

Observation of the decay $B_s^0 \to K^0 p \overline{p}$ and measurement of the

$$B^0_{(s)} \to K^0 p \overline{p}$$
 branching fractions

LHCb-2025-001

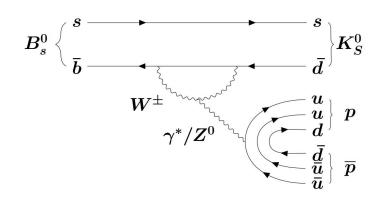
JHEP07(2025)121

Duanqing Liu CCNU

1st Nov. 2025

11th China LHC Physics Conference@Xinxiang, Henan

Outline


- 1. Motivation
- 2. Previous experimental results
- 3. Analysis strategies
- 4. Check the low-mass enhancement
- 5. Summary and outlook

Motivation

- ➤ Search for $B_s^0 \to K^0 p \overline{p}$
- \blacktriangleright Measurement of the $B^0_{(s)} \to K^0 p \overline{p}$ branching fractions
- Quark decay diagrams:
 - $B^0 \to K^0 p \overline{p}$: $b \to u$ tree and $b \to s$ penguin diagrams
 - $B_s^0 \to K^0 p \overline{p}$: $b \to u$ tree and $b \to d$ penguin diagrams
- Comparing them with theoretical predictions offers valuable insights into various theoretical frameworks
- > Investigate the low-mass enhancement in baryon-antibaryon invariant mass spectra
- > Evaluate flavour-symmetry breaking, including isospin, U-spin, and SU(3) symmetry
- > Key observables for studying CP violation in loop-dominated processes
- ➤ A key preparation for furture time-dependent Dalitz analyses

Previous results

Measurement	$\times 10^{-6}$					
ivieasurement	Belle	BaBar	PDG			
$B(B^0\to K^0p\overline{p})$	$2.51^{+0.35}_{-0.29} \pm 0.21$ (2008)	$3.0 \pm 0.5 \pm 0.3 (2007)$	2.66 ± 0.32			
$B(B_s^0 \to K^0 p \overline{p})$						
$B(B^0 \to K^0 \pi^+ \pi^-)$	<u>47.5 + 2.4 + 3.7 (2007)</u>	50.2 ± 1.5 ± 1.8 (2009)	49.70 ± 1.80			

In this analysis, in particular the selection and efficiency determination will provide the basis for the future Dalitz-plot analyses of the decays $B^0_{(s)} \to K^0 p \bar{p}$

Analysis strategies

 \succ In both decays, the K^0 is reconstructed through the two π decay of its short-lived mass eigenstate

$$B(B_{(s)}^{0} \to K_{S}^{0} p \bar{p}) = B(B^{0} \to K_{S}^{0} \pi^{+} \pi^{-}) \times \frac{N(B_{(s)}^{0} \to K_{S}^{0} p \bar{p})}{N(B^{0} \to K_{S}^{0} \pi^{+} \pi^{-})} \times \frac{\varepsilon^{sel}(B^{0} \to K_{S}^{0} \pi^{+} \pi^{-})}{\varepsilon^{sel}(B_{(s)}^{0} \to K_{S}^{0} p \bar{p})} \times \frac{f_{d}}{f_{d(s)}}$$

- \blacktriangleright Where B is a branching fraction, N stands for the number of signal events from the mass fit and ϵ is total efficiency
- $\geq \frac{f_s}{f_d}$ is the average of hadronic and semileptonic measurements from the HFAG
- ightharpoonup The $B(B^0 \to K^0 \pi^+ \pi^-)$ is $(49.7 \pm 0.18) \times 10^{-6}$ from the PDG

Analysis strategies

▶ Date samples: the 9 fb⁻¹ of data recorded during Run-1 and Run-2 of the LHCb

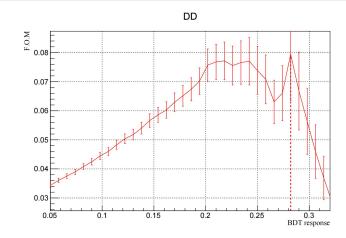
- Stripping Line: StrippingB2KShh_LL_Run1/2_OS_Line, StrippingB2KShh_DD_Run1/2_OS_Line
- Signal optimization
- Background Studies:
 - Misidentified and Partially Reconstructed Backgrounds
 - · Combinatorial background
- Mass Fits
- Efficiencies and Uncertainty
- Systematics

Mode	Mode number
$B^0 \to K_S^0 p \overline{p}$ (sqDalitz)	11104164
$B_s^0 \to K_S^0 p \overline{p}$ (sqDalitz)	11104124
$B^0 \to K_S^0 \pi^+ \pi^- \text{ (sqDalitz)}$	13104154

Based on the consistency of the samples, the samples into four groups (2011, 2012, 2015-2016, and 2017-2018) and 2 K_S^0 reconstruction (LL, DD)

⇒ 8 data samples.

