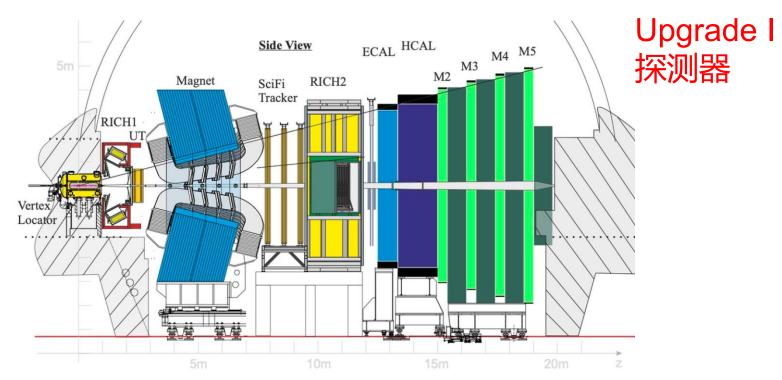


LHCb中国组2025年度总结

前洁晟(湖南大学) 代表LHCb中国组

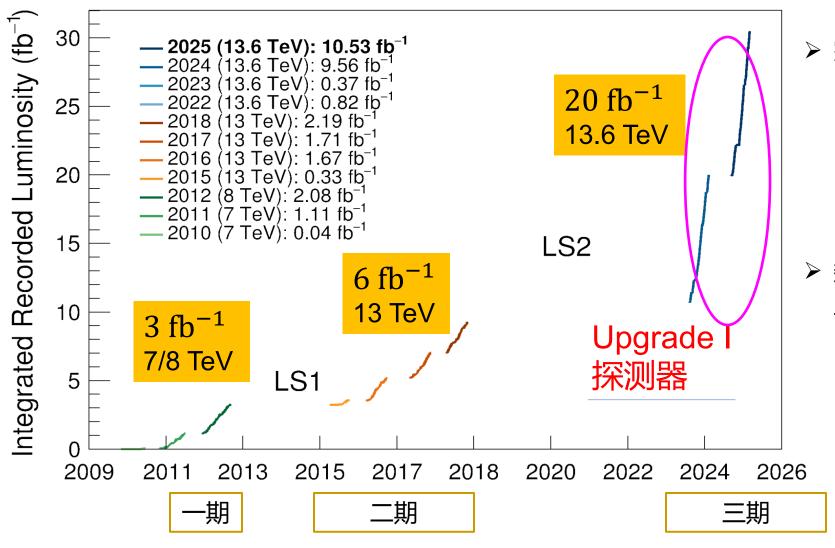


第十届中国LHC物理研讨会 新乡河南师范大学 2025年10月29-11月3日



提纲

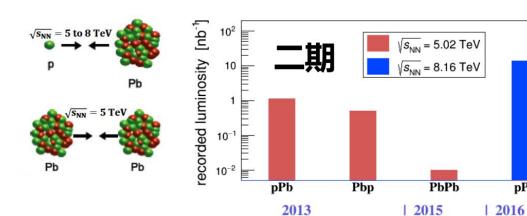
- **➢ LHCb实验概况**
- **▶ LHCb中国组单位与人员情况**
- > 2025年度亮点物理成果
- > 探测器运行、升级和服务工作
- ≻总结与鸣谢

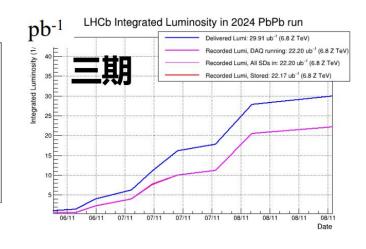

LHCb实验及其主要科学目标

LHCb合作组: 25个国家, 107个单位, 1770个成员

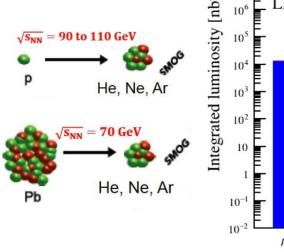
- ➤ 间接寻找新物理:电荷宇称破坏 (CPV) 、稀有衰变
- ▶ 理解强相互作用:强子态、强子产生机制
- ▶ 其它: 电弱物理, 重离子物理, ...

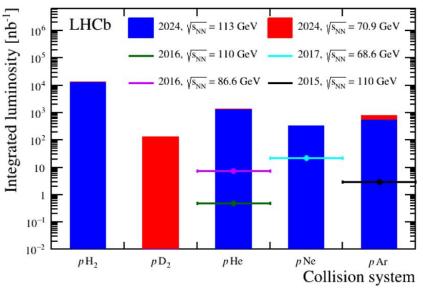
LHCb质子-质子数据

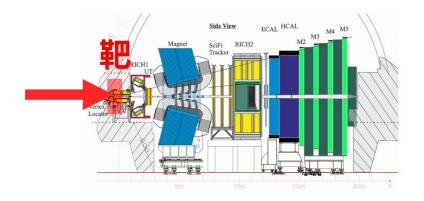

- > 完成Upgrade I升级,稳定运行取数
 - □ 瞬时亮度提高近5倍, 2025新增 数据 10 fb⁻¹
 - □ 总量预计可达 25 fb⁻¹
 - □ 触发效率提高约2倍
- 数量最多、种类最全的底强子和粲强子样本


LHCb重离子数据

pPb


Pbp


对撞 模式



气体固定 靶模式

PbPb

| 2018

LHCb独有: 质心能量和对撞系统

LHCb中国组

现有12家单位,单位数排名2/25 研究队伍: 教师49人,成员xxx人,作者xxx人

待素材

(截至2025年10月29号)

LHCb中国组 待素材

单位	教师人数	成员人数	作者人数	
清华大学				张黎明,朱相雷,龚光华,曾鸣,邓智,张志财
华中师范大学			谢跃红,尹航,张冬亮,周晓康,陈凯	
国科大				郑阳恒,吕晓睿,何吉波,钱文斌,刘倩,傅金林, 李佩莲
武汉大学				孙亮,蔡浩,王纪科
高能所				王建春,李一鸣,陈缮真,徐子骏,袁煦昊,姜晓巍,毕玉江, 周扬
华南师大				李衡讷, 刘国明, 胡继峰
北京大学				高原宁,杨振伟,张艳席,安刘攀,Yury Guz
湖南大学				俞洁晟,张书磊,戴凌云,陈卓俊
兰州大学				刘凯,李培荣,Miroslav SAUR
河南师大				李可陈,王艺龙
西北工业大学				魏晓敏
中国科学技术大学				刘建北
总数				7

LHCb国际合作组任职

- ➤ 管理顾问委员会 (Management Advisory Board) 王建春 (2020.09起)
- ▶ 成员委员会 (Membership Committee) 杨振伟 (2021.01-2024.12)
- ➤ 报告人委员会 (Speakers Bureau)

```
张艳席 (2023.12~2025.12)
李一鸣 (2023.10~2025.09) deputy chair
孙亮 (2021.10~2023.09)
```

张黎明 (2019.10~2021.09)

杨振伟 (2017.10~2019.09)

- ➤ 编辑委员会 (Editorial Board) 谢跃红 (2022.12~2024.11) 何吉波 (2020.12~2022.11)
- > 探测器运行和升级

```
王建春 (2024.03~2026.02) UT项目负责人
杨振伟 (2024.09起) 二期升级计划组 (U2PG) 成员
Yury Guz (2023.01-2025.12) 量能器项目副负责人
```

- ▶ 物理分析工作组召集人 尹航(2023.01~2025.03) 钱文斌(2024.01~2025.03) 李佩莲(2022.01~2024.03) 安刘攀(2021.01~2023.03) 何吉波(2019.01~2021.03) 张艳席(2018.01~2021.03) 张文斌(2018.01~2020.03) 张黎明(2016.01~2018.03) 杨振伟(2015.01~2017.03) 谢跃红(2014.01~2016.03)
- ▶ 其他物理和运行工作召集人 张黎明(2023.01~2025.03)统计方法 工作组 盛书琪(2024.01~2026.03)离线数据 处理工作组

2025年度亮点物理成果

2025年度中国组主导的物理成果汇总

已投稿11篇(其中5篇已发表),6篇即将投稿(还有两篇没有具体paper号是否加入?)

