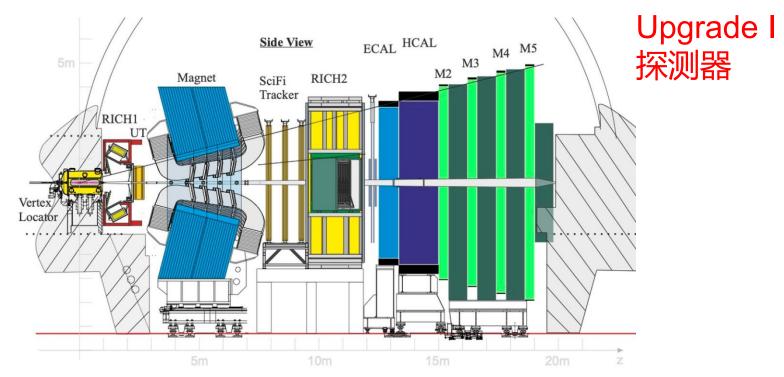


LHCb中国组2025年度总结

前洁晟(湖南大学) 代表LHCb中国组

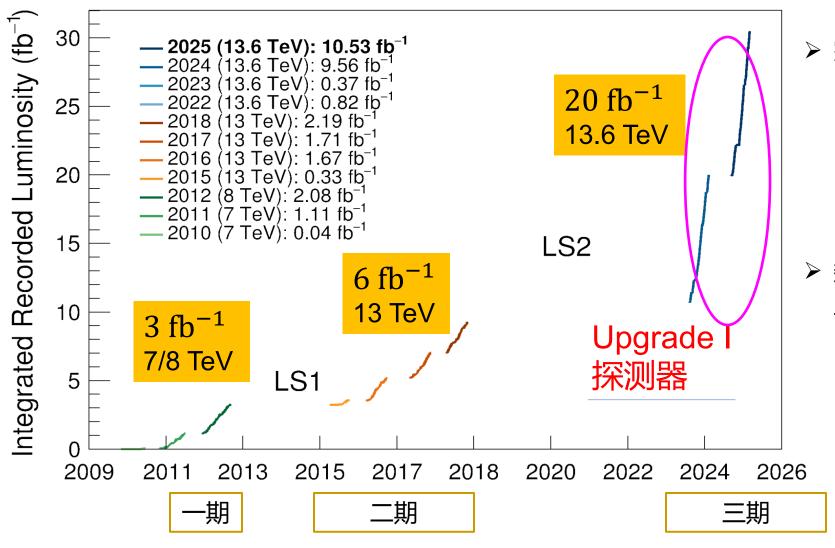


第十届中国LHC物理研讨会 新乡河南师范大学 2025年10月29-11月3日



提纲

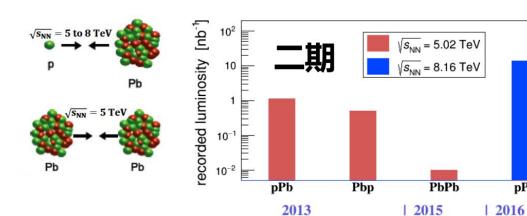
- **➢ LHCb实验概况**
- **▶ LHCb中国组单位与人员情况**
- > 2025年度亮点物理成果
- > 探测器运行、升级和服务工作
- ≻总结与鸣谢

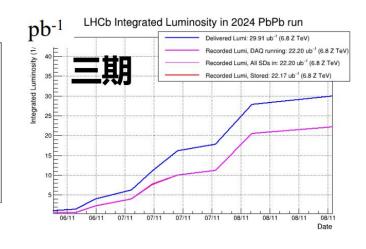

LHCb实验及其主要科学目标

LHCb合作组: 26个国家, 107个单位, 1812个成员

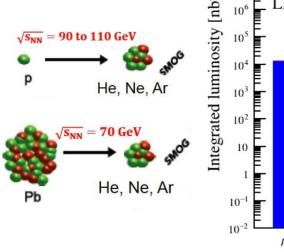
- ➤ 间接寻找新物理:电荷宇称破坏 (CPV) 、稀有衰变
- ▶ 理解强相互作用:强子态、强子产生机制
- ▶ 其它: 电弱物理, 重离子物理, ...

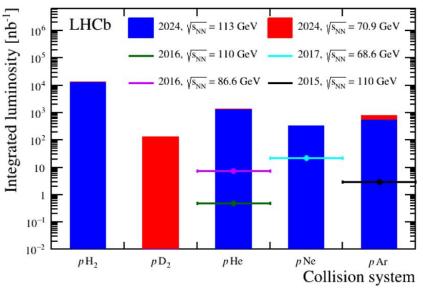
LHCb质子-质子数据

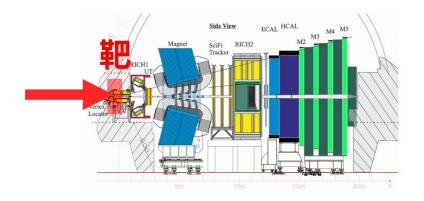

- > 完成Upgrade I升级,稳定运行取数
 - □ 瞬时亮度提高近5倍, 2025新增 数据 10 fb⁻¹
 - □ 总量预计可达 25 fb⁻¹
 - □ 触发效率提高约2倍
- 数量最多、种类最全的底强子和粲强子样本


LHCb重离子数据

pPb


Pbp


对撞 模式



气体固定 靶模式

PbPb

| 2018

LHCb独有: 质心能量和对撞系统

LHCb中国组

现有12家单位,单位数排名2/25

研究队伍: 教师54人, 成员233人, 作者135人

(截至2025年10月29号)

LHCb中国组

单位	教师人数	成员人数	作者人数	教师名称
清华大学	6	28	28	张黎明,朱相雷,龚光华,曾鸣,邓智,张志财
华中师范大学	5	33	·19	谢跃红,尹航,张冬亮,周晓康,陈凯
国家科学院大学	7	43	31	郑阳恒,吕晓睿,何吉波,钱文斌,刘倩,傅金林, 李佩莲
武汉大学	3	13	4	孙亮,蔡浩,王纪科
高能物理研究所	8	29	21	王建春,李一鸣,陈缮真,徐子骏,袁煦昊,姜晓巍,周扬, 张慧
华南师范大学	3	14	8	李衡讷, 刘国明, 胡继峰
北京大学	5	42	24	高原宁,杨振伟,张艳席,安刘攀,Yury Guz
湖南大学	5	8	5	俞洁晟,张书磊,戴凌云,陈卓俊,杨易
兰州大学	3	11	7	刘凯,李培荣,Miroslav SAUR
河南师范大学	3	3	2	李可陈,王艺龙,钟翠
西北工业大学	5	8	5	魏晓敏、赵瑞光、王佳、郑然、薛菲菲
中国科学技术大学	1	1	0	刘建北
总数	54	233	135	7

LHCb国际合作组任职

- ➤ 管理顾问委员会 (Management Advisory Board)

 □ 王建春 (2020.09起)
- ➤ 成员委员会 (Membership Committee)
 - □ 李一鸣 (2024.12-2026.12)
 - □ 杨振伟 (2021.01-2024.12)
- ➤ 报告人委员会 (Speakers Bureau)
 - □ 张艳席 (2023.12~2025.12)
 - □ 李一鸣 (2023.10~2025.09) deputy chair
 - □ 孙亮 (2021.10~2023.09)
 - □ 张黎明 (2019.10~2021.09)
 - □ 杨振伟 (2017.10~2019.09)
- ➤ 编辑委员会 (Editorial Board)
 - □ 谢跃红 (2022.12~2024.11)
 - □ 何吉波 (2020.12~2022.11)
- > 探测器运行和升级
 - □ 王建春 (2024.03~2026.02) UT项目负责人
 - □ 杨振伟 (2024.09起) 二期升级计划组 (U2PG) 成员
 - □ Yury Guz (2023.01-2025.12) 量能器项目副负责人

- > 物理分析工作组召集人
 - □ 尹航 (2023.01~2025.03)
 - □ 钱文斌 (2024.01~2025.03)
 - □ 李佩莲 (2022.01~2024.03)
 - □ 安刘攀 (2021.01~2023.03)
 - □ 何吉波 (2019.01~2021.03)
 - □ 张艳席 (2018.01~2021.03)
 - □ 钱文斌 (2018.01~2020.03)
 - □ 张黎明 (2016.01~2018.03)
 - □ 杨振伟 (2015.01~2017.03)
 - □ 谢跃红 (2014.01~2016.03)
- > 其他物理和运行工作召集人
 - □ 张黎明 (2023.01~2025.03) 统计 方法工作组
 - □ 盛书琪 (2024.01~2026.03) 离线 数据处理工作组