BDT optimization: Punzi $(B_s^0 \to K_s^0 p \overline{p})$


- > After the preselection, trigger, and PID, a large amount of background still
- > A multivariate analysis (MVA) is employed to further improve the signal-to-background separation
- ightharpoonup The selection of the $B_s^0 o K_s^0 p \overline{p}$ decay is optimized using the Punzi figure of merit

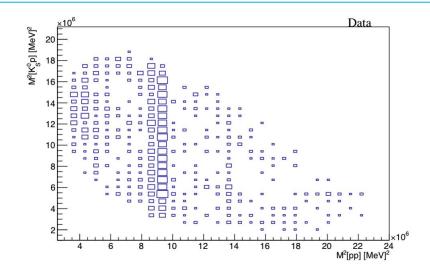
Punzi =
$$\frac{\varepsilon_{sig}}{\frac{a}{2} + \sqrt{B}}$$

 ε_{sig} : signal efficiency estimated by MC samples

a: the excepted significance for the signal channel and set to 5

B: the number of background events, estimated by the high sideband region

Samples	$K_{ m S}^0$ type	$arepsilon_{ ext{sig}}$	В	FoM	Working point
2011 and 2012	DD	0.472	12.0	0.079	0.226
2011 and 2012	LL	0.505	7.0	0.098	0.202
2015 and 2016	DD	0.460	12.0	0.077	0.218
	LL	0.611	6.0	0.123	0.234
2017 and 2018	DD	0.392	15.0	0.062	0.242
2011 and 2016	LL	0.534	6.0	0.108	0.242


Mass Veto selection

 \triangleright By the calculated the mass of $p\bar{p}$ and the mass of K_S^0p , to check the effect of the resonance state, and found that η_c , J/ψ , ψ (2S) and Λ_c^+ is seen

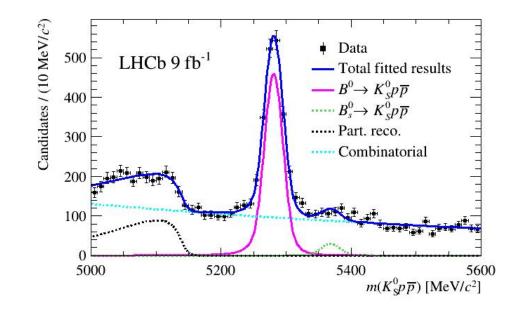

- lacktriangledown $B^0 \to \eta_c K_S^0$ with $\eta_c \to p\bar{p}$
 - Veto selection $|m(p\overline{p}) m(\eta_c)| > 45 \text{ MeV/}c^2$
- $lacktriangleright B^0 \to J/\psi K_S^0 \text{ with } J/\psi \to p\bar{p}$

Veto selection $|m(p\overline{p}) - m(J/\psi)| > 25 \text{ MeV/}c^2$

- - Veto selection $|m(p\overline{p}) m(\psi(2S))| > 35 \text{ MeV/}c^2$
- $lacktriangledown B^0 \to \Lambda_c^+ \bar{p} \text{ with } \Lambda_c^+ \to K_S^0 p$

Veto selection $|m(K_S^0\bar{p}) - m(\Lambda_c^+)| > 30 \text{ MeV/}c^2$

the left is DD and right is LL


Mass fit: $B^0 \to K_S^0 p \overline{p}$

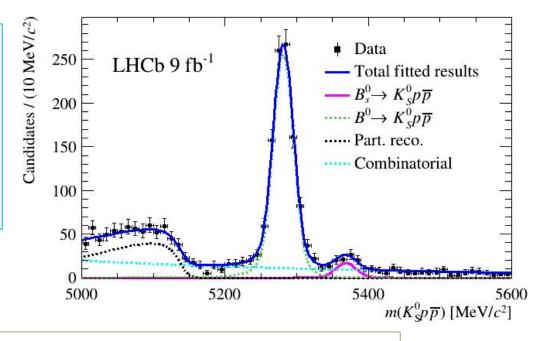
 \triangleright Mass fit the B candidate invariable mass for $B^0 \to K_S^0 p \overline{p}$ decay

□ PDFs:

- Combinatorial: Exponential function
- Partial reconstructed: Argus ⊗ Gauss function
- Signal and B_s^0 : Double-side Crystal ball

> This table summarizes the signal yield and its statistical

		2011	2012	2015 and 2016	2017 and 2018	Total
$B^0 \to K_S^0 p \bar{p}$	DD	55 ± 9	135 ± 18	303 ± 24	670 ± 33	1791 <u>±</u> 52
D → K _S pp	LL	25 ± 7	83 ± 12	174 ± 18	346 ± 25	1191 <u>+</u> 32

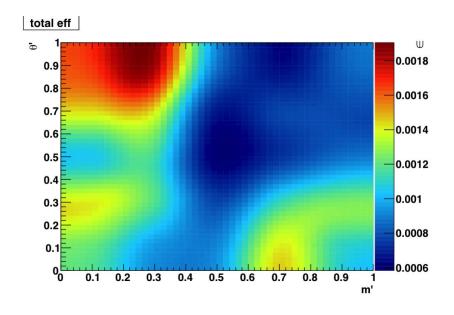

Mass fit: $B_s^0 \to K_s^0 p \overline{p}$

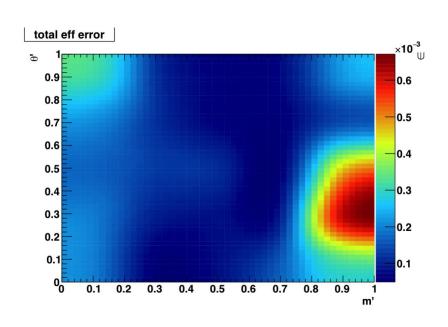
ightharpoonup Mass fit the B candidate invariable mass for $B^0_s \to K^0_s p \overline{p}$ decay

□ PDFs:

- Combinatorial: Exponential function
- Partial reconstructed: Argus ⊗ Gauss function
- Signal and B^0 : Double-side Crystal ball

The total yield of $B^0_S \to \mathcal{K}^0_S p \bar{p}$, combining the LL and DD \mathcal{K}^0_S reconstruction types, is found to be 66 ± 12 with the all selection, corresponding to the yield to statistical uncertainty in excess of 7.1 standard deviations.