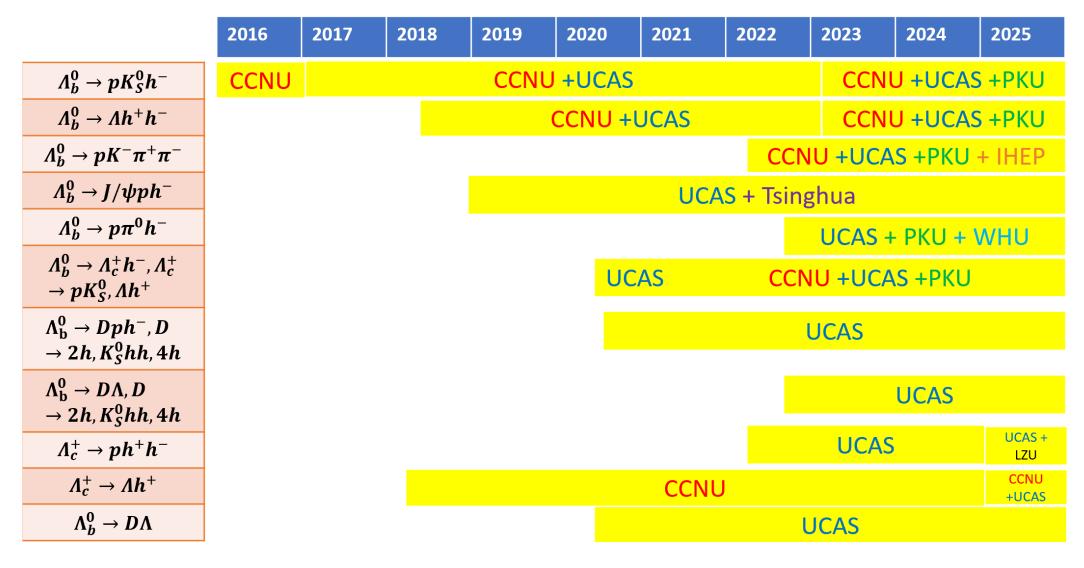
核实24-054	首次观测到重子CP破坏	Nature 643 (2025) 1223
核实021	$\Lambda_b o J/\psi p \pi^-$ 衰变观测到重子 ${f CP}$ 破坏迹象	LHCb-PAPER-2025-021 (将投稿xxx)
核实026	测到 $B^0 o ho(770)K^*(892)$ 的 CP 破坏	arXiv:2508.13563 已投稿到PRL
核实016	测量了 $\Lambda_b o pK_sh^-$ 中的 CP 破坏及分支比	arXiv:2508.17836 已投稿到JHEP
核实020	测量了 $B_s o J/\psi K^*(892)$ CP破坏和分支比	JHEP10(2025)173
核实049	$B^+ o K_S\pi^+$ 和 K_SK^+ 衰变 CPV 的精确测量	LHCb-PAPER-2025-049 (将投稿xxx)
核实051	首次看到 $B^+ o p\Lambda\mu^+\mu^-$ 衰变的迹象	LHCb-PAPER-2025-051 (将投稿PRL)
核实014	观测到 B_c^+ 介子径向激发态	arXiv:2507.02149 已投稿到PRL
核实015	对 $B_c^+(1P)$ 质量谱的研究	arXiv:2507.02142 已投稿到PRD
核实028	首次观测到 $B_c^+ o D_{(s)} h^+ h^-$	LHCb-PAPER-2025-028 (将投稿xxx)
核实24-053	观测到双粲重子衰变 $\Xi_{cc}^{++} o\Xi_{c}^{0}\pi^{+}\pi^{+}$	arXiv:2504.05063 已投稿到JHEP
核实001	首次观测到 $B_s o K_s p \overline{p}$	JHEP 2507 (2025) 121
核实032	首次观测到 $B^+ o\Lambda p\overline{p}\overline{p}$	arxiv:2508.16259 已投稿到PRL
核实053	首次观测到 $B_s o \Lambda_c^+ \overline{\Lambda}_c^-$ (压低的W交换过程)	LHCb-PAPER-2025-053 (将投稿PRL)
核实039	观测到 $T_{cc}^+(4430)$	LHCb-PAPER-2025-039 (将投稿xxx)
核实022	首次观测到 $\Lambda_{ m b} ightarrow \Lambda_c^+ D_s^- K^+ K^-$,寻找五夸克态	Phys. Rev. D 112, 052013 (2025)
核实008	首次在LHC上精确测量Z玻色子质量	Phys. Rev. Lett. 135 (2025) 161802

2025年度中国组主导的物理成果汇总

另外5篇去年投稿今年发表

CDI# I T	测量 Λ_b 和 Λ_c^+ 衰变的宇称破坏参数以及 CP 破坏	Phys. Rev. Lett. 133 (2024) 261804
CP破坏	于 $\Lambda_b o \Lambda^0 K^+ K^-$ 衰变观测到重子CP破坏迹象	Phys. Rev. Lett. 134 (2025) 101802
	首次测量 $\Xi_c(3055)$ 自旋、宇称	Phys. Rev. Lett. 134 (2025) 081901
强子物理	发现显粲四夸克态 $T_{cs0}^*(2870)$ 新衰变模式	Phys. Rev. Lett. 134 (2025) 101901
	发现 $D_{s1}(2460) \rightarrow D_s^+ \pi^+ \pi^-$ 衰变的奇异特性	Science Bulletin 70 (2025) 1432

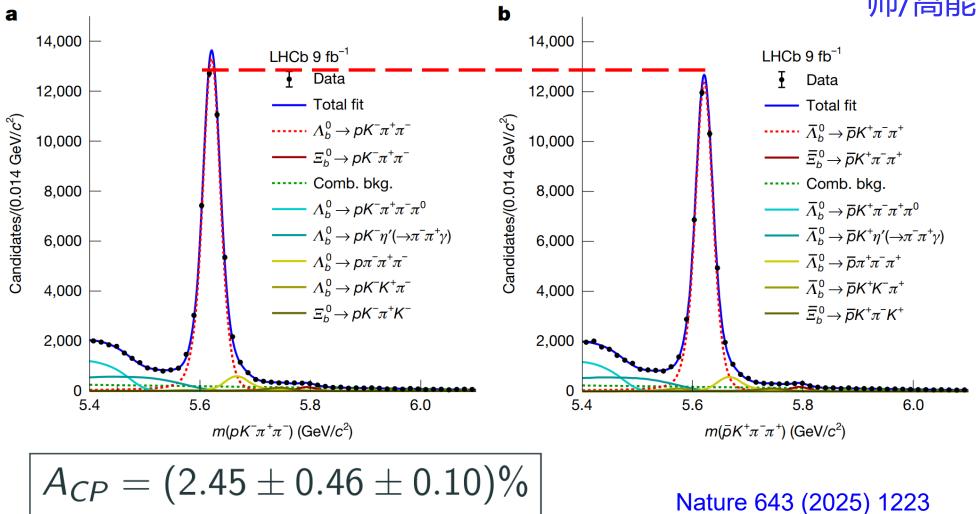
CP破坏和稀有衰变


1 Nature+3 PRL (1在审+2将投) +3 JHEP (2发表+1在审) +1 Science Bulletin (将投)

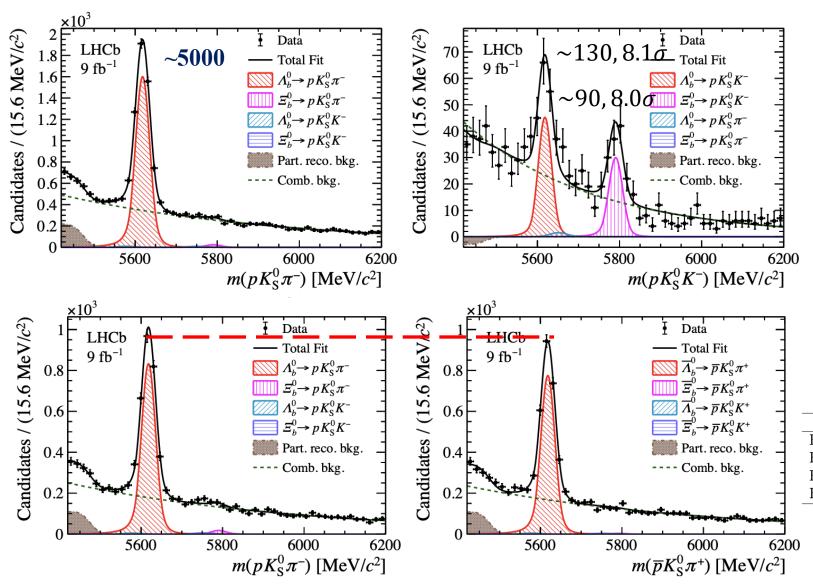
▶ 重子CP:

