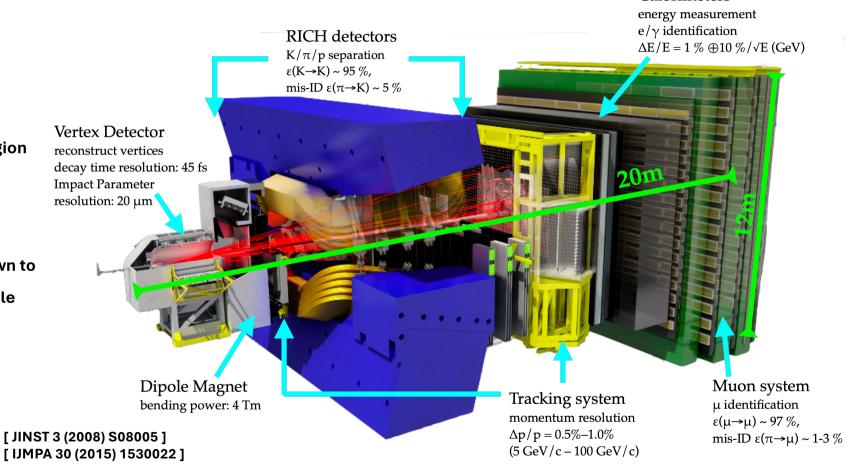


LHCb Upgrades

Hengne Li (李衡讷)

South China Normal University (华南师范大学)

On behalf of the LHCb collaboration

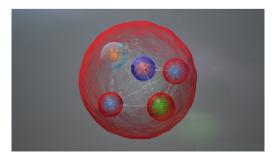

2 Nov. 2025, Xinxiang

The LHCb detector (Run 2)

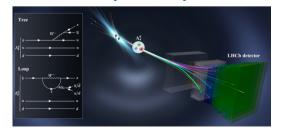
- LHCb is the only dedicated detector (at LHC) fully instrumented in forward region
- Unique kinematic coverage

 $2 < \eta < 5$

 A high precision device, down to very low-p_T, excellent particle
 ID, precise vertex and track reconstruction.

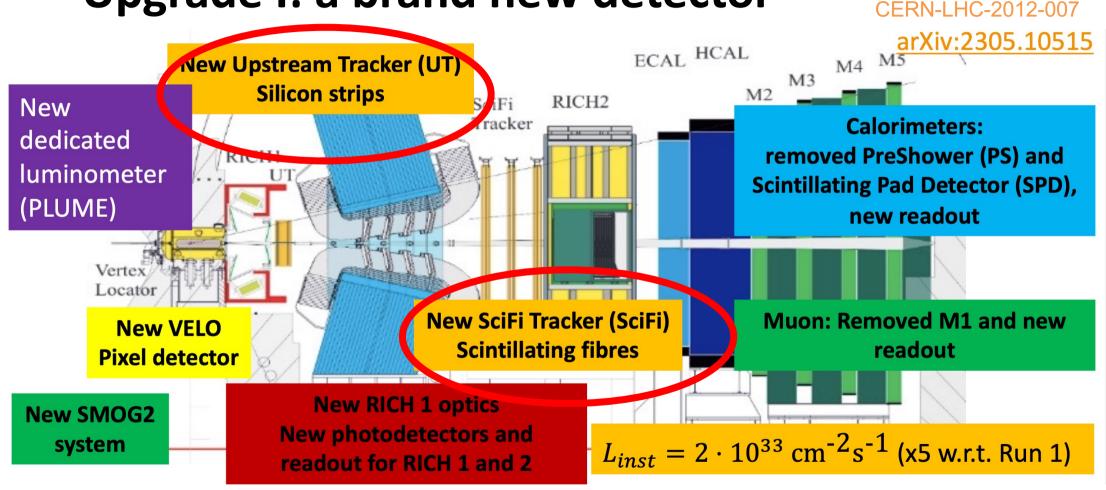

Calorimeters

LHCb: a history of success

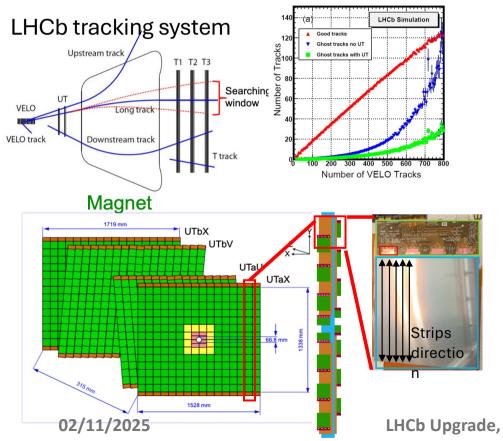

- 887 papers, 81781 citations (inspirehep)
- Series of significant discoveries
 - Rare decays
 - CPV in charm and beauty
 - Spectroscopy
- Physics program well beyond designed
 - Fixed-target
 - Heavy-ions
 - Dark sector
 - Electroweak

