{CP} = A_{CP}^{signal} - A_{CP}^{control} = \Delta A_{raw} - \Delta A_{prod} - \Delta A_{det}$$

CPV in $\Lambda_b^0 \to pK^-\pi^+\pi^-$

 \triangleright Full Run1+2 data (9fb⁻¹)

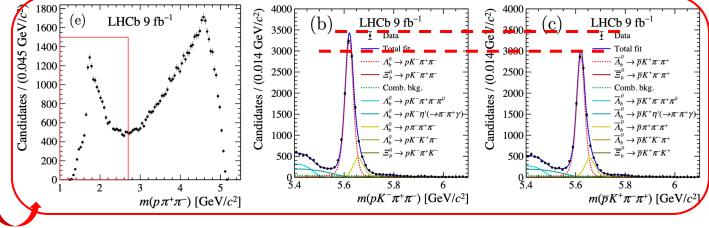
$$\Delta A_{CP} = A_{CP}^{signal} - A_{CP}^{control} = \Delta A_{raw} - \Delta A_{prod} - \Delta A_{det}$$

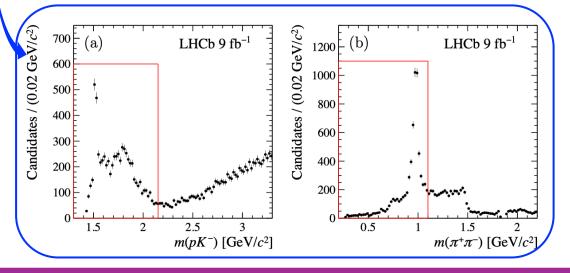
- \triangleright Signal yields are extracted from fit to $m(\Lambda_b^0)$ and $m(\overline{\Lambda}_b^0)$
- ightharpoonup Control channel $\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \pi^-$ is introduced to cancel nuisance asym.

$$A_{raw} = (3.71 \pm 0.39)\%$$

- $\triangleright \Delta A_{raw} \approx 2.46\%$
- $ho \Delta A_{prod} \approx 0$: Cancelled by reweighting Λ_b^0 kinematics of the signal to match those of control channel.
- ho $\Delta A_{det} \approx 0.01\%$: evaluated event by event according to kinematics of final-state particles.

$$A_{CP} = (2.45 \pm 0.46 \pm 0.10)\% 5.2\sigma$$

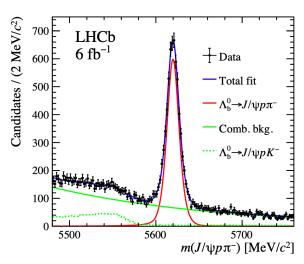

First observation!

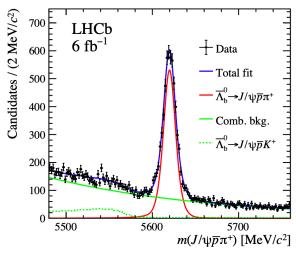

5

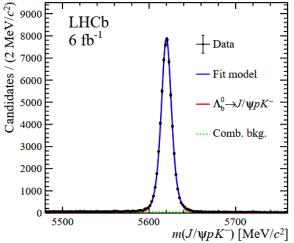
CPV in $\Lambda_b^0 \to pK^-\pi^+\pi^-$

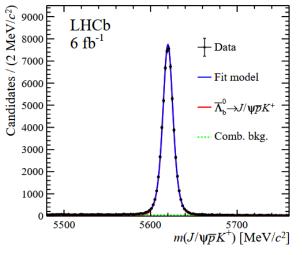
> CPV in local PHSP also investigated.