- □ 首次发现 $\Lambda_b \rightarrow pK^-\pi^+\pi^-$ CP破坏
- □ 首次发现 $\Lambda_b \rightarrow J/\psi p\pi^-$ CP破坏迹象
- □ 测量 $\Lambda_b \rightarrow pK_sh$ 中的CP破坏及分支比
- ightharpoonup 测到 $B^0 o
 ho(770)K^*(892)$ 的CP破坏以及精确测量其极化
- \rightarrow 测量了 $B_s \rightarrow J/\psi K^*(892)$ CP破坏和分支比
- $> B^+ \to K_S \pi^+ \pi K_S K^+$ 衰变CP破坏的精确测量
- > 稀有衰变: $B^+ \rightarrow p\Lambda \mu^+ \mu^-$

CP破坏全面研究


LHCb中国组在重子CP破坏方面的研究

> 9年几乎寻找了所有可能的过程


首次发现 $\Lambda_b \to pK^-\pi^+\pi^-$ CP破坏

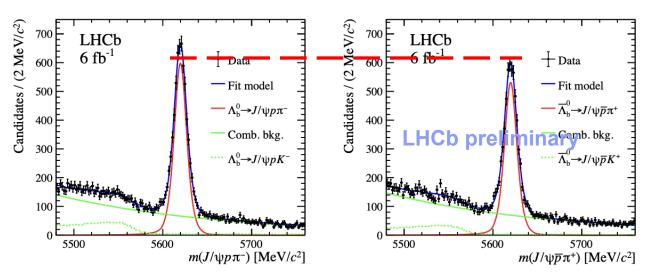
北大/国科大/华师/高能所/清华

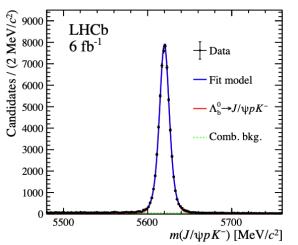
> CP破坏大小超过5σ显著性

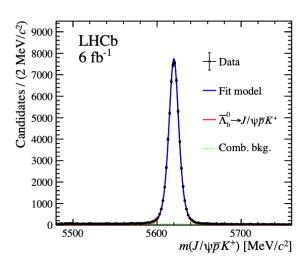
测量 $\Lambda_b \to pK_sh^-$ 中的CP破坏和分支比

华师/国科大/北大

$$A^{CP}(\Lambda_b^0 \to pK_S^0\pi^-) = (3.4 \pm 1.9 \pm 0.9)\%$$




	$m(p\pi^-)$	$m(K_{ m S}^0\pi^-)$	${ m Yield}$	$\mathcal{A}^{CP} \; [\%]$
Bin 1	-	$< 1.1 { m GeV}/c^2$	821 ± 34	$-0.6 \pm 4.0 \pm 1.9$
Bin 2	-	$[1.1, 1.7] \text{GeV}/c^2$	870 ± 40	$12.4 \pm 4.2 \pm 1.8$
Bin 3	$< 2.4 \text{GeV}/c^2$	$> 1.7 \text{GeV}/c^2$	2200 ± 50	$0.5 \pm 2.4 \pm 1.1$
Bin 4	$> 2.4 {\rm GeV}/c^2$	$> 1.7 { m GeV}/c^2$	840 ± 50	$3.3\pm5.5\pm2.0$


arXiv:2508.17836 已提交到JHEP

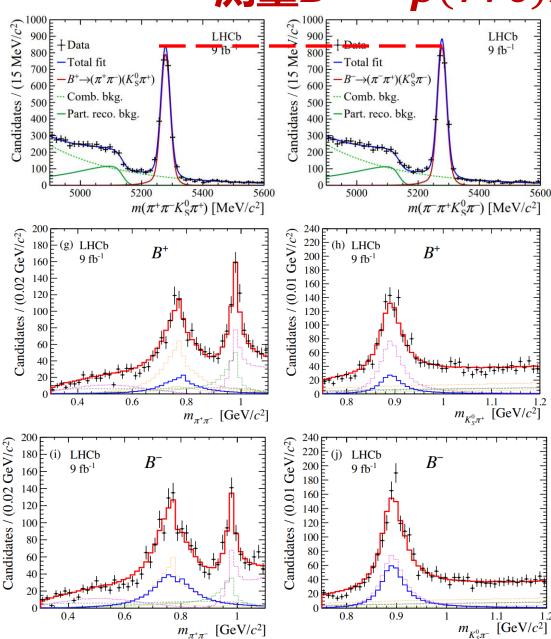
发现 $\Lambda_b \to J/\psi p\pi^-$ 中的CP破坏的迹象

清华/国科大

 $\Lambda_b^0 \to J/\psi p \pi^-$

 $\Lambda_{\rm b}^0 o J/\psi p K^-$

\triangleright 3.3 σ 显著性的CP破坏迹象


$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(\Lambda_b^0 \to J/\psi p \pi^-) - \mathcal{A}_{CP}(\Lambda_b^0 \to J/\psi p K^-) = (4.03 \pm 1.18 \pm 0.23)\%,$$

> 发现5夸克态的衰变过程中看到了CP破坏迹象

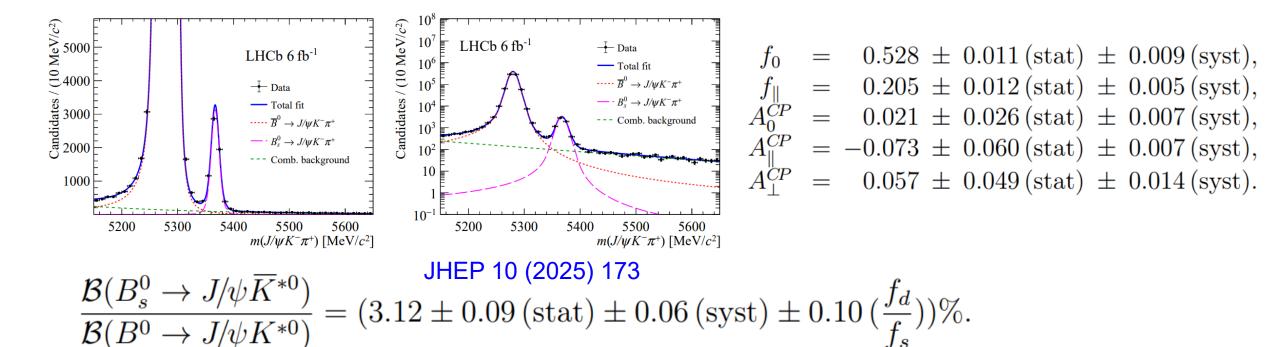
$$\Delta A_{CP} = (4.31 \pm 1.06 \pm 0.28)\%.$$

LHCb-PAPER-2025-021 计划 提交Science Bulletin

测量 $B^0 \to \rho(770)K^*(892)$ 的CP破坏及极化 北大

$$\mathcal{A}_{CP} \equiv \frac{\sum_{\lambda} (|\overline{A}_{\lambda}|^2 - |A_{\lambda}|^2)}{\sum_{\lambda} (|\overline{A}_{\lambda}|^2 + |A_{\lambda}|^2)} = 0.507 \pm 0.062 \pm 0.017.$$

$$f_L \equiv \frac{|A_0|^2 + |\overline{A}_0|^2}{\sum_{\lambda} (|A_{\lambda}|^2 + |\overline{A}_{\lambda}|^2)} = 0.720 \pm 0.028 \pm 0.009,$$

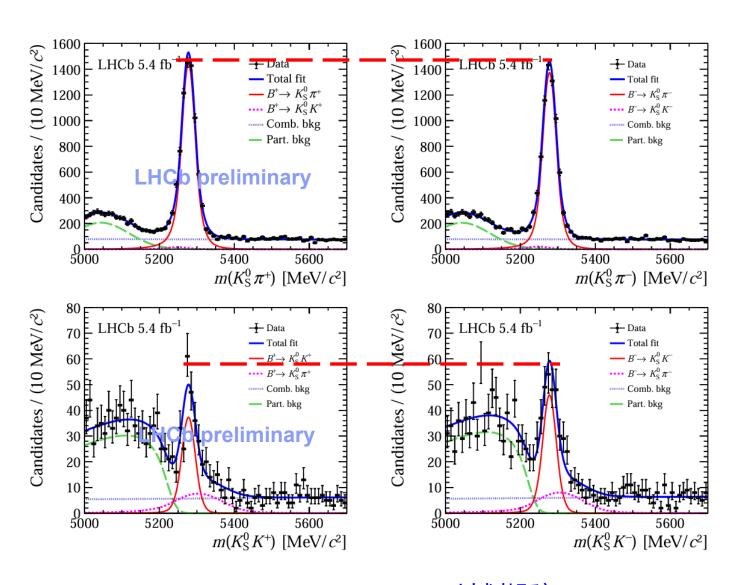

$$f_L^+ \equiv \frac{|A_0|^2}{\sum_{\lambda} |A_{\lambda}|^2} = 0.491 \pm 0.083 \pm 0.025,$$

$$f_L^- \equiv \frac{|\overline{A}_0|^2}{\sum_{\lambda} |\overline{A}_{\lambda}|^2} = 0.794 \pm 0.025 \pm 0.007$$