Efficiencies and Uncertainty



> The total efficiency is obtained by multiplying together the values of the spline for the each contribution at the given point in the plot

$$\varepsilon = \varepsilon^{geom} \times \varepsilon^{Sel|geom} \times \varepsilon^{PID|Sel\&geom}$$

The two-dimensional of total efficiency and its uncertainties are shown in the below

Efficiencies and Uncertainies

The average efficiency, obtained from the uniformly binning and sWeight reweighting, as described in this equation $\sum_{e=1}^{n} \sum_{e=1}^{n} W_{e}$

$$\varepsilon^{Sel} = \frac{\sum_{e} W_{e}}{\sum_{e} \frac{W_{e}}{\varepsilon_{e(j)}}}$$

where W_e is the signal weight associated to the candidate e, while $\varepsilon_{\mathrm{e}(j)}$ represents the efficiency of candidate e, from the corresponding bin j in the squared Dalitz plot

> The result of efficiency are summarized in this table, along with their respective uncertainties

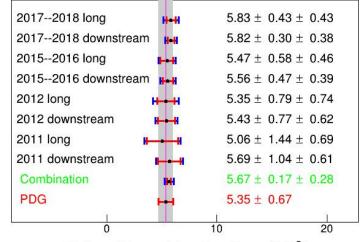
		2011(%)	2012(%)	2015 and 2016(%)	2017 and 2018(%)		
$B^0 \rightarrow K_S^0 p \overline{p}$	DD	0.092 ± 0.005	0.096 ± 0.007	0.181 ± 0.006	0.200 ± 0.006		
	LL	0.052 ± 0.005	0.057 ± 0.006	0.085 ± 0.004	0.076 ± 0.004		
$B^0 \to K_S^0 \pi^+ \pi^-$	DD	0.102 ± 0.006	0.105 ± 0.008	0.160 ± 0.006	0.160 ± 0.006		
	LL	0.082 ± 0.006	0.062 ± 0.005	0.104 ± 0.004	0.104 ± 0.004		
D0 V0n5	DD		0.084 ± 0.006				
$B_s^0 o K_s^0 p \bar{p}$	LL		0.034 ± 0.004				

Systematics

- ◆ The systematic uncertainties
 - a) Fit model (Toy experiment)
 - b) Simulation sample size (MC)
 - c) Binning scheme (the two-dim efficiency maps)
 - d) PID (control sample and differ from the signal tracks)
 - e) Tracking
 - f) L0: sample statistics and sources of calibration samples
 - g) BDT selection: choice of working point
 - h) Mass veto: choice of Veto region
 - i) B_s^0 lifetime: affects the selection efficiency

	$\frac{\mathcal{B}(B^0 \to K_{\mathrm{S}}^0 p \overline{p})}{\mathcal{B}(B^0 \to K_{\mathrm{S}}^0 \pi^+ \pi^-)}$	$\frac{\mathcal{B}(B_s^0 \to K_S^0 p \overline{p})}{\mathcal{B}(B^0 \to K_S^0 \pi^+ \pi^-)}$
Statistical	3.0%	18.4%
Fit model	1.0%	4.7%
Simulation sample size	1.7%	5.5%
Binning	2.4%	2.6%
PID	1.1%	1.2%
Tracking	0.5%	0.5%
L0 trigger	3.6%	5.5%
BDT selection	0.9%	1.2%
Mass veto	0.7%	1.8%
B_s^0 lifetime	_	3.1%
Total systematic	5.0%	9.8%
f_s/f_d	_	2.2%

Result



> By comparison, found that this results were within the margin of error of the previous results

BF
$$(B^0 \to K^0 \pi^+ \pi^-) = (4.97 \pm 0.18) \times 10^{-5}$$
 from PDG

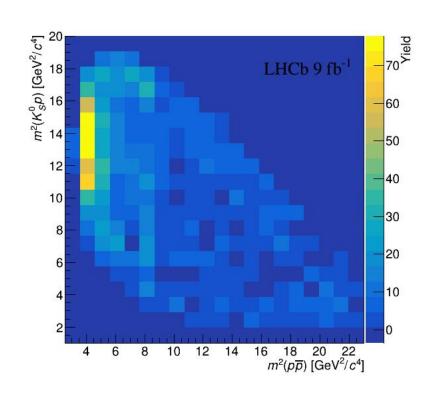
✓ BF
$$(B^0 \to K^0 p\bar{p})$$
=(2.82 ± 0.08 ± 0.12 ± 0.10(PDG))× 10^{-6}

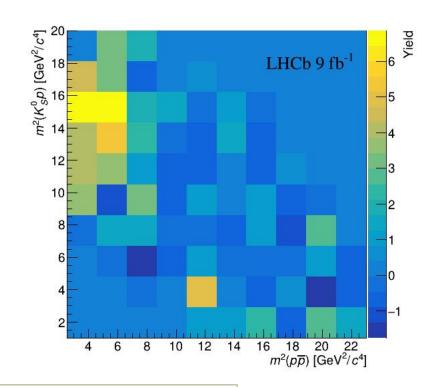
✓ BF(
$$B_s^0 \to K^0 p \bar{p}$$
) =(9.14 ± 1.69 ± 0.90 ± 0.33(PDG) ± 0.20($\frac{f_s}{f_d}$))× 10⁻⁷