2025年度亮点物理成果

6篇去年投稿今年发表

CP破坏	测量Λ _b ⁰ 和Λ _c ⁺ 衰变的宇称破坏参数以及CP破坏	Phys. Rev. Lett. 133 (2024) 261804
	于 $\Lambda_{ m b}^0 ightarrow \Lambda^0 K^+ K^-$ 衰变观测到重子 ${ m CP}$ 破坏迹象	Phys. Rev. Lett. 134 (2025) 101802
	首次发现 $B^+ o J\psi\pi^+$ 的CP破坏现象	Phys. Rev. Lett. 134, 101801(2025)
强子物理	首次测量 $\Xi_c(3055)$ 自旋、宇称	Phys. Rev. Lett. 134 (2025) 081901
	发现显粲四夸克态 $T_{cs0}^*(2870)$ 新衰变模式	Phys. Rev. Lett. 134 (2025) 101901
	发现 $D_{s1}(2460) o D_s^+\pi^+\pi^-$ 衰变的奇异特性	Science Bulletin 70 (2025) 1432

2025年度中国组主导的物理成果汇总

已投稿11篇(其中6篇已发表),7篇即将投稿

2025年度中国组主导的物理成果汇总

- ▶已投稿11篇(其中6篇已发表),7篇即将投稿
- ▶重点开展方向及亮点成果
 - □重子CP破坏的发现
 - □底介子含重子末态的稀有衰变
 - □z玻色子的质量精确测量
 - □双重味强子和多夸克态

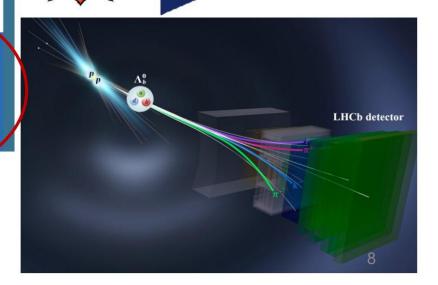
重子的CP破坏

1956

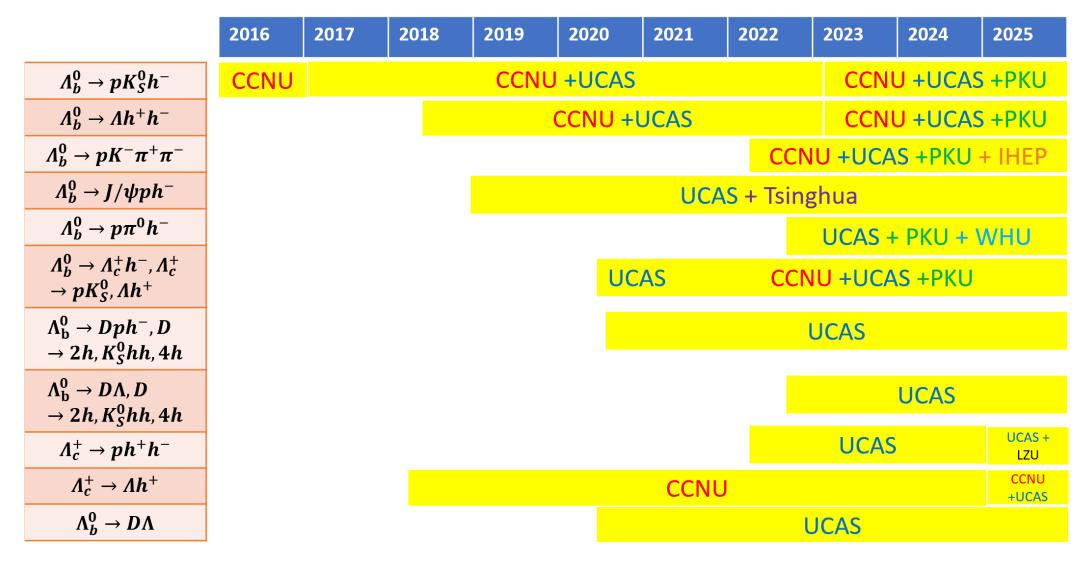
Parity violation
T. D. Lee,
C. N. Yang,
C. S. Wu et al.

1964
Strange mesons: *CP* violation in *K*⁰
decays
J. W. Cronin,
V. L. Fitch *et al*.

2001 Beau

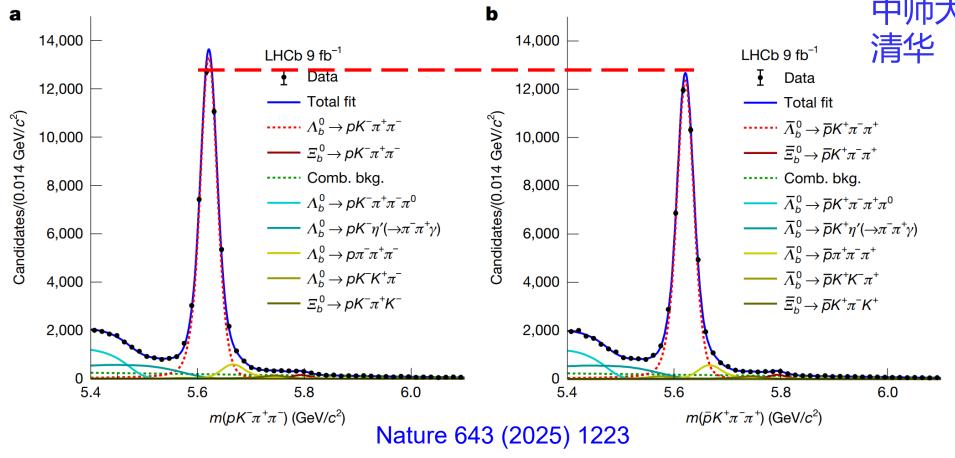

Beauty mesons:
CP violation in B⁰
decays
BaBar and Belle
collaborations

2025Beauty baryons:
CP violation in Λ_b^0 decays
LHCb collaboration


1963 Cabibbo Mixing N. Cabibbo

1973
The CKM matrix
M. Kobayashi,
T. Maskawa

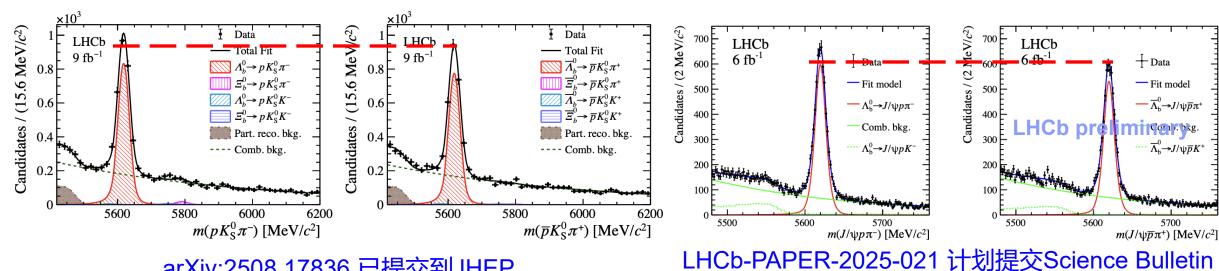
2019
Charm mesons:
CP violation in D⁰
decays
LHCb collaboration


LHCb中国组在重子CP破坏方面的研究

> 9年几乎寻找了所有可能的过程

首次发现 $\Lambda_b^0 o pK^-\pi^+\pi^-$ CP破坏

北大/国科大/华 中师大/高能所/ 清华


$$A_{CP} = (2.45 \pm 0.46 \pm 0.10)\%$$

➤ CP破坏大小超过5σ显著性

Λ_h^0 重子CP破坏的其他过程

华中师大/北大/ 国科大/清华

LHCb preliminary

arXiv:2508.17836 已提交到JHEP

> 未发现显著性的CP破坏迹象

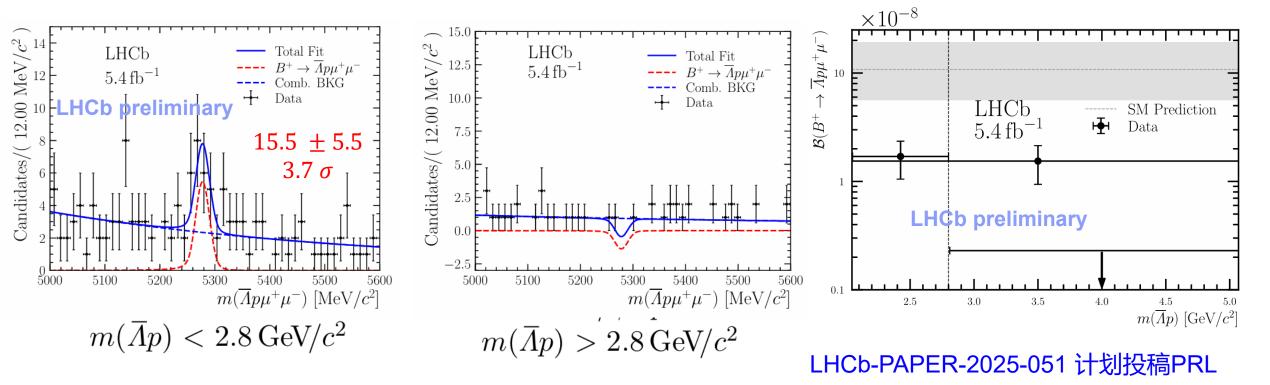
$$A^{CP}(\Lambda_b^0 \to pK_S^0\pi^-) = (3.4 \pm 1.9 \pm 0.9)\%$$