				_
Decay topology	Mass region (GeV/ c^2)	\mathcal{A}_{CP}		GeV/c²
$\Lambda_b^0 \to R(pK^-)R(\pi^+\pi^-)$	$m_{pK^-} < 2.2$	$(5.3 \pm 1.3 \pm 0.2)\%$		(0.045 C
	$m_{\pi^+\pi^-} < 1.1$	4σ		_
	$m_{p\pi^-} < 1.7$			Candidates
$\Lambda_b^0 \to R(p\pi^-)R(K^-\pi^+)$	$0.8 < m_{\pi^+ K^-} < 1.0$	$(2.7 \pm 0.8 \pm 0.1)\%$		Can
	or $1.1 < m_{\pi^+ K^-} < 1.6$		<u> </u>	
$\varLambda_b^0 \to R(p\pi^+\pi^-)K^-$	$m_{p\pi^+\pi^-}<2.7$	$(5.4 \pm 0.9 \pm 0.1)\%$	1	
$\Lambda_b^0 \to R(K^-\pi^+\pi^-)p$	$m_{K^-\pi^+\pi^-} < 2.0$	$(2.0 \pm 1.2 \pm 0.3)\%$	_ 6	σ
	$\Lambda_b^0 \to R(pK^-)R(\pi^+\pi^-)$ $\Lambda_b^0 \to R(p\pi^-)R(K^-\pi^+)$ $\Lambda_b^0 \to R(p\pi^+\pi^-)K^-$	$ \begin{split} \varLambda_b^0 \to R(pK^-)R(\pi^+\pi^-) & m_{pK^-} < 2.2 \\ m_{\pi^+\pi^-} < 1.1 \\ \\ M_b^0 \to R(p\pi^-)R(K^-\pi^+) & 0.8 < m_{\pi^+K^-} < 1.0 \\ & \text{or} & 1.1 < m_{\pi^+K^-} < 1.6 \\ \\ \varLambda_b^0 \to R(p\pi^+\pi^-)K^- & m_{p\pi^+\pi^-} < 2.7 \end{split} $	$ \begin{split} \varLambda_b^0 \to R(pK^-)R(\pi^+\pi^-) & m_{pK^-} < 2.2 \\ m_{\pi^+\pi^-} < 1.1 & 4\sigma \end{split} $	$A_b^0 \to R(pK^-)R(\pi^+\pi^-) \qquad m_{pK^-} < 2.2 \qquad (5.3 \pm 1.3 \pm 0.2)\%$ $m_{\pi^+\pi^-} < 1.1 \qquad 4\sigma$ $m_{p\pi^-} < 1.7$ $A_b^0 \to R(p\pi^-)R(K^-\pi^+) \qquad 0.8 < m_{\pi^+K^-} < 1.0 \qquad (2.7 \pm 0.8 \pm 0.1)\%$ or $1.1 < m_{\pi^+K^-} < 1.6$ $A_b^0 \to R(p\pi^+\pi^-)K^- \qquad m_{p\pi^+\pi^-} < 2.7 \qquad (5.4 \pm 0.9 \pm 0.1)\%$


- > Significant enhancement of CPV in $N^*(p\pi^+\pi^-)$ resonances
- Needed to disentangle contributions from overlapping resonances.


2025/10/24 6


CPV in $\Lambda_b^0 \to J/\psi p \pi^-$


- $\triangleright b \rightarrow ccd$ process, large penguin contribution could enhance the CPV
- ➤ Full Run2 data

Production and proton detection asym. are cancelled by reweighting the kinematics of $\Lambda_b^0 \& p$ to match those of signal

$$(10853 \pm 134)$$
 yields $A_{raw}(\Lambda_b^0 \to J/\psi p\pi^-) = (5.94 \pm 1.14) \%$

$$(125380 \pm 372)$$
 yields $A_{raw}(\Lambda_h^0 \to J/\psi p K^-) = (0.98 \pm 0.30) \%$

$$\Delta A_{CP} = (4.03 \pm 1.18 \pm 0.23)\%$$
 3.3 σ

Run 1 results:
$$\Delta A_{CP} = (5.7 \pm 2.4 \pm 1.2)\%$$

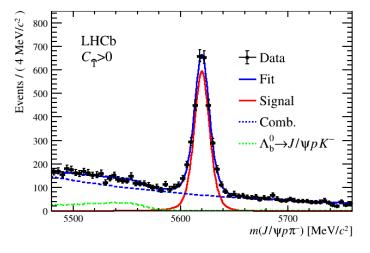
Combined with Run 1: $\Delta A_{CP} = (4.31 \pm 1.06 \pm 0.28)\%$ 3.9 σ