Ratio of branching fractions [10⁻²]

$$B^0 \to K_S^0 p \bar{p}$$

where the first uncertainty is statistical, the second systematic in each case, the third originates from the


PDG and the finally originates from ratio of fragmentation fractions of the B^0 and B_S^0 mesons, $\frac{f_S}{f_d}$



Check the low-mass enhancement

 \triangleright By checked the signal $p\bar{p}$ and $K_{S}^{0}p$ Dalita-plot

The left is $B^0 \to K^0_S p \bar{p}$ and right is $B^0_S \to K^0_S p \bar{p}$

Although the current statistics are limited, particularly for $B_s^0 \to K_s^0 p \bar{p}$ decays, a clear low-mass enhancement is observed in the baryon-antibaryon invariant mass spectra

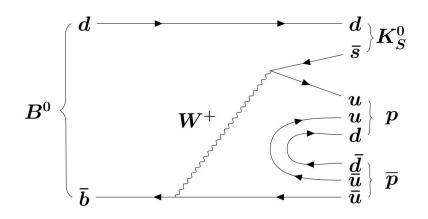
Summary and outlook

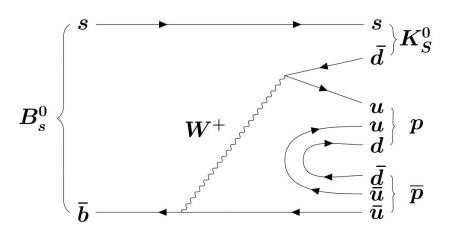
> Summary

- $B_s^0 \to K^0 p \bar{p}$ is observed for the first time, with a measured branching fraction of $(9.14 \pm 1.69 \pm 0.90 \pm 0.33 (PDG) \pm 0.20 (\frac{f_s}{f_d})) \times 10^{-7}$ and a significance of 5.6 σ
- $B^0 \to K^0 p \bar{p}$ is $(2.82 \pm 0.08 \pm 0.12 \pm 0.10 (PDG)) \times 10^{-6}$, which is the most precise measurement to date
- A clear low-mass enhancement in the baryon-antibaryon invariant mass spectra, but this
 result was not shown in the paper
- Published to JHEP

> Outlook

- With higher statistics with Run3, the uncertainty is reduced by a factor of 1.5
- Time-dependent dalitz analyses with Run3 datasets




Back up

Introduction: $B^0_{(s)} \to K^0_s p \overline{p}$

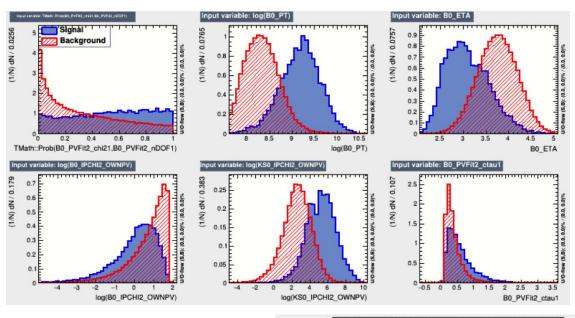
Analysis strategy

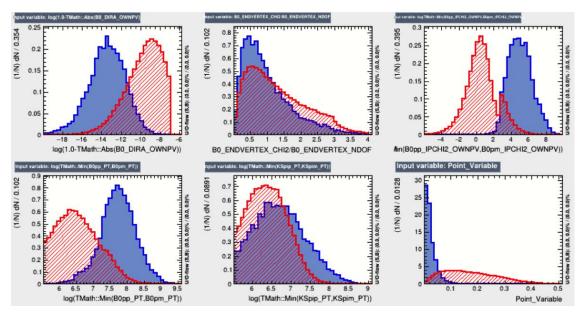
$$\varepsilon = \varepsilon^{\text{Geom}} \times \varepsilon^{\text{Reco}} \times \varepsilon^{\text{Trac}} \times \varepsilon^{\text{PID}} \times \varepsilon^{\text{Trig}} \times \varepsilon^{\text{MVA}} \times \varepsilon^{\text{Veto}}$$

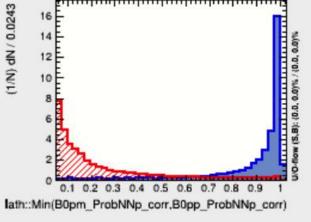
- $igspace arepsilon^{
 m Geom}$ can be estimated using the Gauss, with the fiducial cuts defined The fiducial cuts can be defined as:
- a) all charged particles in the θ region of 0.01 to 0.4(cut in DecFiles)
- b) mother particle (B) in the rapidity region 2 to 4.5
- c) mother particle (B)' P_T in the region 2 to 40GeV

$$\varepsilon^{\text{Geom}} = \frac{n(\text{Reco by Gauss passed fiducial cuts})}{n(\text{Reco by Gauss passed } b + c)}$$