$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(\Lambda_b^0 \to J/\psi p \pi^-) - \mathcal{A}_{CP}(\Lambda_b^0 \to J/\psi p K^-)$$

= $(4.03 \pm 1.18 \pm 0.23)\%$,

发现5夸克态的衰变过程中看到了CP破坏迹象

$$\Delta A_{CP} = (4.31 \pm 1.06 \pm 0.28)\%.$$

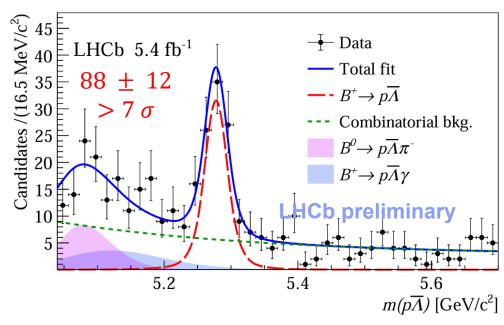

 \triangleright 3.3 σ 显著性的CP破坏迹象

底介子含重子末态的稀有衰变

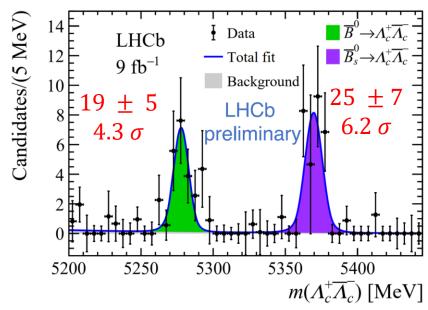
包含半轻、两体、三体及四体多种衰变模式

半轻衰变: 发现 $B^+ \rightarrow p \Lambda \mu^+ \mu^-$ 迹象

武大


$$\mathcal{B}(B^+ \to \bar{\Lambda} p \mu^+ \mu^-)|_{m(\bar{\Lambda} p) < 2.8 \, \mathrm{GeV}/c^2} = (1.70 \pm 0.60_{\mathrm{stat}} \pm 0.19_{\mathrm{syst}} \pm 0.14_{\mathrm{ext}}) \times 10^{-8}, \; \text{LHCb preliminary}$$

> 比标准模型预言低一个量级


华中师大/湖大

两体衰变: $B^+ o \Lambda \overline{p}$, $B^0_s o \Lambda_c^+ \overline{\Lambda}_c^-$

湖大/国科大

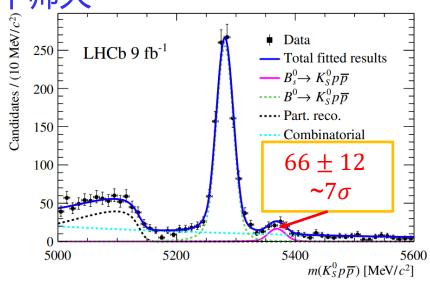
LHCb-PAPER-2025-044 计划投稿RPL

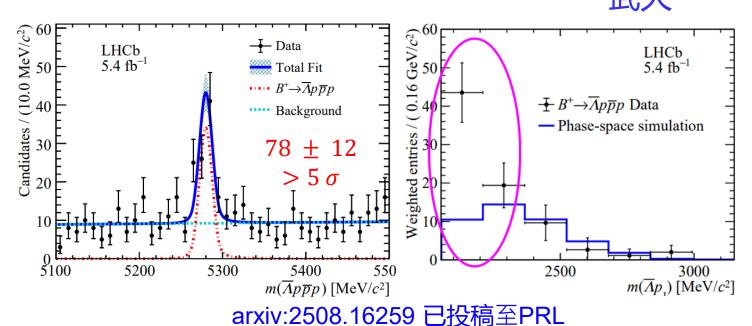
LHCb-PAPER-2025-053 计划投稿RPL

$$\mathcal{B}(B^{+} \to p\overline{\Lambda}) = (1.24 \pm 0.17 \pm 0.05 \pm 0.03) \times 10^{-7}$$

$$\mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-}) = (1.0077_{-0.2784}^{+0.2672} (\text{stat}) \pm 0.0841 (\text{syst}) \pm 0.1462 (\mathcal{B})) \times 10^{-5},$$

$$\alpha_{B} = 0.87_{-0.29}^{+0.26} \pm 0.09,$$

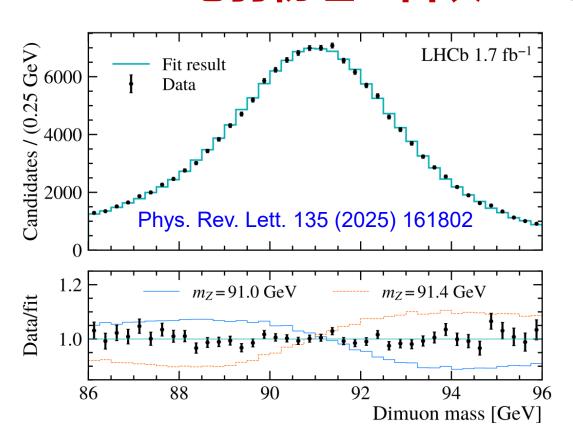

$$\mathcal{B}(\overline{B}_{s}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-}) = (5.0182 \pm 1.3152 (\text{stat}) \pm 0.4943 (\text{syst}) \pm 0.7503 (\mathcal{B})) \times 10^{-5},$$


$$\mathcal{B}(\overline{B}_{s}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-}) = (5.0182 \pm 1.3152 (\text{stat}) \pm 0.4943 (\text{syst}) \pm 0.7503 (\mathcal{B})) \times 10^{-5},$$

 \blacktriangleright 首次发现底介子两体含重子末态衰变中的w内交换机制和 $b \to s$ 圈图机制,进一步深入理解了重子产生的QCD机制

多体衰变: 首次发现 $B_s^0 \to K_s^0 p \overline{p}$, $B^+ \to \Lambda p \overline{p} \overline{p}$

华中师大


JHEP 07(2025)121

 $\mathcal{B}(B^0 \to K^0 p \overline{p}) = (2.82 \pm 0.08 \pm 0.12 \pm 0.10) \times 10^{-6},$ $\mathcal{B}(B_s^0 \to K^0 p \overline{p}) = (9.14 \pm 1.69 \pm 0.90 \pm 0.33 \pm 0.20) \times 10^{-7}$

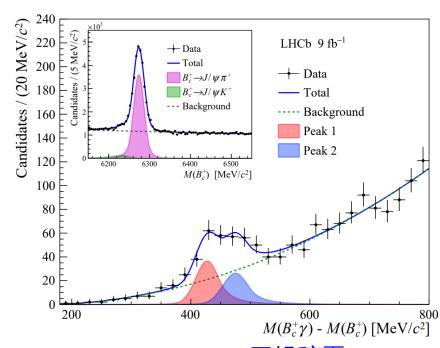
$$\mathcal{B}(B^+ \to \overline{\Lambda}p\overline{p}p) = (2.08 \pm 0.34 \pm 0.12 \pm 0.26) \times 10^{-7}$$

 $\mathcal{A}_{CP} = (5.4 \pm 15.6 \pm 2.4)\%$

> 首次看到双重子-反重子阈值增强效应

电弱物理:首次LHC上精确测量Z玻色子质量 华中州

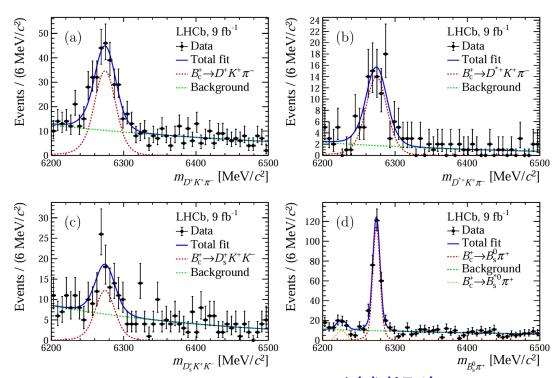
$$m_Z = 91185.7 \pm 8.3 \pm 3.9 \,\text{MeV},$$