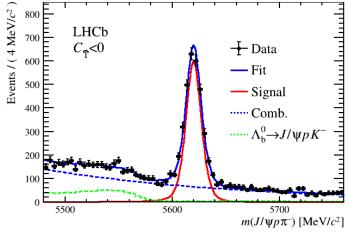
2025/10/24

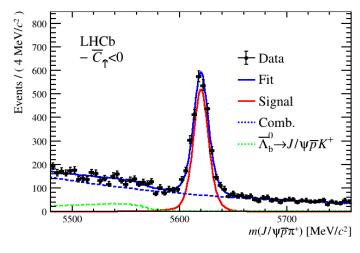
7

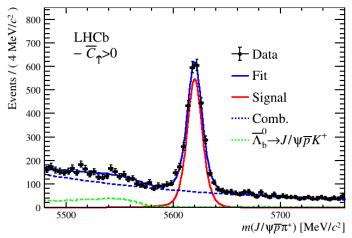
TPA in $\Lambda_b^0 \to J/\psi p \pi^-$

➤ Triple product asymmetry:

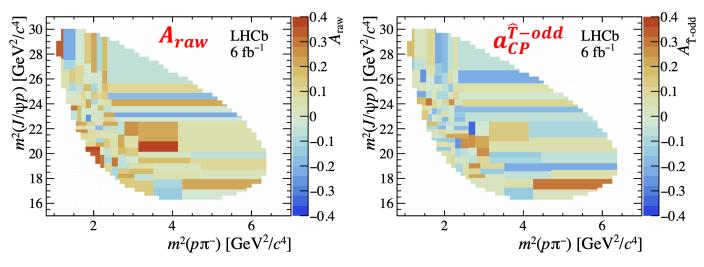

$$\triangleright \Lambda_b^0$$
: $C_T \equiv \vec{p}_{\mu^+} \cdot (\vec{p}_p \times \vec{p}_{\pi^-})$

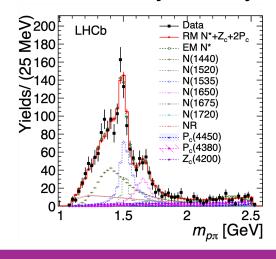

$$\triangleright \overline{\Lambda}_b^0$$
: $\bar{C}_T \equiv \vec{p}_{\mu^-} \cdot (\vec{p}_{\bar{p}} \times \vec{p}_{\pi^+})$