Tigger selection




Trigger level		Trigger requirements	
LO		L0Hadron TOS OR Muon,Dimuon,MuonHigh,Electron,Hadron,CAL0,Photon TIS	
III T 1	Run I	Hlt1TrackAllL0 TOS	
HLT1	Run II	Hlt1TrackMVA,TwoTrackMVA TOS	
2011		Hlt2Topo2,3,4BBDT,Simple TOS	
HLT2	2012	Hlt2Topo2,3,4BBDT TOS	
	Run II	Hlt2Topo2,3,4Body TOS	



TMVA input variables: DD (2015 and 2016)

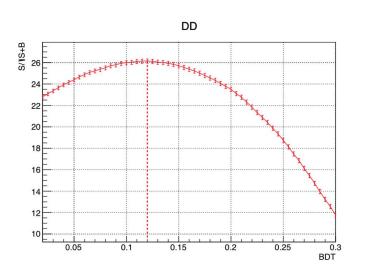
Background: high sideband of data $(5450-5800 \text{ MeV}/c^2)$ and random selection by random number (30%)

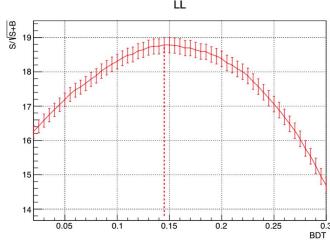
Signal: MC (5279.65 $\pm 3\sigma$)

DD: $5234.14 - 5325.16 \text{MeV}/c^2$

LL: 5231.27-5328.03MeV/c²

BDT optimization: FoM $(B^0 \to K_S^0 p \overline{p})$




 f_{Nsig} : a scale factor for signal MC

N_{signal}: the number of MC passed loose BDT

B: the number of background events, estimated from extrapolating of the selected background yields in the high sideband region

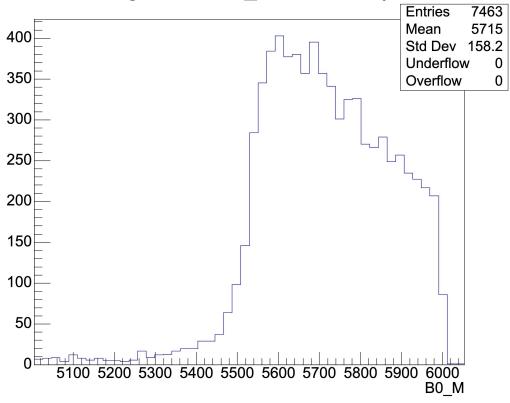
$$FoM = \frac{S}{\sqrt{S+B}} = \frac{f_{Nsig} * N_{signal}}{\sqrt{f_{Nsig} * N_{signal} + B}}$$

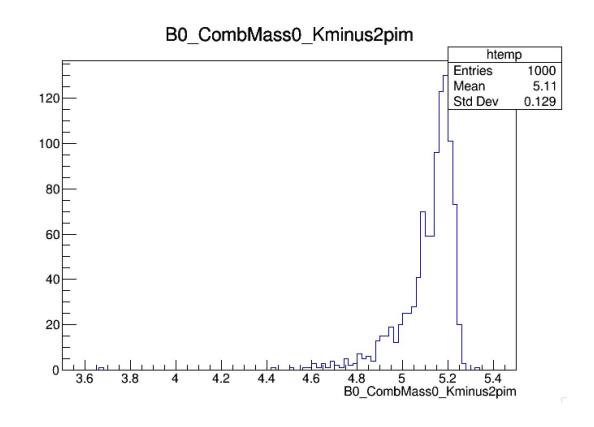
Samples	Samples $K_{\rm S}^0$ type		В	FoM	Working point
2011 and 2012	DD	369.3	108.3	16.900	0.125
2011 and 2012	LL	200.2	916.5	12.683	0.105
2015 and 2016	DD	812.5	153.7	26.138	0.120
	LL	395.6	48.2	18.778	0.145
2017 and 2018	DD	1553.7	300.7	36.080	0.135
	LL	765.6	143.2	25.395	0.110

2015 and 2016

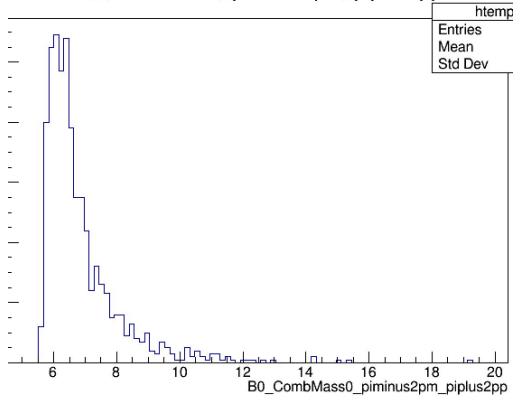
Mass Veto selection: $B^0 \to K_S^0 \pi^+ \pi^-$

- $\gt B^0 \to K_S^0 \pi^+ \pi^-$: intermediate charm or charmonium states such as D^0 , D^+ , D_s^+ , Λ_c^+ , or J/ψ are considered
- > The backgrounds are removed with vetoes on the invariant masses of various two-body combinations
 - Veto on charmed and baryons: ±30
 - Veto on charmonia: ±48