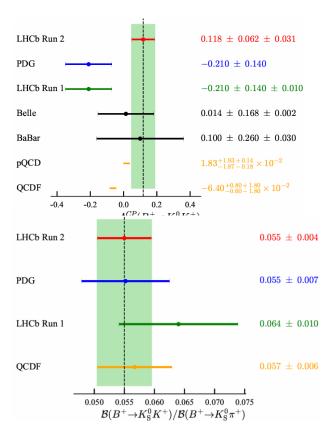
arXiv:2508.13563 已投稿至PRL

测量 $B^0 \rightarrow J/\psi K^*(892)$ 的CP破坏

华中师大

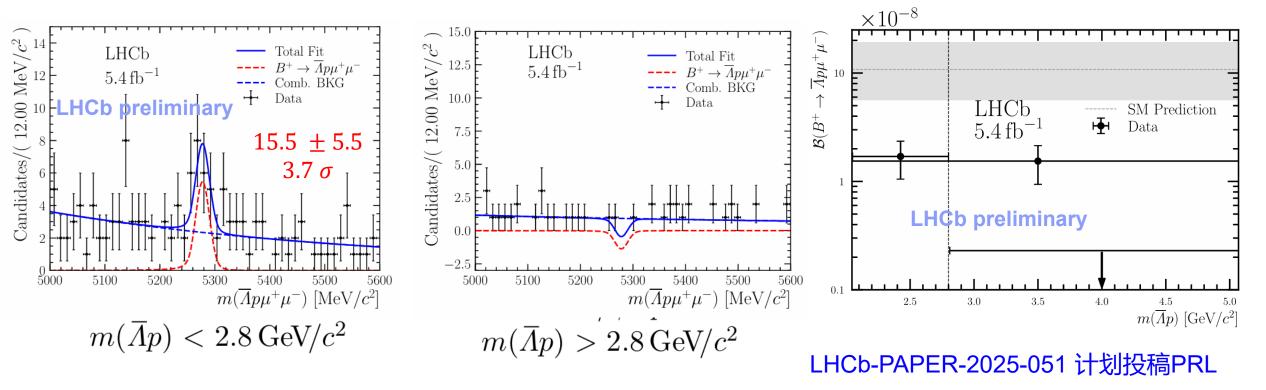


$$\mathcal{B}(B_s^0 \to J/\psi \overline{K}^{*0}) = (4.13 \pm 0.12 \,(\text{stat}) \pm 0.07 \,(\text{syst}) \pm 0.14 \,(\frac{f_d}{f_s}) \pm 0.45 \,(\mathcal{B}_{B^0})) \times 10^{-5}.$$


 \rightarrow 为理解 ϕ_s 的企鹅图贡献提供输入

$B^+ \to K_S \pi^+ \pi K_S K^+$ 过程CP破坏的精确测量

华中师大


LHCb Run 2 $-0.028 \pm 0.009 \pm 0.009$ PDG -0.003 ± 0.015 LHCb Run 1 $-0.022 \pm 0.025 \pm 0.010$ Belle II $0.046~\pm~0.029~\pm~0.007$ Belle $-0.011 \pm 0.021 \pm 0.006$ $-0.029 \pm 0.039 \pm 0.010$ BaBar $-0.08^{+0.08}_{-0.09}^{+0.02}_{-0.02} \times 10^{-2}$ pQCD $0.28^{+0.03}_{-0.03}^{+0.09}_{-0.10} \times 10^{-2}$ OCDF -0.05 $\mathcal{A}^{CP}(B^+{
ightarrow}K^0_S\pi^+)$

LHCb-PAPER-2025-049 计划投稿PRL

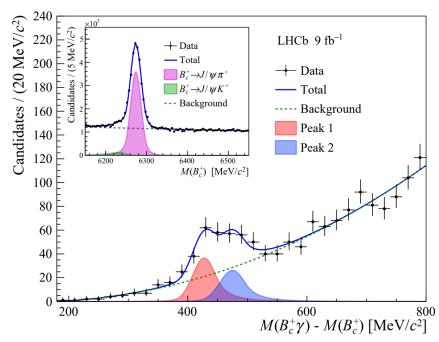
寻找稀有衰变 $B^+ \rightarrow p\Lambda \mu^+ \mu^-$

大版

$$\mathcal{B}(B^+ \to \bar{\Lambda} p \mu^+ \mu^-)|_{m(\bar{\Lambda}p)<2.8 \text{ GeV}/c^2} = (1.70 \pm 0.60_{\text{stat}} \pm 0.19_{\text{syst}} \pm 0.14_{\text{ext}}) \times 10^{-8},$$

▶比标准模型预研低一个量级

强子物理

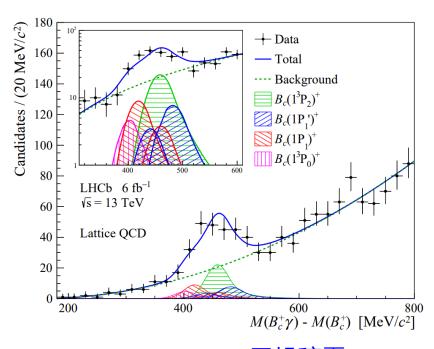

4 PRL (2在审+2将投) +2 JHEP (1发表+1在审) +3 PRD (1发表+1在审+1将投)

- **≻** *B*⁺物理
 - $\Box B_c^+$ 介子激发态 (1P)
 - 口首次发现 $B_c^+ \rightarrow D_{(s)}h^+h^-$
- ightharpoonup 双粲重子: $\Xi_{cc}^{++} \to \Xi_c^0 \pi^+ \pi^+$
- > 多夸克态研究
 - $□ 观测到 T_{cc}^+(4430)$
 - 口 首次发现 $\Lambda_b \to \Lambda_c^+ D_s^- K^+ K^-$, 寻找五夸克态
- > 发现底介子含重子末态新衰变模式:
 - \Box 首次发现 $B_s \to K_s p \overline{p}$
 - □ 首次发现 $B^+ \to \Lambda p \overline{p} \overline{p}$
 - □ 首次发现 $B_s \to \Lambda_c^+ \overline{\Lambda}_c^-$

强子结构深入研究

B_c^+ 介子激发态 (1P)

北大

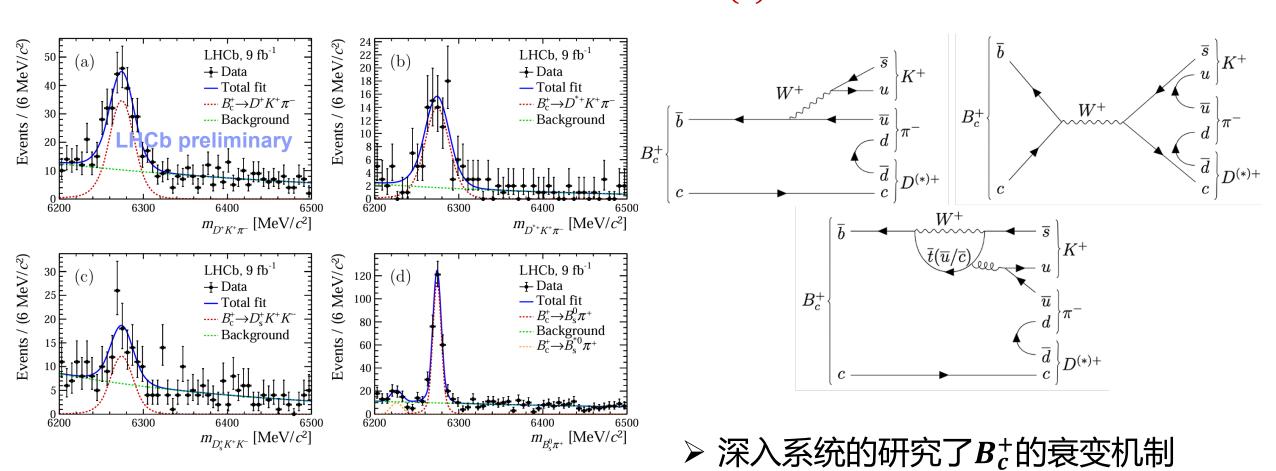


arxiv: 2507.02149 已投稿至PRL

$$\begin{pmatrix} 1P_1' \\ 1P_1 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1^1P_1 \\ 1^3P_1 \end{pmatrix}$$