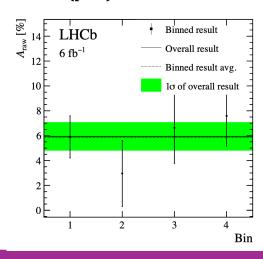

$$> A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)},$$

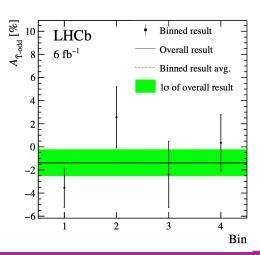

$$> a_{CP}^{\hat{T}-odd} = \frac{1}{2} (A_{\hat{T}} - \bar{A}_{\hat{T}})$$

 $a_{CP}^{\widehat{T}-odd} = (-1.37 \pm 1.15 \pm 0.21) \%$



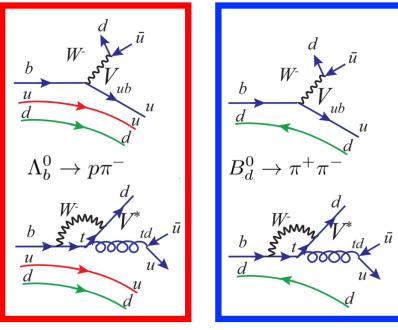

Local CPV in $\Lambda_b^0 \to J/\psi p \pi^-$


> Measurement of local CP asymmetry in 128 bins

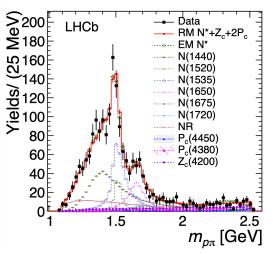


 \succ Both raw asymmetry A_{raw} and TPA $a_{CP}^{\widehat{T}-odd}$ are measured

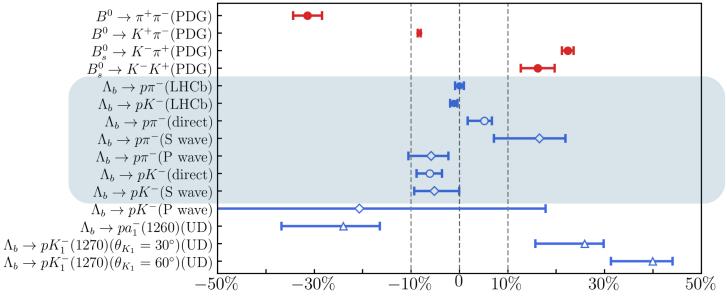
 \triangleright local CP asymmetry near $N^*(p\pi)$ resonances


No significant variation of asymmetries across the phase space

2025/10/25

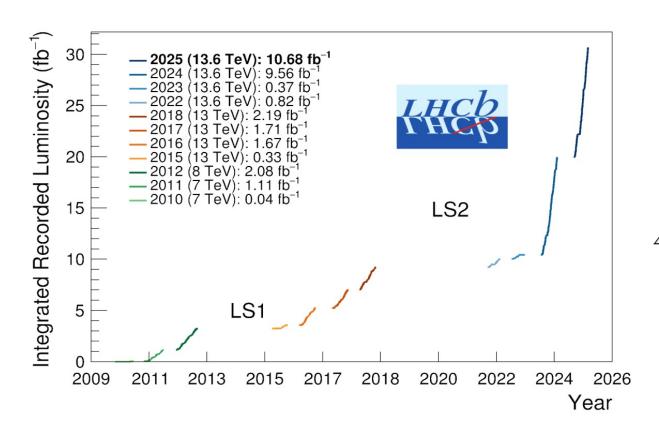

9

Why baryon CPV so small


- > Small strong phase difference
- ➤ The cancellation between different partial wave turns in small net direct CPV
- ➤ Overlap of resonances could dilute CPV

S wave only

Further measurements are essential to clarify the picture



S- and P-wave CPV are large but cancelled

S+P wave

Outlook

- ➤ Higher integrated luminosity in Run 3 (25–30 fb⁻¹)
- > Trigger efficiency for hadron final states increased by factor of 2

LHCb Run 1

$$\Delta \mathcal{A}^{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-) = (+1.1 \pm 2.5 \pm 0.6) \%$$

$$\Delta \mathcal{A}^{CP}(\Lambda_b^0 \to pK^-\pi^+\pi^-) = (+3.2 \pm 1.1 \pm 0.6) \%$$

$$\Delta \mathcal{A}^{CP}(\Lambda_b^0 \to pK^-K^+\pi^-) = (-6.9 \pm 4.9 \pm 0.8) \%$$

$$\Delta \mathcal{A}^{CP}(\Lambda_b^0 \to pK^-K^+K^-) = (+0.2 \pm 1.8 \pm 0.6) \%$$

Current statistics enable us to reduce the uncertainty to ~0.1%

Summary

> First observation of CP violation — a milestone in CPV studies

- First evidence of CP violation in b-baryon to chamonium
- ➤ With LHCb Run3 data, more precise measurement will come
 - > Search for CP violation in more baryon decays.
 - > Search for CP violation using more CP observables.

2025/10/25 12