➤ LHCb未来有望挑战LEP对Z玻色子质量测量的精度

强子物理

重味强子结构深入研究

B_c^+ 介子的深入研究


北大

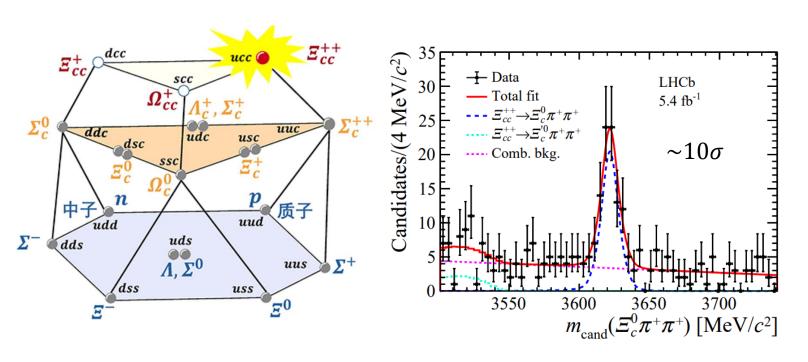
arxiv: 2507.02149 已投稿至PRL arxiv: 2507.02142 已投稿至PRD

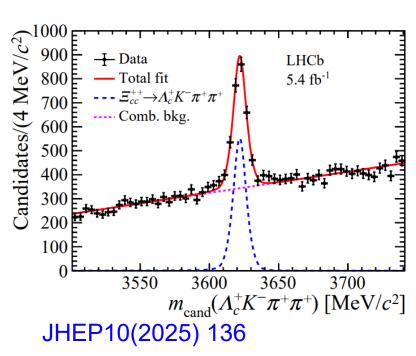
➤ 发现 B⁺ 介子激发态 (1P)

$$M_1 = 6704.8 \pm 5.5 \pm 2.8 \pm 0.3 \text{ MeV/}c^2$$

 $M_2 = 6752.4 \pm 9.5 \pm 3.1 \pm 0.3 \text{ MeV/}c^2$

LHCb-PAPER-2025-028 计划投稿PRL

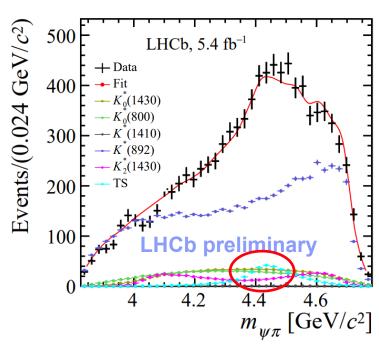

▶首次发现 $B_c^+ \rightarrow D_{(s)}h^+h^-$

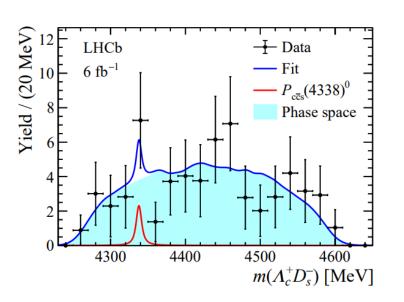

$$\mathcal{R}(B_c^+ \to D^+ K^+ \pi^-) = (1.96 \pm 0.23 \pm 0.08 \pm 0.10) \times 10^{-3},$$

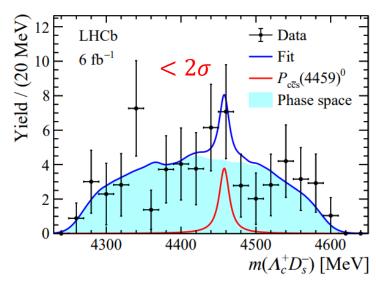
$$\mathcal{R}(B_c^+ \to D^{*+} K^+ \pi^-) = (3.67 \pm 0.55 \pm 0.24 \pm 0.20) \times 10^{-3},$$

$$\mathcal{R}(B_c^+ \to D_s^+ K^+ K^-) = (1.61 \pm 0.35 \pm 0.13 \pm 0.07) \times 10^{-3}.$$

双粲重子的深入研究: 发现 $\Xi_{cc}^{++} \to \Xi_c^0 \pi^+ \pi^+$ 北大


$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{0} \pi^{+} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+})} = 1.37 \pm 0.18(\text{stat}) \pm 0.09(\text{syst}) \pm 0.35(\text{ext})$$


 \triangleright 第三个发现 Ξ_{cc}^{++} 的衰变过程,为检验理论模型提供更多的实验测量


多夸克态的深入研究

北大

国科大/兰大

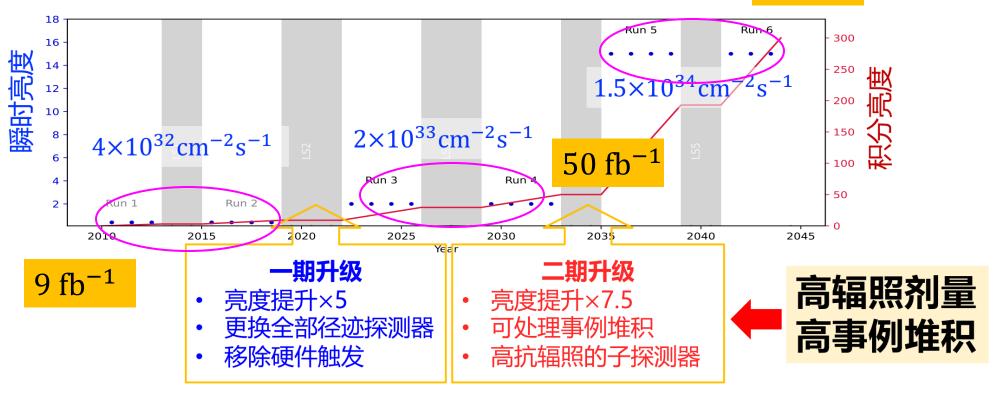
Phys. Rev. D 112, 052013 (2025)

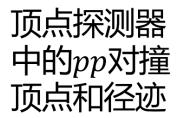
LHCb-PAPER-2025-039 计划投稿PRD letter

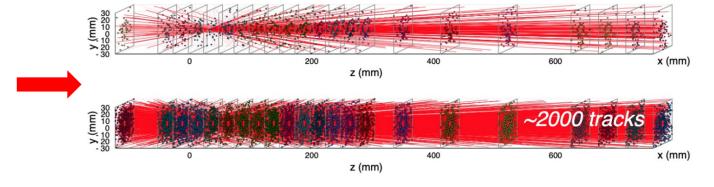
ho 首次采用强子分子模型和包含三角图振幅的完整振幅分析,为揭示 $T_{c\bar{c}1}(4430)^+$ 结构的本质提供了重要线索

$$\begin{split} M_{T_{c\bar{c}}^{+}} &= 4.452 \pm 0.016_{-0.033}^{+0.055} \, \mathrm{GeV}/c^{2}, \\ \Gamma_{T_{c\bar{c}}^{+}} &= 0.174 \pm 0.019_{-0.020}^{+0.083} \, \mathrm{GeV}, \end{split}$$

$$J^P = 1^+$$
 LHCb preliminary


ightharpoonup 未有明显信号($< 2\sigma$),期待更高统计量的数据开展研究


$$\frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^- K^+ K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)} = 0.0141 \pm 0.0019 \pm 0.0012,$$


探测器运行以及升级服务

LHCb升级计划和挑战

240 fb⁻¹

当前:事例堆积~5

未来:事例堆积~40

中国组的贡献

一期升级:

上游径迹 探测器UT

闪烁光纤径迹 探测器SciFi

网格计算、核心软件开发、数据处理、刻度...