 $M_1 = 6704.8 \pm 5.5 \pm 2.8 \pm 0.3 \text{ MeV/}c^2$

 $M_2 = 6752.4 \pm 9.5 \pm 3.1 \pm 0.3 \text{ MeV/}c^2$


arxiv: 2507.02142 已投稿至PRD

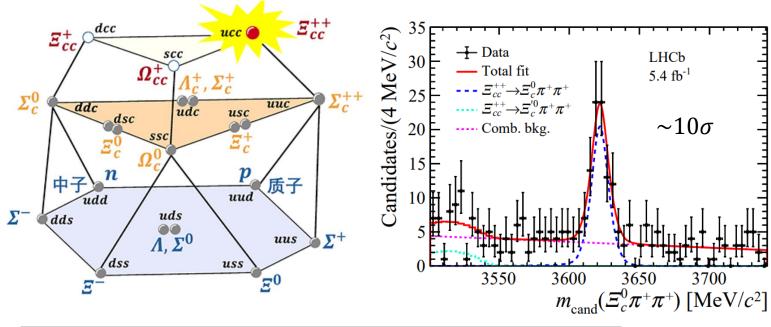
▶ 相对产额:

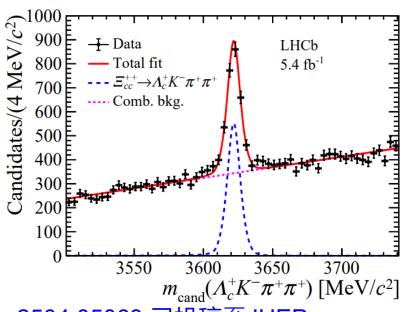
$$R = 0.20 \pm 0.03 \pm 0.03$$

首次发现 $B_c^+ o D_{(s)} h^+ h^-$

北大

LHCb-PAPER-2025-028 计划投稿PRD


$$\mathcal{R}(B_c^+ \to D^+ K^+ \pi^-) = (1.96 \pm 0.23 \pm 0.08 \pm 0.10) \times 10^{-3},$$

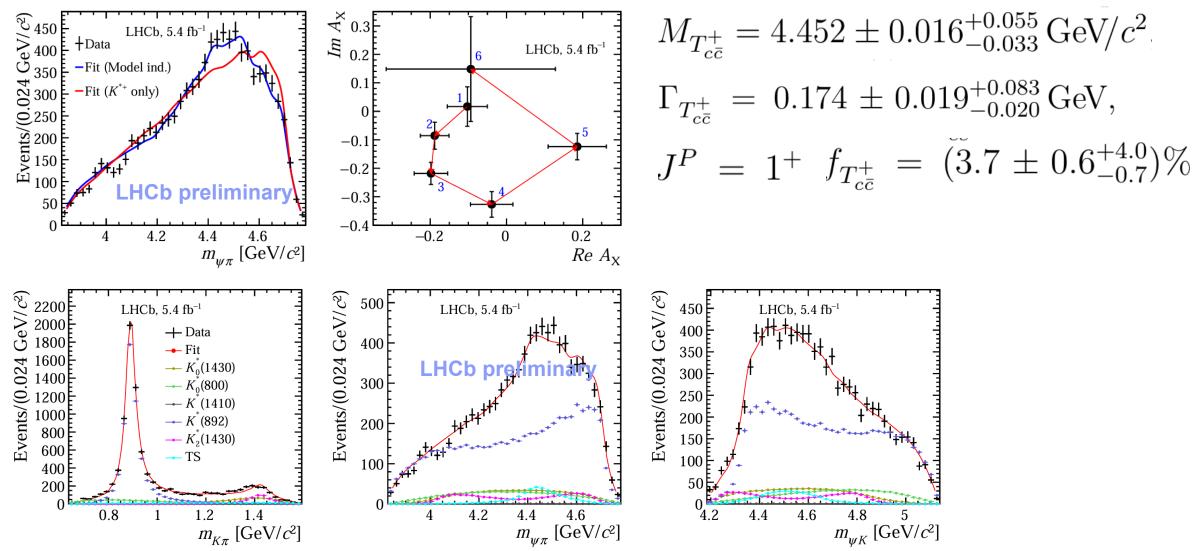

$$\mathcal{R}(B_c^+ \to D^{*+} K^+ \pi^-) = (3.67 \pm 0.55 \pm 0.24 \pm 0.20) \times 10^{-3},$$

$$\mathcal{R}(B_c^+ \to D_s^+ K^+ K^-) = (1.61 \pm 0.35 \pm 0.13 \pm 0.07) \times 10^{-3}.$$

发现 $\Xi_{cc}^{++} \to \Xi_c^0 \pi^+ \pi^+$

北大

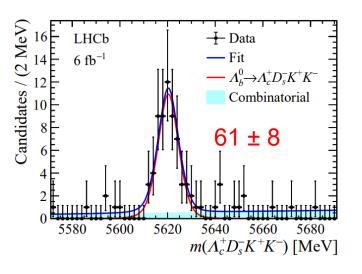
arXiv:2504.05063 已投稿至JHEP

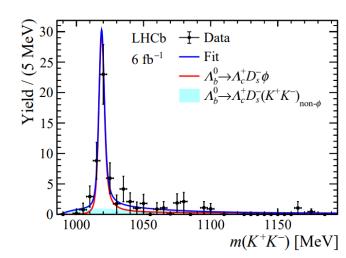

Category
$$N_{\text{sig}}$$
 N_{norm} $\varepsilon_{\text{sig}} \, [\times 10^{-4}]$ $\varepsilon_{\text{norm}} \, [\times 10^{-4}]$ TIS 62 ± 9 1279 ± 55 1.159 ± 0.023 2.547 ± 0.090 exTOS 21 ± 6 461 ± 34 0.286 ± 0.011 0.624 ± 0.034

$$\mathcal{R} = 0.107 \pm 0.016(\text{stat}) \pm 0.007(\text{syst})$$
, for the TIS sample,
 $\mathcal{R} = 0.100 \pm 0.029(\text{stat}) \pm 0.012(\text{syst})$, for the exTOS sample.

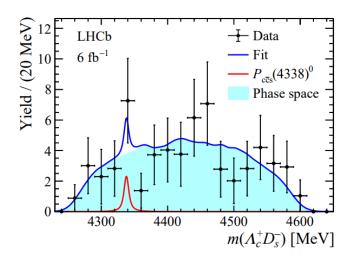
$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{0} \pi^{+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+})} = 1.37 \pm 0.18(\text{stat}) \pm 0.09(\text{syst}) \pm 0.35(\text{ext})$$

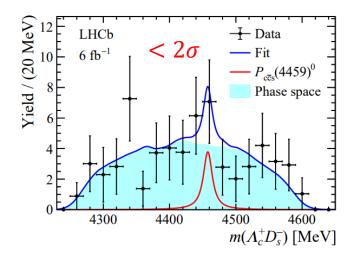
测到 $T_{c\bar{c}1}(4430)^+$ 四夸克态



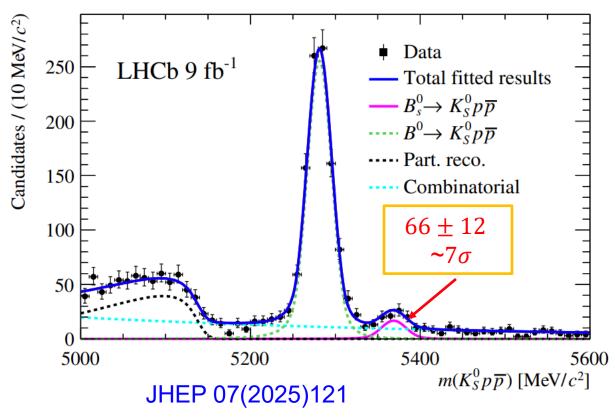


LHCb-PAPER-2025-039 计划投稿PRL


观测到 $\Lambda_b \to \Lambda_c^+ D_s^- K^+ K^-$ 衰变,寻找五夸克态


国科大

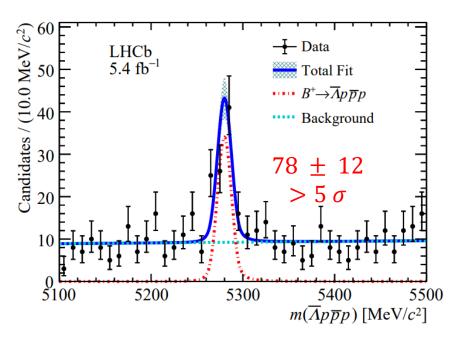
$$\frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^- K^+ K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)} = 0.0141 \pm 0.0019 \pm 0.0012,$$


$$\mathcal{R}_{P_{c\bar{c}s}^{0}} \equiv \frac{\mathcal{B}\left(\Lambda_{b}^{0} \to P_{c\bar{c}s}K^{+}K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+}D_{s}^{-}K^{+}K^{-}\right)} \cdot \mathcal{B}\left(P_{c\bar{c}s}^{0} \to \Lambda_{c}^{+}D_{s}^{-}\right),$$

$$\mathcal{R}_{P_{c\bar{c}s}(4459)^0} < 0.20(0.17)$$
 at the 95% (90%)