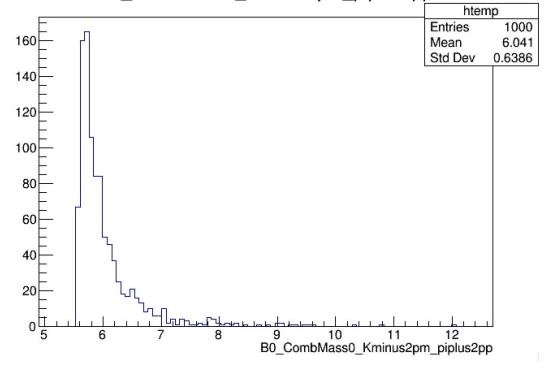

$D^{\pm} \to K_{\rm S}^0 \pi^{\pm}, \ D_s^{\pm} \to K_{\rm S}^0 \pi^{\pm}$	$\Lambda_c^+(\overline{\Lambda}_c^-) \to K_{\mathrm{S}}^0 p(\overline{p})$	$J/\psi o \pi^+\pi^-$
D+ 72072+ D+ 72072+	$\Lambda^{+}(\overline{\Lambda}^{-}) \rightarrow K^{0}_{n}(\overline{n})$	
$D^{\pm} ightarrow K_{\mathrm{s}}^{0} K^{\pm}, D_{s}^{\pm} ightarrow K_{\mathrm{s}}^{0} K^{\pm}$ $D^{0} ightarrow K^{\pm} \pi^{\pm}$	$\Lambda_c(\Lambda_c) \to \Lambda_s p(p)$	$\chi_{c0} \! o \pi^+ \pi^-$
$D^0\! o K^\pm\pi^\pm$		
25 Data 15 Data 16 Data 17 Data 18 Data 18 Data 19 Data 10 Data 10 Data 10 Data 10 Data 11 Data 10 Data 11 Data 12 Data 13 Data 14 Data 15 Data 16 Data 17 Data 18 Data 18 Data 18 Data 18 Data 18 Data 19 Data 10		Data


Background study

$$B^0 \to K^0_S K^+ K^-$$


$$B^0 \to (\Lambda_c^+ \to K^+ p \pi^-) \bar{p}$$

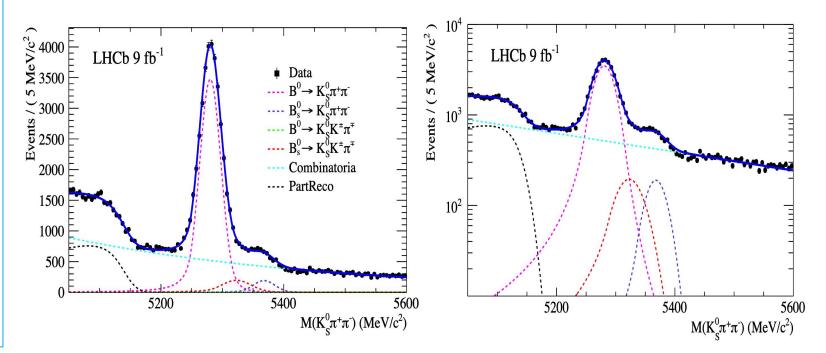
Background study



$$B^0\to K^0_S\pi^+\pi^-$$

B0_CombMass0_Kminus2pm_piplus2pp

$$B^0 \to K^0_S K^+ \pi^-$$



Mass fit: $B^0 \to K_S^0 \pi^+ \pi^-$

□ PDFs:

- Combinatorial: Exponential function
- Partial reconstructed: Argus
 ⊗ Gauss function
- Signal and other background:
 Double-side Crystal ball

	K ⁰ _S type	2011	2012	2015 and 2016	2017 and 2018	Total
	DD	1044 ± 65	2653 ± 96	4794 ± 108	9203 ± 143	_
$B^0 \to K_S^0 \pi^+ \pi^-$	LL	772 ± 52	1678 ± 73	3892 ± 85	8109 ± 132	32145 ± 230

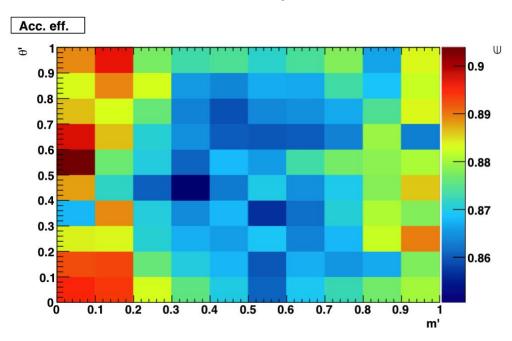
$$N_{crossfeed} = N_{B^0 \to K_S^0 \pi^+ \pi^-} \times \frac{B(B_{(s)}^0 \to K_S^0 K^\pm \pi^\mp)}{B(B^0 \to K_S^0 \pi^+ \pi^-)} \times \frac{\varepsilon(B_{(s)}^0 \to K_S^0 K^\pm \pi^\mp)}{\varepsilon(B^0 \to K_S^0 \pi^+ \pi^-)} \times \frac{f_{d,s}}{f_d}$$