投入4个单位(北大/清华/武大/华南师大):研发/生产占50%

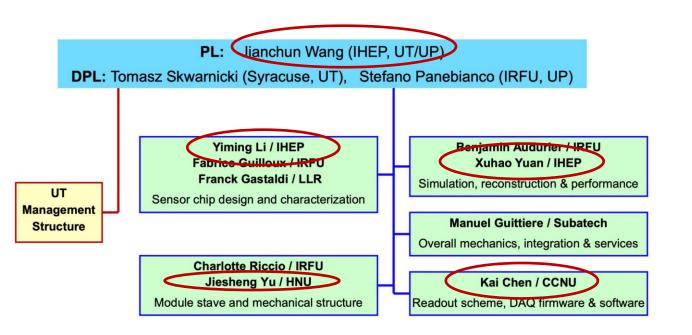
二期升级:

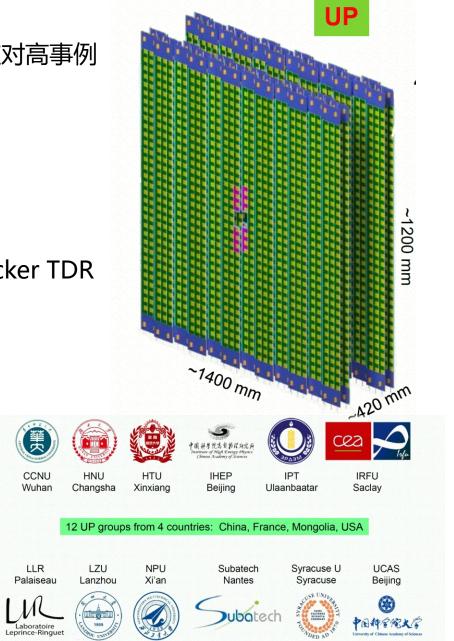
UT->UP (硅 像素探测器) 电磁量能器 ECAL研发 网格计算、 核心软件开发...

一期升级贡献总结

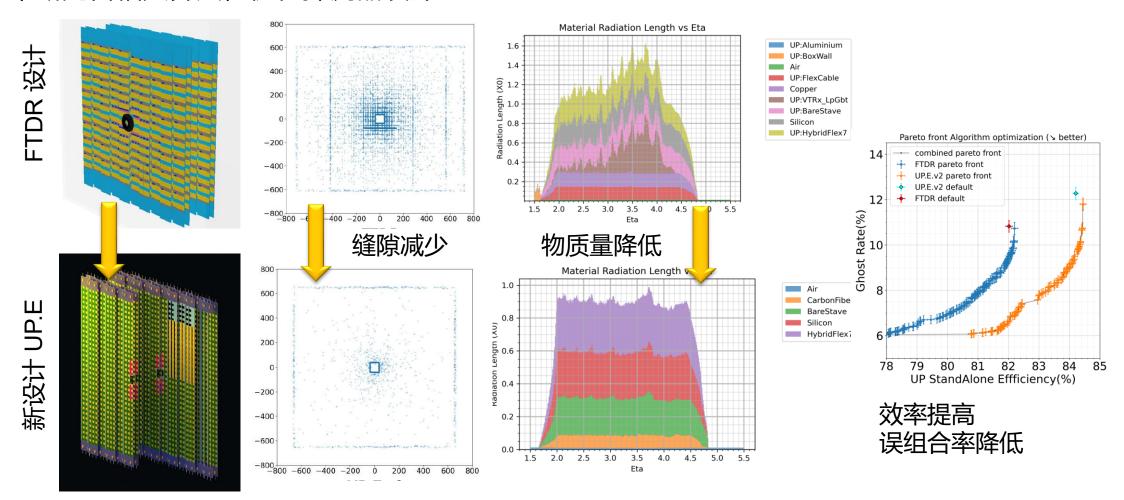
- ➤ 闪烁光纤径迹探测器 (SciFi) 已完成升级,稳定运行物理取数
 - □ 中国组 (清华) 承担PACIFC前端电子学板
 - 与海德堡合作设计研制
 - 负责完成了全部2528套的生产
 - □ 2025年继续在SciFi运行维护发挥重要作用
 - □ SciFi前端电子学测试系统 (FE Tester2)

- ▶ 中国组在UT集成、安装、运行中起到骨干作用
- 完成升级,并在高事例堆积条件下参与物理取数,效率和物理 性能达到设计指标



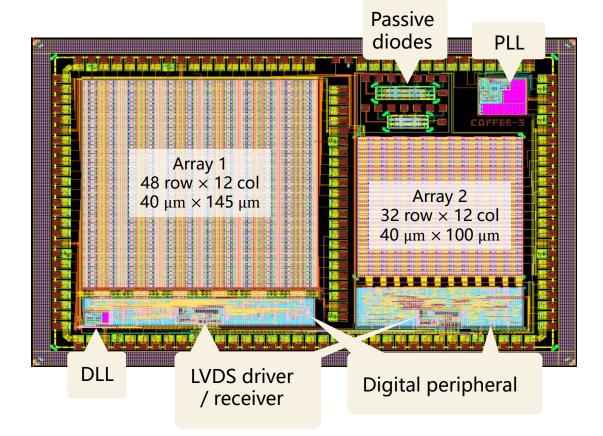

SciFi 探测器和前端电子学

二期升级: 硅像素上游径迹探测器 (UP)


- ➤ UT须升级为硅像素型探测器 (Upstream Pixel detector), 应对高事例率、强辐照环境
 - □ 四层、共约 7m² 单片型像素探测器
- ▶ 4国12家单位参与,中国组领导研发
 - □ 2021年首次在 Framework TDR 中提出 UP 概念
 - □ 拟于2026年下半年发布《径迹探测器技术设计报告》Tracker TDR

UP模拟和探测器性能研究

➤ 从FrameworkTDR提出概念以来,在LHCb软件模拟框架中全面实现探测器数字化和物理模拟,不断完善相关算法,优化探测器设计

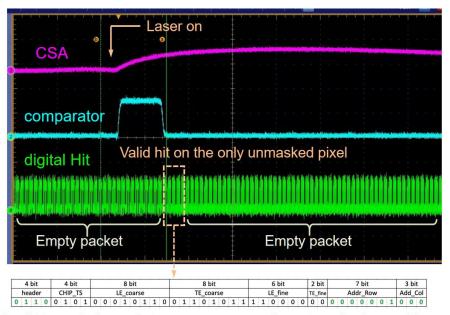


UP传感器芯片研发

- ➤ 基于国产55nm先进工艺,研发小尺寸芯片原理样机
 - □针对UP 高空间分辨率、高事例率环境设计
 - □4mm x 3mm, 2025年1月流片, 目前已取得初步测试结果

架构1:

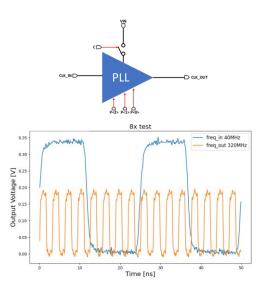
像素内CMOS数字电路 最大程度发挥55nm工艺优势;集成像素内TDC

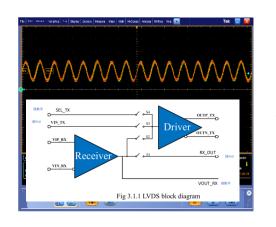


架构2:

像素内NMOS数字电路 更简单的像素内电子学设 计,具有低功耗的优势

UP传感器芯片研发


- >多个IP模块工作正常,为未来大规模阵列芯片设计打下基础

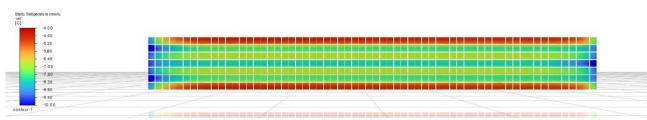

A valid transmission packet corresponding to a hit

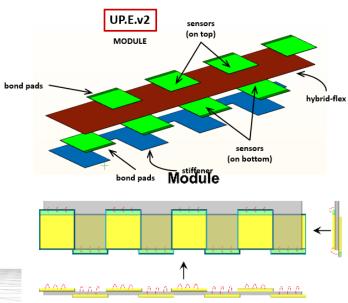
Correct row & column address

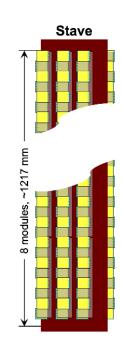
单个像素上激光信号测试,可读出预期击中像素地址

PLL锁相环电路: VCO和倍频电路均可 在640MHz正常工作

LVDS 收发器 可在640MHz 时钟下工作



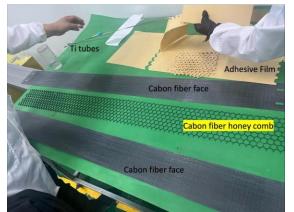

DLL 延迟链电路正常工作


29/10/2025

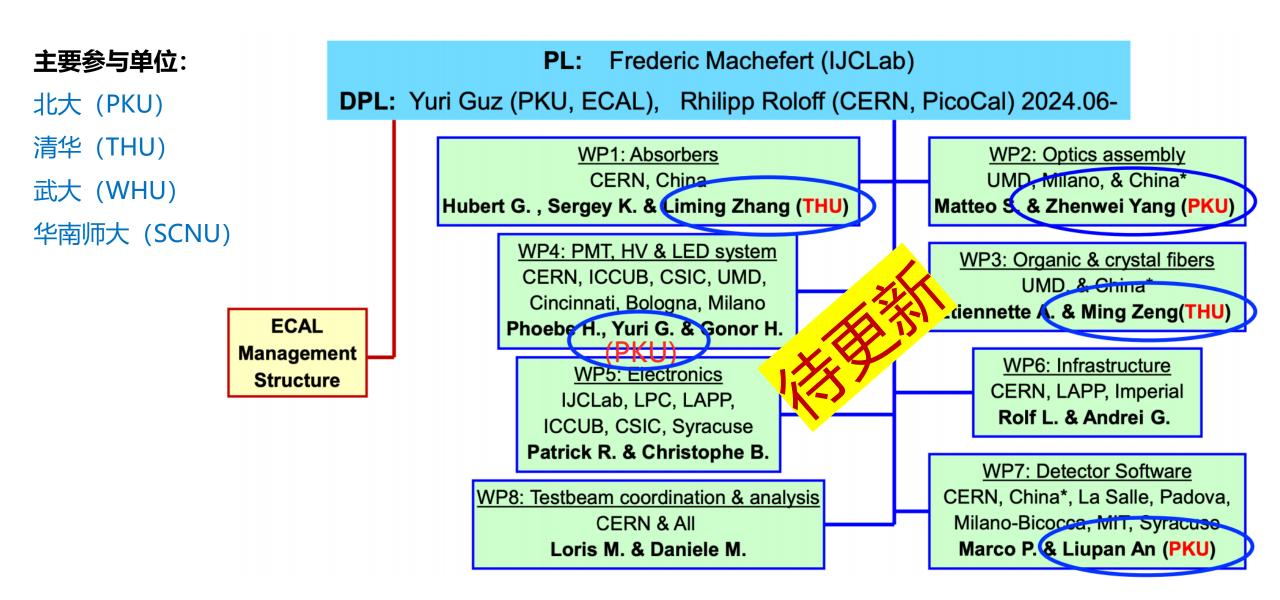
UP探测模块/支撑条设计与原型机

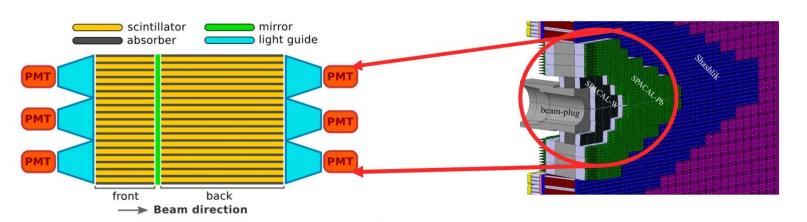
- ➤ 独立提出一种机械设计方案 (UP.E)
- ➤ UP.E的热学模拟满足FTDR要求
- ▶ 首次组装探测模块/裸支撑条的原型机

支撑条上芯片热学模拟 (温度差 < 5°C)


1st dummy sensor

1st dummy hybrid




2025年6月

二期升级: 电磁量能器研发项目组架构

二期升级: SPACAL量能器

➤ 最核心部位采用基于GAGG晶体+钨的SPACAL量能器 (Spaghetti Calorimeter)

读出时间信息: PicoCal

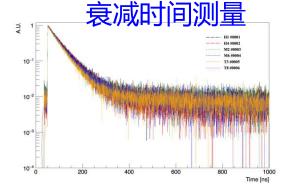
闪烁光纤: GAGG (抗辐照、光产额高)

主要目标:在满足抗辐照性能和光产额要求的条件下,降低光衰减时间(10 ns以下),提高时间分辨率,降低溢出(spillover)效应

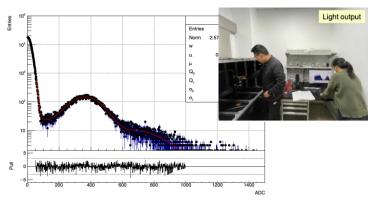
钨吸收体:辐射长度短、莫里哀半径小

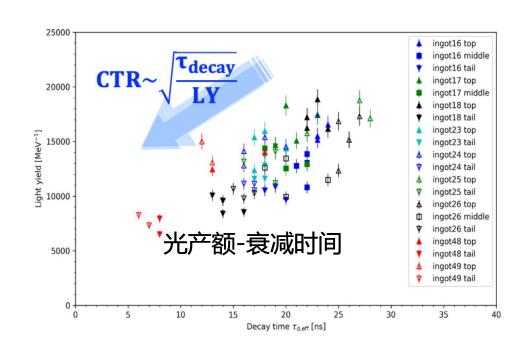
主要目标: 提高3D打印的表面粗糙度和打印精度

基本达到技术指标要求


二期升级: GAGG闪烁晶体研发

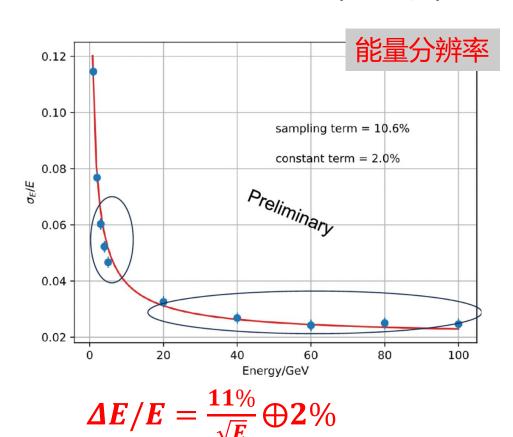
- > GAGG晶体: 高抗辐照, 密度高, 光产额高
- » 商业GAGG有效衰减时间约50纳秒,希望降到5-10纳秒
- > 正与中国电科芯片技术研究院合作,已降至10纳秒以下

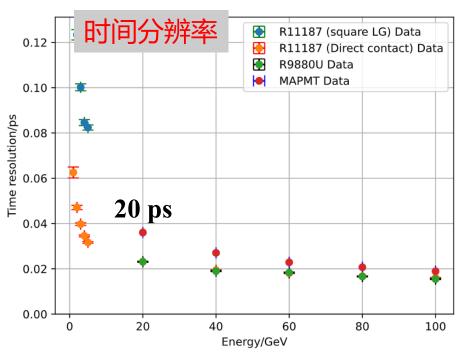






二期升级: SPACAL-W-GAGG 原型样机与束流实验



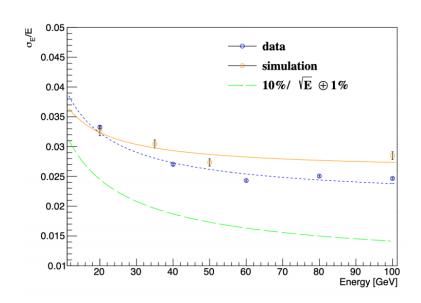


2024年12月, DESY的東流实验

SPACAL-W-GAGG: 束流实验结果

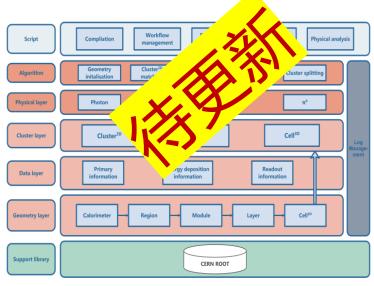
➤ CERN SPS+ DESY, 电子, 能量 1-100 GeV, 束流入射角3°+3°

weighted average

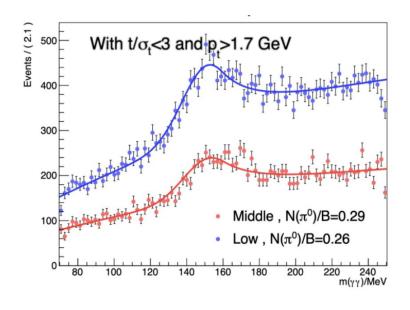

40 GeV: 时间分辨率约 20 ps

束流实验中光电倍增管、光导等未优化,预期未来会获得更好的性能

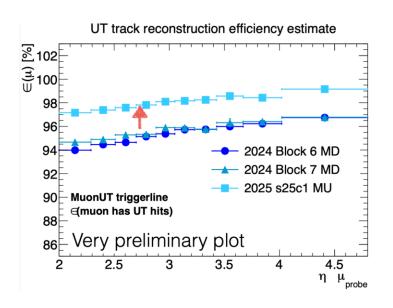
二期升级: ECAL 模拟

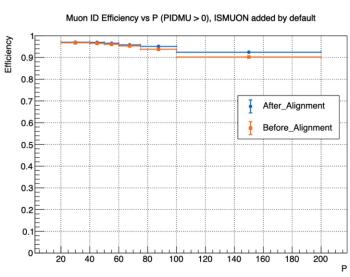

> W-GAGG原型机模拟

- 理解束流实验结果
- 优化原型机设计


> 重建算法开发

- 挖掘探测器双端读出设计
- 充分利用时间信息


> 物理衰变道性能研究


- 研究不同衰变道的物理性能
- 不同探测器设计的性能对比



实时数据分析(Real Time Analysis, RTA)