Phys. Rev. D 112, 052013 (2025)

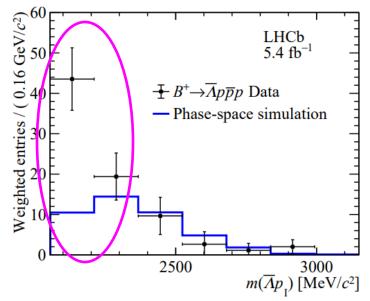
首次发现 $B_s \to K_s p\overline{p}$

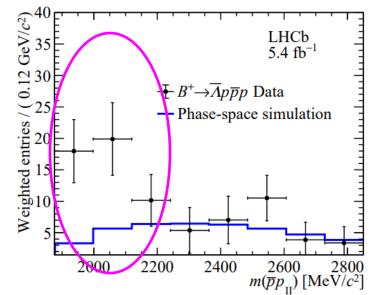

华中师大

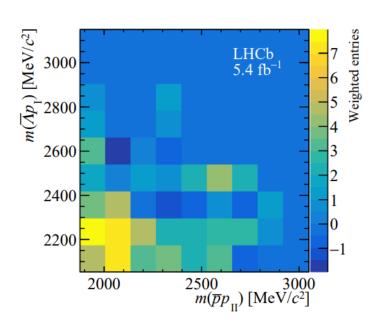
$$\mathcal{B}(B^0 \to K^0 p \overline{p}) = (2.82 \pm 0.08 \pm 0.12 \pm 0.10) \times 10^{-6},$$

$$\mathcal{B}(B_s^0 \to K^0 p \overline{p}) = (9.14 \pm 1.69 \pm 0.90 \pm 0.33 \pm 0.20) \times 10^{-7}.$$

首次发现 $B^+ \to \Lambda p \overline{p} \overline{p}$

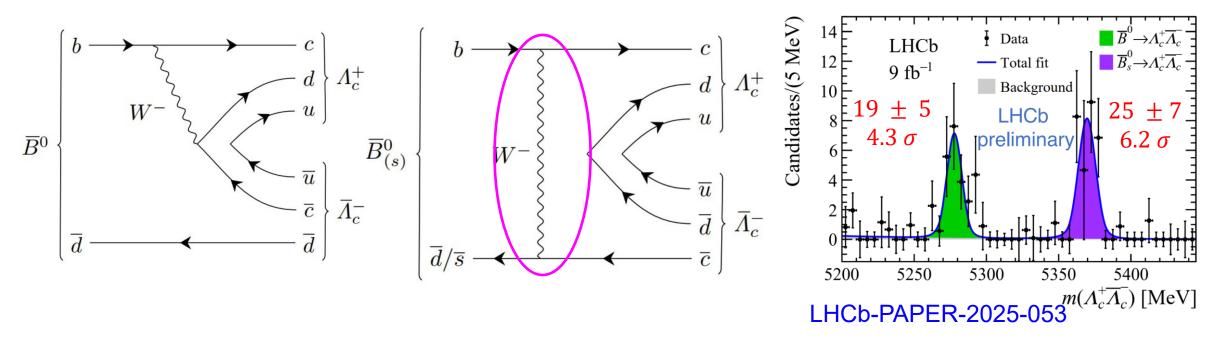



▶ 首次看到双重子-反重子阈值增强效应


$$\mathcal{B}(B^+ \to \bar{\Lambda}p\bar{p}p) = (2.08 \pm 0.34 \pm 0.12 \pm 0.26) \times 10^{-7}$$

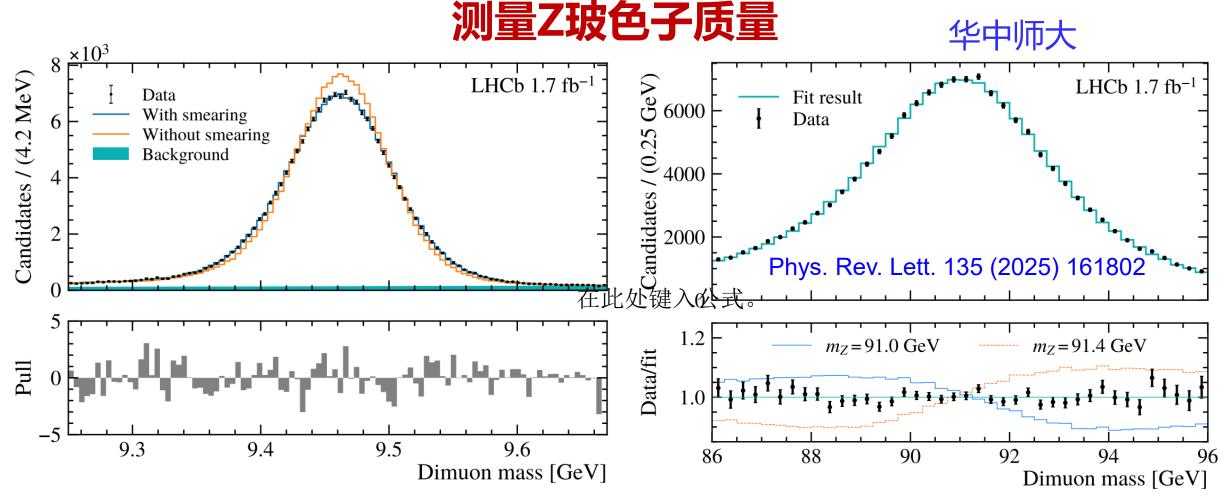
$$A_{CP} = (5.4 \pm 15.6 \pm 2.4)\%$$

arxiv:2508.16259 已投稿至PRL



首次发现 $B_s \to \Lambda_c^+ \overline{\Lambda}_c^-$

湖大/国科大

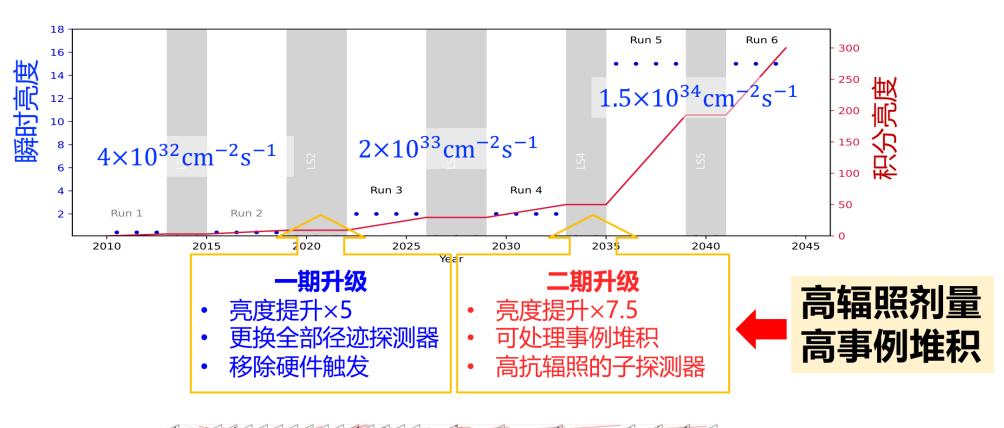


▶ 首次发现底介子含重子末态衰变中的w内交换机制,进一步深入理解了重子产生的QCD机制

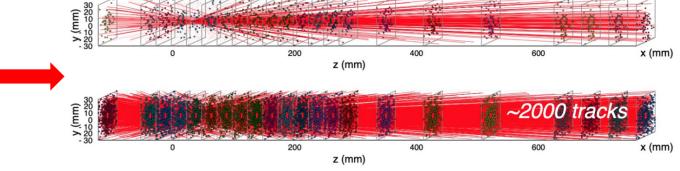
$$\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{\Lambda}_c^-) = (1.01^{+0.27}_{-0.28} \pm 0.08) \pm 0.15) \times 10^{-5},$$
 $\mathcal{B}(\overline{B}^0_s \to \Lambda_c^+ \overline{\Lambda}_c^+) = (5.0 \pm 1.3 \pm 0.5 \pm 0.8) \times 10^{-5},$