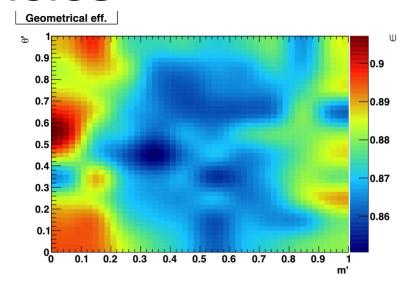
Efficiencies and Uncertainty

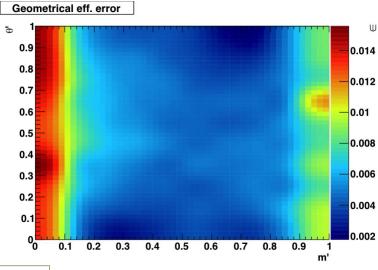
- ◆ The efficiencys depend on the position on the Dalitz plot. We extract it from the data using the <u>sPlots method</u>.
- ◆ We apply the concept of a square Dalitz plot (denoted SDP in the following).
- ◆ In the following pages:

$$m' = \frac{1}{\pi} \cos^{-1} \left(2 \frac{m_{p\bar{p}} - m_{p\bar{p}}^{min}}{m_{p\bar{p}}^{max} - m_{p\bar{p}}^{min}} - 1 \right)$$
$$\theta' = \frac{1}{\pi} \theta_{p\bar{p}}$$

where $m_{p\bar{p}}$ is the combinational mass, $m_{p\bar{p}}^{max}=m_{B^0}-m_{K_S^0}$ and $m_{p\bar{p}}^{min}=m_p+m_{\bar{p}}$ are the

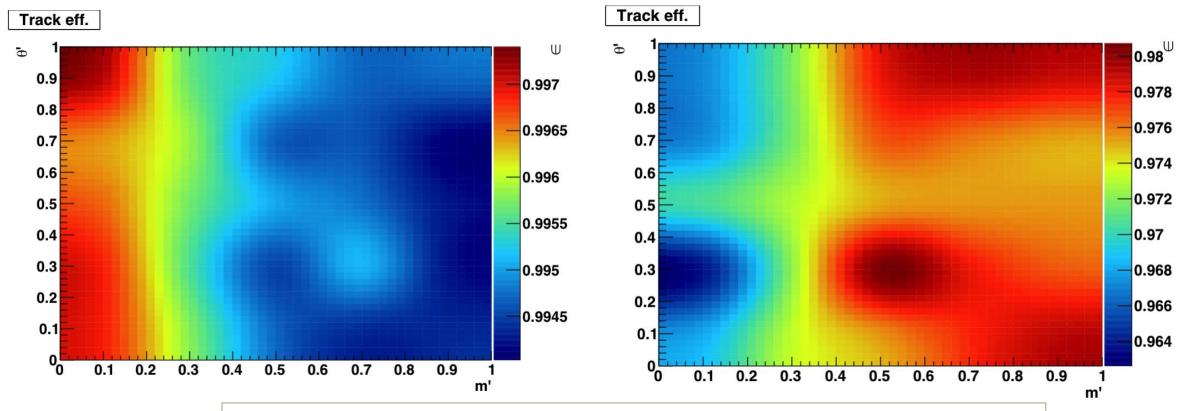

boundaries of $m_{p\bar{p}}$, $\theta_{p\bar{p}}$ is the angle between the h⁺ and the K_S^0 in the $p\bar{p}$ rest frame.


Efficiencies



◆ Geometriacl efficiency

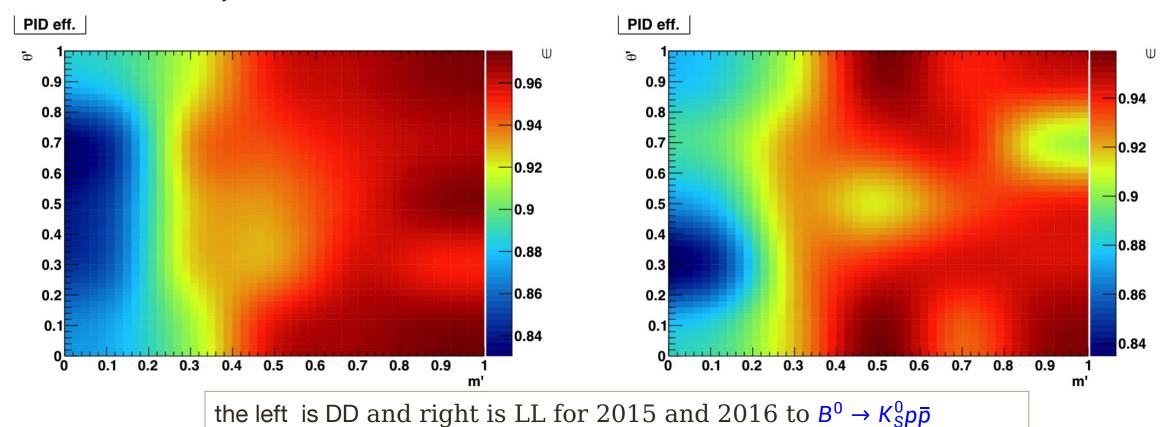
Uncertainties due to MC statistics by Clopper — Pearson in the TEfficiency calss


 $B^0 \rightarrow K_S^0 p\bar{p}$ for 2015 and 2016

Efficiencies and Uncertainty

Tracking efficiency

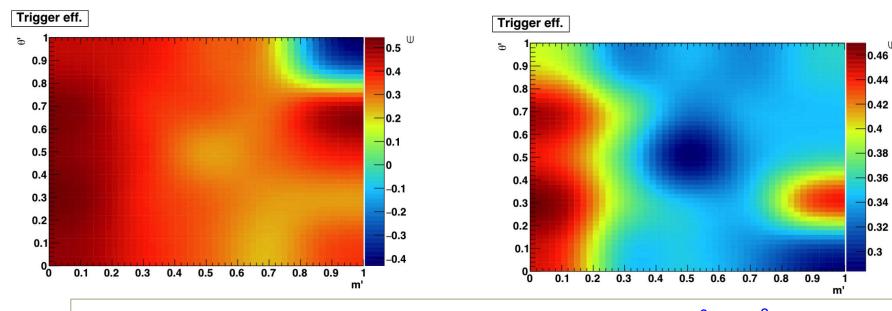
the left is DD and right is LL for 2015 and 2016 to $B^0 \to K_S^0 p \bar{p}$