- ➤ RTA项目组WP协调人
 - Miroslav Saur (2024.06-),项目框架、品控和运行 (WP5)
 - □ 李佩莲 (2024.01-) , 面向二期升级的研发 (WP 6)
- > 大量软件开发、调试、运行检测等工作
 - Upgrade II 升级径迹重建研发
 - Muon探测器刻度
 - VELO径迹重建效率刻度

国际会议报告

- 1. 王剑桥(清华), latest measurements of heavy flavor production in heavy-ion collisions at LHCb,HF-HNC 2024, 广州, 2024-12-06
- 2. 谢跃红(华中师大),Frontiers on Flavor Physics,IAS Program on HEP,香港, 2025-01-13
- 3. 尹航(华中师大), EW physics and LLPs at LHCb, Moriond EW, 2025-03-23
- 4. 任赞(国科大), Recent results on pentaquark states from LHCb, Hadron 2025, Osaka 日本, 2025-03-27
- 5. 周天雯(北大), Open-charm tetraquark states in B->DDh decays in LHCb, Hadron 2025,Osaka 日本
- 6. 罗毅恒(北大), Hadronization studies at LHCb, Quark Matter 2025, Frankfurt 德国, 2025-04-06
- 7. 连政辰 (清华), Bulk physics in small systems at LHCb, Quark Matter 2025, Frankfurt 德国, 2025-04-06
- 8. Chenzhi Dong (清华), Bottomonium production measurements in small systems at LHCb,Quark Matter 2025, Frankfurt 德国,2025-04-06
- 9.康有恩(清华), Charmonium production measurements in small systems at LHCb, Quark Matter 2025, Frankfurt 德国, 2025-04-06
- 10. 王剑桥 (清华) , Recent studies of open charm production in small systems at LHCb, Quark Matter 2025, Frankfurt 德国, 2025-04-06
- 11. 李佩莲(国科大), Novell trigger strategies for HL-LHC, LHCP 2025, 台北, 2025-05-05
- 12. 朱琳萱 (清华), Heavy flavor spectroscopy studies at LHCb, LHCP 2025, 台北, 2025-05-05
- 13. 万关越(北大),Conventional Charm Baryon Spectroscopy,Charm 2025,上海,2025-05-12
- 14. 张艳席(北大),Charm spectroscopy and exotic hadrons, Charm 2025,上海,2025-05-12

国际会议报告

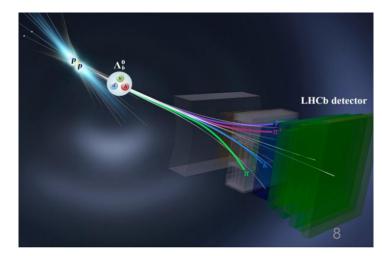
- 15. 康有恩(清华),Recent results of quarkonium production in LHCb,Charm 2025,上海,2025-05-12
- 16. 王禹昊(北大),Studies of Bc mesons at LHCb,EPS-HEP,Marseille,法国,2025-07-07
- 17. 伍彦西(北大), Searches for New Physics in B-meson Decays to Vector Mesons and Charmless Final States at LHCb, EPS-HEP, Marseille, 法国, 2025-07-07
- 18. 杨雪婷(北大),CP Violation in Baryon Decays at LHCb,EPS-HEP,Marseille,法国,2025-07-07
- 19. 荣天泽(北大), Recent results on CP violation in baryon decays at LHCb, ICNFP, Kolymbari, Crete 希腊, 2025-07-17
- 20. 胡晓凡(清华), Recent results on CPV from \$b\$-hadron to charmonium decays at LHCb, ICNFP, Kolymbari, Crete 希腊, 2025-07-17
- 21. 张艳席(北大),LHCb overview, ICNFP,Kolymbari, Crete 希腊,2025-07-17
- 22. 谭英华 (清华) , Recent results on CPV from b-hadron to charmonium decays at LHCb, Rencontres du Vietnam, Quy Nhon 越南, 2025-08-17
- 23. 张黎明(清华), Exotic hadronic states at LHCb, Lepton Photon 2025, Madison, Wisconsin, 美国, 2025-08-25
- 24. 唐迎澳(武大), First observation of charmless baryonic decay \$B^+ \to \bar{\Lambda}^0 p \bar{p} p\$, HQL 2025, 北京, 2025-09-15
- 25. 任赞(国科大), Recent spectroscopy results from LHCb experiment, HQL 2025, 北京, 2025-09-15
- 26. 吴杰(华中师大), Recent results from LHCb on charged current decays of b-hadrons, HQL 2025, 北京, 2025-09-15
- 27. 陈缮真(高能所), CPV in baryons [LHCb + BESIII],HQL 2025,北京, 2025-09-15
- 28. 张艳席(北大), Baryon CP violation measurement, SPIN2025, 青岛, 2025-09-22

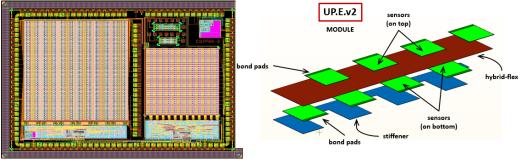
敬请关注LHCb的结果

大会报告 ×4

钱文斌(国科大), CP violation 李可陈(河南师大), rare decays 安刘攀(北大), Hadron Spectroscopy 李衡讷(华南师大), LHCb Upgrade

硬件报告×12


Zhiyang Yuan	R&D on the fast GAGG for LHCb upgrade II	
Xiaofan Pan	Development and test-beam measurements of LHCb PicoCal modules	
Zifan Li	Software development for LHCb ECAL upgrade	
张佳辰	Simulation studies for LHCb ECAL upgrade	
冯铭婕	The simulation and reconstruction studies on LHCb UP detector for Upgrade II	
王纪科	Development of 3D-Printed Tungsten Absorbers for the LHCb ECAL Upgrades	
曾程	Sensor development for LHCb Upstream Pixel Tracker	
王智颉	LHCb UP Module and Stave Assembly Development	
袁源	Operation and performance of LHCb Upstream Tracker	
李佩莲	Real-time analysis at LHCb for Run 3 and beyond	
李天歌	UP bare stave design and thermal study (Poster)	
刘涵兵	Test of signal integrity in flex cable (Poster)	


物理分会报告×13

王剑桥	Flow measurements at LHCb experiment	
戴鑫琛	CP violation in Lb2pKpipi and Lb2Jpsippi decays	
任赞	Recent results on pentaqaurk studies at LHCb	
康有恩	Recent LHCb results on open charm and charmonium production	
童星昱	Study of charmless B->VV decays at LHCb	
牟泽清	Observation of Bc->Dhh decays	
吴杰	Measurement of CP Violation in B0s→J/ψK*(892)0 Decays and Constraints on Penguin Contributions	
陈泽文	Measurement of branching fractions and CP asymmetries in Lambda_b0(Xi_b0) -> p KS h- decays	
唐迎澳	First observation of the charmless baryonic decay ay B+→Λ¯pp¯p	
王梦浩	Evidence for the rare decay B+→Λ¯pμ+μ−	
刘端晴	Observation of the decay Bs0->K0ppbar and measurement of the Bds->K0ppbar branching fractions	
侯睿文	Determination of direct CP asymmetries for B+→K0Sπ+and B+→K0SK+ decays and measurement of the ratio of their branching fractions, and search for the rare decay B+c→K0SK+	
邓剑桥	Measurement of the Z-boson mass	

2025年总结

- ➤ LHCb中国组实力稳步增强: 12个单位, 教师54人, 总人数233人
- > 物理成果突出:
 - 口首次发现重子CP破坏
 - 口发现多个底介子含重子末态的稀有衰变
 - 口首次在IHC上测量Z玻色子质量
 - 口持续对多夸克态进行研究
- > 在二期UP和ECAL升级里起主导作用
 - 口 UP芯片传感器研发起主导作用
 - 口 独立提出UP设计方案以及原型机组装
 - 口 研发的量能器晶体达到设计要求并通过束流测试
 - 口未来承担量能器探测单元的生产

致谢

- > 科技部
 - □ 国家重点研发计划 "大科学装置前沿研究"
- > 国家自然科学基金委
 - NSFC-CERN国际合作项目
 - □ 基础科学中心项目
 - □ 积极争取竞争性项目: 青年、面上、重点、人才项目
- > 教育部
 - □ 通过各高校支持的学科(启动)建设经费
- > 中国科学院
- > 成员单位和其他渠道的人才项目
- > 感谢科技部、基金委、科学院、教育部和成员所在单位多年来的支持!