电弱物理

- 1 PRL (已发表)
- ➢首次在LHC上精确测量Z玻色子质量



$$ightharpoonup \Upsilon
ightarrow \mu^{+}\mu^{-}$$
进行动量的刻度


$$m_Z = 91185.7 \pm 8.3 \pm 3.9 \,\text{MeV},$$

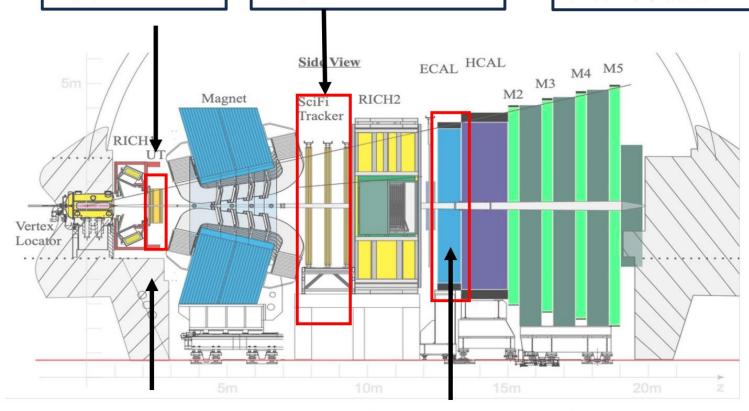
探测器运行以及升级服务

LHCb升级计划和挑战

顶点探测器 中的*pp*对撞 顶点和径迹

当前:事例堆积~5

未来:事例堆积~40


中国组的贡献

一期升级:

上游径迹 探测器UT

闪烁光纤径迹 探测器SciFi

网格计算、核心软件开发、数据处理、刻度...

二期升级:

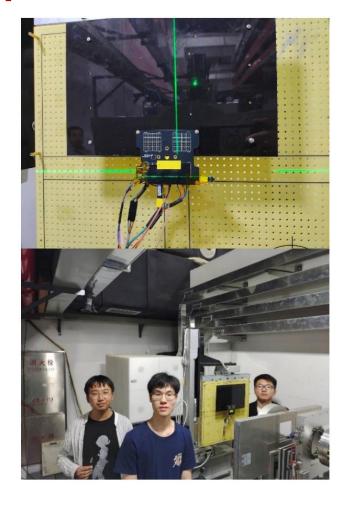

UT研发

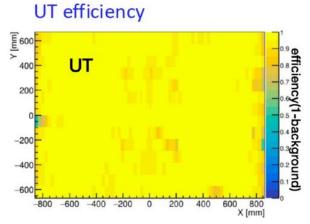
电磁量能器 ECAL研发

网格计算、 核心软件开发…

一期升级: 闪烁光纤径迹探测器SciFi

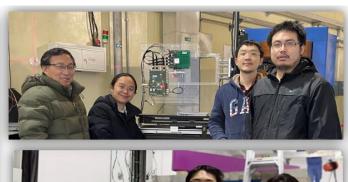
- ➤ 已完成升级,稳定运行物理取数 中国组(清华)承担PACIFC前端电子学板
 - □与海德堡合作设计研制
 - □负责完成了全部2528套的生产
- > 2025年继续在SciFi运行维护发挥重要作用
 - □ 先后X人常驻CERN参与SciFi交付调试和运
 - □ 担任SciFi Piquet值班,多次解决突发状况
- ➤ SciFi前端电子学测试系统 (FE Tester2)



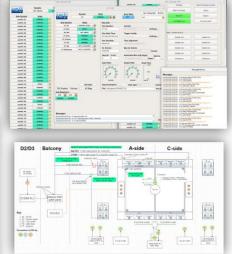


SciFi 探测器和前端电子学

一期升级:上游径迹探测器UT


- > 中国组在UT安装和运行中发挥骨干作用
- ➢ 完成升级,并在高事例堆积条件下参与物理取数, 效率和物理性能达到设计指标

运行效率均接近100%



Irradiation test at CIAE and CSNS

ECS and DSS panels designed by IHEP

二期升级: 硅像素上游径迹探测器(UP)研发项目组架构

高能所 (IHEP)

湖南大学 (HNU)

兰州大学 (LZU)

华中师大 (CCNU)

国科大 (UCAS)

UT Management Structure PL: Jianchun Wang (IHEP, JT/UP)

DPL: Tomasz Skwarnicki (Syracuse, UT), Stefano Panebianco (IRFU, UP)