- a) Select the invariant mass region $2.5\sigma and is$ weighted to match the sWeighted signal event
- b) The average correction factor from tracking calibration tables

Efficiencies

◆ PID efficiency

 \triangleright The PID efficiency is determined from calibration data, reweighted to signal kinematics (from MC), using the PIDCalib2 tool. The PIDCalib2 multibody tools with the signal MC samples as the reference (specifically P, η and nSPDHits).

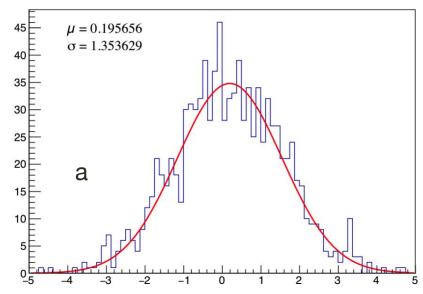


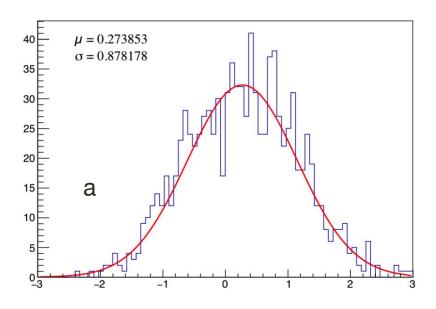
Efficiencies

◆ Trigger efficiency

$$\varepsilon^{\text{L0}} = \frac{f_{TOS}^{data}}{f_{TOS}^{MC}} \times C_{L0corr}^{TOS} \times \varepsilon_{TOS} + \frac{f_{TIS\&\&!TOS}^{data}}{f_{TIS\&\&!TOS}^{MC}} \times C_{L0corr}^{TIS\&\&!TOS} \times \varepsilon_{TIS\&\&!TOS}$$

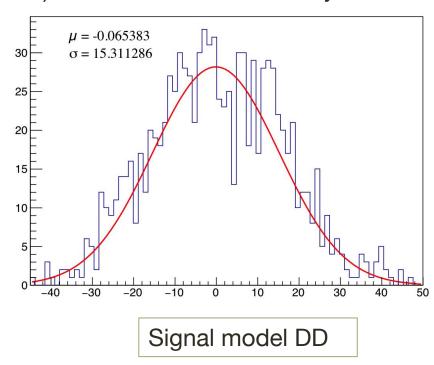
the left is DD and right is LL for 2015 and 2016 to $B^0 \to K_S^0 p \bar{p}$

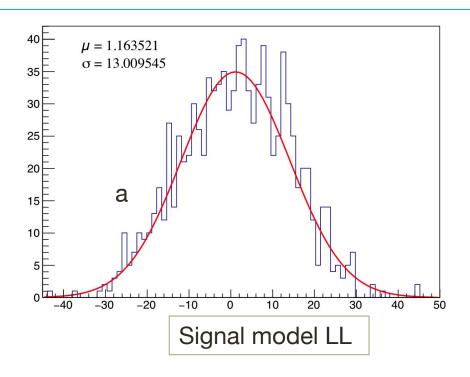

- The f terms are the factions of each category in data and MC, as labelled $(f_{TOS}^{data} + f_{TIS&\&!TOS}^{data} = f_{TOS}^{MC} + f_{TIS&\&!TOS}^{MC} = 1)$,
- ullet C are reweighting factors, which are estimated from the calibration data samples based on reconstructed D* and Λ_c^- candidates with high purity
- ε are efficiency from MC
- $\bullet \quad \epsilon^{Trig} = \epsilon^{L0} \times \epsilon^{HLT}$



Fit model Systematics

- ◆ The choice of the models (1000 Toy experiment) × 100
 - a) Signal model: Crystal ball \rightarrow Student + Gauss function
 - b) Partial reconstructed bkg model: $\begin{cases} Argus \otimes Gauss \ function \\ M(5100 \rightarrow 5600) \end{cases} \rightarrow \begin{cases} Not \\ M(5150 \rightarrow 5600) \end{cases}$
 - c) Combinatorial bkg model: Exponential function → Second order Chebychev polynomial
 - d) The difference between yields fit by a Gaussian


the left is DD and right is LL for 2015 and 2016 to $B^0 \to K_S^0 p \bar{p}$



Fit model Systematics: $\pi^+\pi^-$ (15, 16)

- ◆ The choice of the models (1000 Toy experiment) × 10
 - a) Signal model: Crystal ball → Student + Gauss function
 - b) Partial reconstructed bkg model: $\begin{cases} Argus \otimes Gauss \ function \\ M(5100 \rightarrow 5600) \end{cases} \rightarrow \begin{cases} Not \\ M(5150 \rightarrow 5600) \end{cases}$
 - c) Combinatorial bkg model: Exponential function → Second order Chebychev polynomial
 - d) The difference between yields fit by a Gaussian