附录

2025年度中国组主导的物理成果汇总

已投稿11篇(其中6篇已发表),7篇即将投稿

首次观测到重子CP破坏

首次观测到 $B_s^0 o K_s^0 p \overline{p}$

测量了 $B_s^0 \rightarrow J/\psi K^*(892)^0$ CP破坏和分支比

测到 $B^0 \rightarrow \rho(770)^0 K^*(892)^+$ 的CP破坏

首次观测到 $B^+ \to \Lambda p \overline{p} \overline{p}$

测量了 $\Lambda_h^0 \to pK_Sh^-$ 中的CP破坏及分支比

 $\Lambda_{\rm b}^0 \to J/\psi p \pi^-$ 衰变观测到重子CP破坏迹象

首次观测到 $B^+ \rightarrow \Lambda \overline{p}$ 及CP破坏测量

 $B^+ \to K_S^0 \pi^+ \pi K_S^0 K^+$ 衰变CPV的精确测量

首次看到 $B^+ \rightarrow p\Lambda \mu^+ \mu^-$ 衰变的迹象

首次观测到 $B_s^0 \to \Lambda_c^+ \overline{\Lambda}_c^-$ (压低的W交换过程)

Nature 643 (2025) 1223

JHEP 2507 (2025) 121

JHEP10(2025)173

arXiv:2508.13563 已投稿到PRL

arxiv:2508.16259 已投稿到PRL

arXiv:2508.17836 已投稿到JHEP

LHCb-PAPER-2025-021 将投稿JHEP

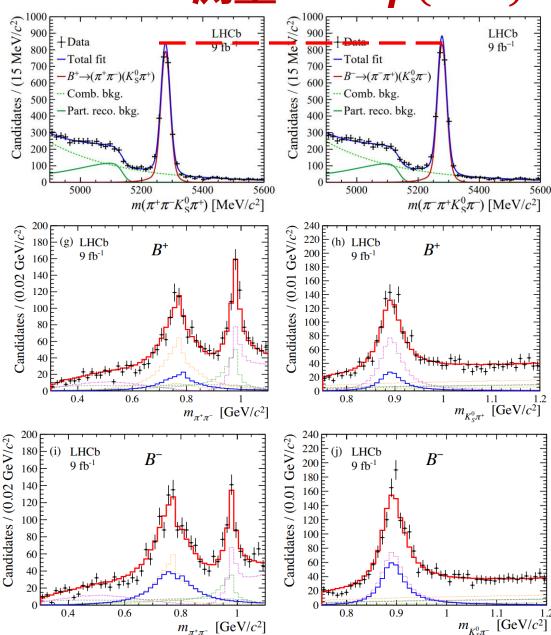
LHCb-PAPER-2025-044 将投稿PRL

LHCb-PAPER-2025-049 将投稿PRL

LHCb-PAPER-2025-051 将投稿PRL

LHCb-PAPER-2025-053 将投稿PRL

CP破坏/稀有衰变


2025年度中国组主导的物理成果汇总

已投稿11篇(其中6篇已发表),7篇即将投稿

强子物理	首次观测到 $\Lambda_{\mathrm{b}}^{0} \to \Lambda_{c}^{+} D_{s}^{-} K^{+} K^{-}$,寻找五夸克态	Phys. Rev. D 112, 052013 (2025)
	观测到双粲重子衰变 $\Xi_{cc}^{++} o \Xi_c^0 \pi^+ \pi^+$	JHEP10(2025)136
	观测到 B_c^+ 介子径向激发态	arXiv:2507.02149 已投稿到PRL
	对 $B_c^+(1P)$ 质量谱的研究	arXiv:2507.02142 已投稿到PRD
	首次观测到 $B_c^+ o D_{(s)}h^+h^-$	LHCb-PAPER-2025-028 将投稿PRL
	观测到 $T_{car{c}1}(4430)^+$	LHCb-PAPER-2025-039 将投稿PRD
电弱物理	首次在LHC上精确测量Z玻色子质量	Phys. Rev. Lett. 135 (2025) 161802

测量 $B^0 \to \rho(770)^0 K^*(892)^+$ 的CP破坏及极化

北大

$$\mathcal{A}_{CP} \equiv \frac{\sum_{\lambda} (|\overline{A}_{\lambda}|^2 - |A_{\lambda}|^2)}{\sum_{\lambda} (|\overline{A}_{\lambda}|^2 + |A_{\lambda}|^2)} = 0.507 \pm 0.062 \pm 0.017.$$

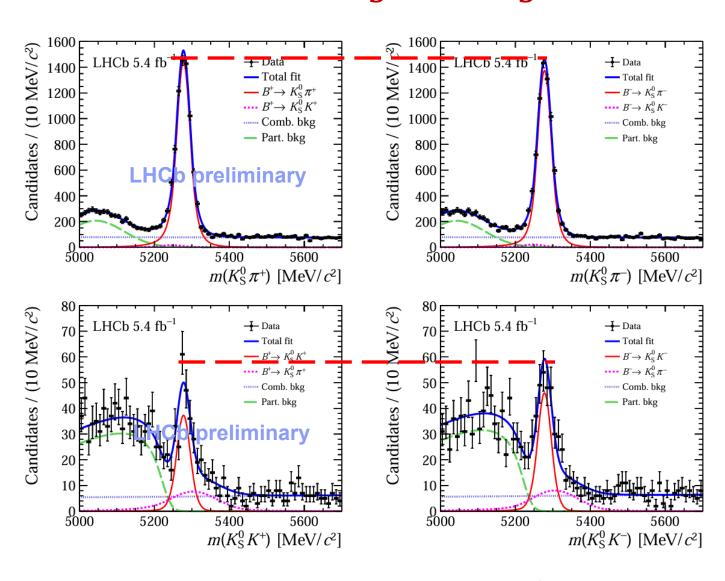
$$f_L \equiv \frac{|A_0|^2 + |\overline{A}_0|^2}{\sum_{\lambda} (|A_{\lambda}|^2 + |\overline{A}_{\lambda}|^2)} = 0.720 \pm 0.028 \pm 0.009,$$

$$f_L^+ \equiv \frac{|A_0|^2}{\sum_{\lambda} |A_{\lambda}|^2} = 0.491 \pm 0.083 \pm 0.025,$$

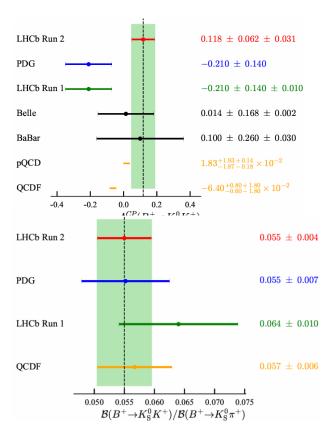
$$f_L^- \equiv \frac{|\overline{A}_0|^2}{\sum_{\lambda} |\overline{A}_{\lambda}|^2} = 0.794 \pm 0.025 \pm 0.007$$

arXiv:2508.13563 已投稿至PRL

测量 $B^0 \rightarrow J/\psi K^*(892)^0$ 的CP破坏


华中师大

$$\mathcal{B}(B_s^0 \to J/\psi \overline{K}^{*0}) = (4.13 \pm 0.12 \,(\text{stat}) \pm 0.07 \,(\text{syst}) \pm 0.14 \,(\frac{f_d}{f_s}) \pm 0.45 \,(\mathcal{B}_{B^0})) \times 10^{-5}.$$


 \rightarrow 为理解 ϕ_s 的企鹅图贡献提供输入

$B^+ \to K_S^0 \pi^+ \pi K_S^0 K^+$ 过程CP破坏的精确测量

华中师大

LHCb Run 2 $-0.028 \pm 0.009 \pm 0.009$ PDG -0.003 ± 0.015 LHCb Run 1 $-0.022 \pm 0.025 \pm 0.010$ Belle II $0.046~\pm~0.029~\pm~0.007$ Belle $-0.011 \pm 0.021 \pm 0.006$ $-0.029 \pm 0.039 \pm 0.010$ BaBar $-0.08^{+0.08}_{-0.09}^{+0.02}_{-0.02} \times 10^{-2}$ pQCD $0.28^{+0.03}_{-0.03}^{+0.09}_{-0.10} \times 10^{-2}$ OCDF -0.05 $\mathcal{A}^{CP}(B^+{ o}K^0_S\pi^+)$

LHCb-PAPER-2025-049 计划投稿PRL