Yiming Li / IHEP
Fabrice Guilloux / IRFU
Franck Gastaldi / LLR

Sensor chip design and characterization

Charlotte Riccio / IRFU

Jiesheng Yu / HNU

Module stave and mechanical structure

Benjamin Audurier / IRFU Xuhao Yuan / IHEP

Simulation, reconstruction & performance

Manuel Guittiere / Subatech

Overall mechanics, integration & services

Kai Chen / CCNU

Readout scheme, DAQ firmware & software



二期升级: 传感器芯片、探测模块以及支撑条

➤ 首次研制基于国产的先进55nm高压CMOS芯片,测试验证工艺可行性

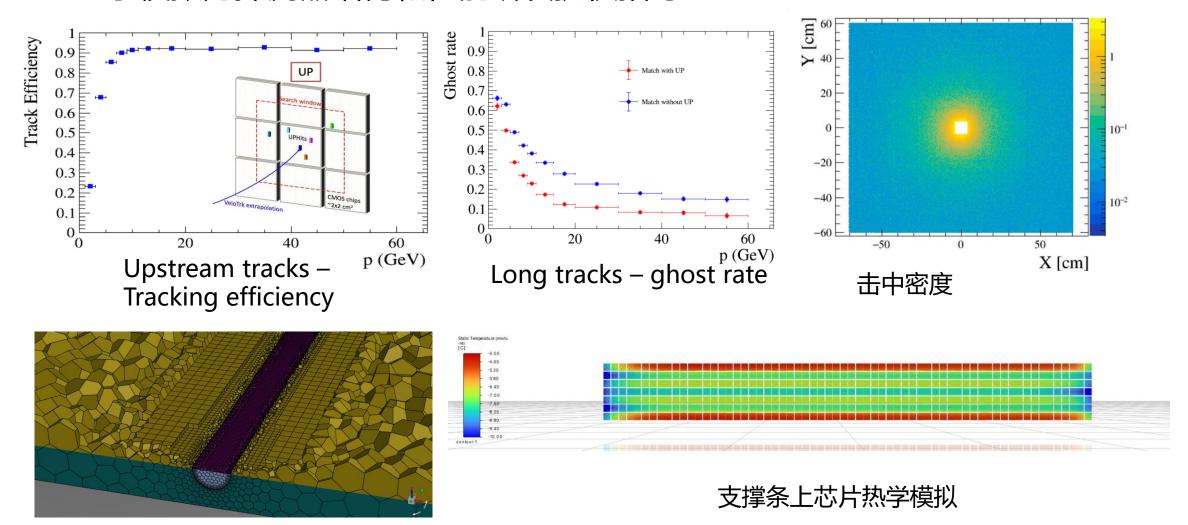
□ 第三代: 专为实现良好的时间分辨率和适中的功耗而设计

> 探测模块以及纯支撑条的组装

CMOS芯片: COFFEE3

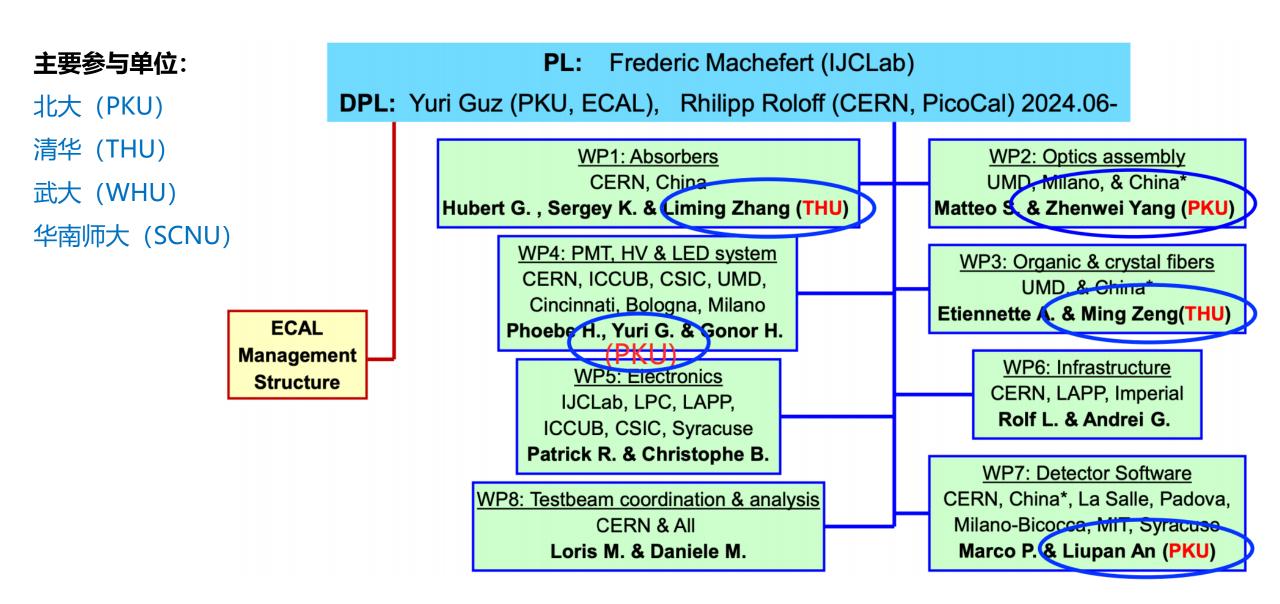

1st dummy sensor

1st dummy hybrid

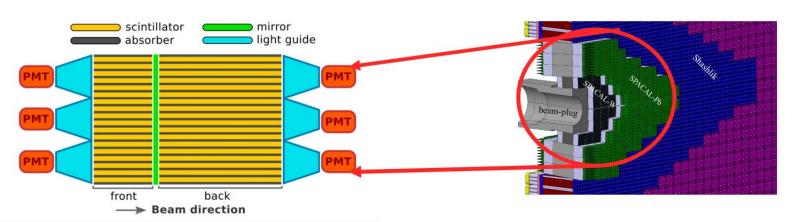


2025年4月

2025年6月


二期升级: UP模拟

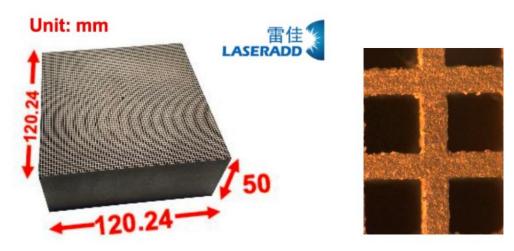
▶基于模拟为探测器结构和性能研发提供指导


支撑条上网格划分(1600万)

二期升级: 电磁量能器研发项目组架构

二期升级: SPACAL量能器

➤ 最核心部位采用基于GAGG晶体+钨的SPACAL量能器 (Spaghetti Calorimeter)


读出时间信息: PicoCal

闪烁光纤: GAGG (抗辐照、光产额高)

主要目标:在满足抗辐照性能和光产额要求的条件下,降低光衰减时间(10 ns以下),提高时间分辨率,降低溢出(spillover)效应

钨吸收体:辐射长度短、莫里哀半径小

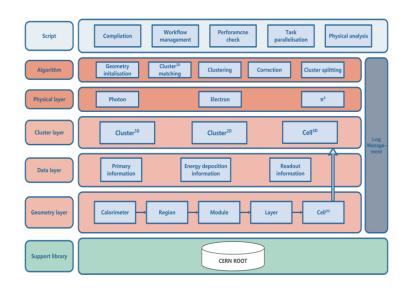
主要目标: 提高3D打印的表面粗糙度和打印精度

基本达到技术指标要求

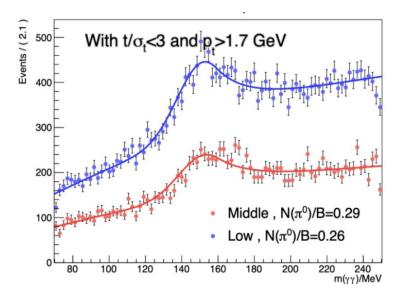
二期升级: GAGG闪烁晶体研发

待素材

二期升级: ECAL 模拟


➤ W-GAGG原型机模拟

- 理解束流实验结果
- 优化原型机设计


> 重建算法开发

- 挖掘探测器双端读出设计
- 充分利用时间信息

> 物理衰变道性能研究

- 研究不同衰变道的物理性能
- 不同探测器设计的性能对比

实时数据分析(Real Time Analysis, RTA)

待素材

国际会议报告

待素材

敬请关注LHCb的结果

大会报告 ×4

钱文斌(国科大), CP violation 李可陈(河南师大), rare decays 安刘攀(北大), Hadron Spectroscopy 李衡讷(华南师大), LHCb Upgrade

硬件报告×12

Zhiyang Yuan	R&D on the fast GAGG for LHCb upgrade II
Xiaofan Pan	Development and test-beam measurements of LHCb PicoCal modules
Zifan Li	Software development for LHCb ECAL upgrade
张佳辰	Simulation studies for LHCb ECAL upgrade
冯铭婕	The simulation and reconstruction studies on LHCb UP detector for Upgrade II
王继科	Development of 3D-Printed Tungsten Absorbers for the LHCb ECAL Upgrades
曾程	Sensor development for LHCb Upstream Pixel Tracker
王智颉	LHCb UP Module and Stave Assembly Development
袁源	Operation and performance of LHCb Upstream Tracker
李佩莲	Real-time analysis at LHCb for Run 3 and beyond
李天歌	UP bare stave design and thermal study (Poster)
刘涵兵	Test of signal integrity in flex cable (Poster)

物理分会报告×13

王剑桥	Flow measurements at LHCb experiment
戴鑫琛	CP violation in Lb2pKpipi and Lb2Jpsippi decays
任赞	Recent results on pentaqaurk studies at LHCb
康有恩	Recent LHCb results on open charm and charmonium production
童星昱	Study of charmless B->VV decays at LHCb
牟泽清	Observation of Bc->Dhh decays
吴杰	Measurement of CP Violation in B0s→J/ψK*(892)0 Decays and Constraints on Penguin Contributions
陈泽文	Measurement of branching fractions and CP asymmetries in Lambda_b0(Xi_b0) -> p KS h- decays
唐迎澳	First observation of the charmless baryonic decay ay $B+\rightarrow \Lambda^-pp^-p$
王梦洁	Evidence for the rare decay B+→Λ¯pμ+μ−
刘端晴	Observation of the decay Bs0->K0ppbar and measurement of the Bds->K0ppbar branching fractions
侯睿文	Determination of direct CP asymmetries for B+→K0Sπ+and B+→K0SK+ decays and measurement of the ratio of their branching fractions, and search for the rare decay B+c→K0SK+
邓剑桥	Measurement of the Z-boson mass

2025年总结

- ➤ LHCb中国组实力稳步增强: 12个单位, 教师49人, 总人数221人
- > 在合作组内继续保持重要影响力:多人担任物理工作组召集人等职务
- 物理成果突出:新增物理成果14项
 - 口 CP破坏和稀有衰变: 7项
 - 口强子物理(新强子态、强子性质测量):9项
 - 口电弱物理: 1项
- > 探测器运行和升级的贡献稳步增加
 - 口完成SciFi和UT一期升级
 - 口 三期运行的调试和数据采集工作
 - 口 负责UT和ECAL二期升级的研发工作
- > 未来前景
 - 口 2026年将完成三期取数,有效统计量有望提高5倍以上
 - 口二期升级为进一步参与和负责核心技术研发提供条件

致谢

- > 科技部
 - □ 国家重点研发计划 "大科学装置前沿研究"
- > 国家自然科学基金委
 - NSFC-CERN国际合作项目
 - □ 基础科学中心项目
 - □ 积极争取竞争性项目: 青年、面上、重点、人才项目
- > 教育部
 - □ 通过各高校支持的学科(启动)建设经费
- > 中国科学院
- > 成员单位和其他渠道的人才项目
- > 感谢科技部、基金委、科学院、教育部和成员所在单位多年来的支持!