Observation of a new pentaquark

First observation of CP violation in baryon decays



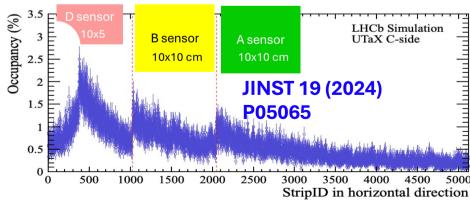
The LHCb upgrades


 $\mathcal{L}_{\text{max}} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1},$ $\mathcal{L}_{\text{int}} \sim 50 \text{ fb}^{-1}$ $\mathcal{L}_{max} \sim 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}, \ \mathcal{L}_{int} \sim 300 \text{ fb}^{-1}$ Upgrade is needed to exploit the full physics potential of the HL-LHC. Pileups ~ 5 Pileups ~ 28 Run 2 Run 3 Run 4 Run 5 Run 1 Peak luminosity [10³³ cm⁻²s⁻¹] 350÷ **S**2 ည **S** ည 300 **Upgrade II** 250 actual expected expected with improved LHC optics at Run 5 200 LS4 LS3 **150** Upgrade I enhancement 100 LS3 LS₂ **50** 2010 2030 2035 2040 2015 2020 2025 Year

- Upgrade I (2019 2023)
- L3 Enhancement (Q3.2026-2029)
- Upgrade II (2034 3035)

Upgrade I: a brand new detector

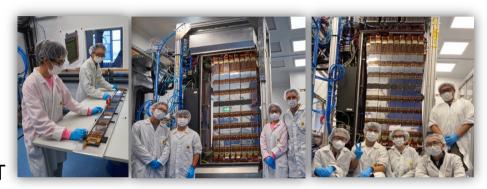
Upstream Tracker (UT)

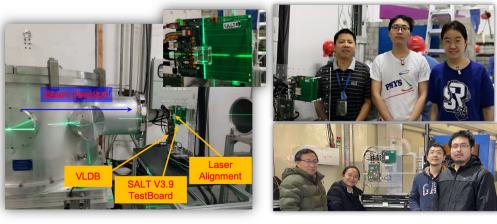


UT: Si Strip detector CERN-LHCC-2014-001

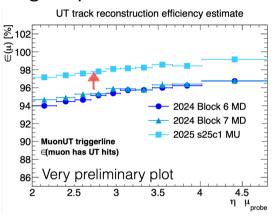
- Speed up tracks reconstruction & reduce P_{GhostTrk}
- High coverage, segmentation, resolution

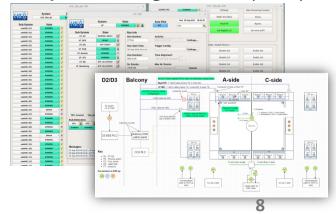
Different sensors for different regions

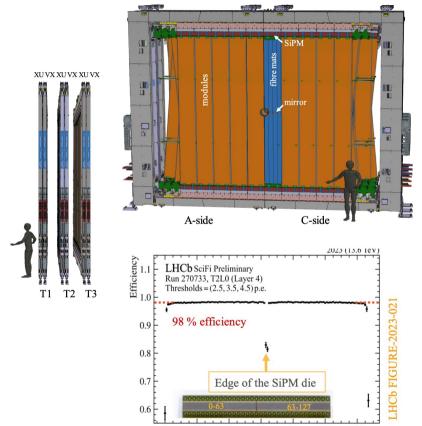

- A type: p-in-n; 98x98 mm; strip pitch 190 μm
- B type: n-in-p; 98x98 mm; strip pitch 95 μm
- C/D type: n-in-p; 98x49 mm; strip pitch 95 μm
- Maximum occupancy ~ 1%


LHCb Upgrade, CLHCP 2025, Hengne Li

China group contribution to UT


Chinese groups contributed to **UT installation**, ensuring LHCb Upgrade I completion in time (IHEP/HNU/CCNU/THU/SCNU/LZU)


Performed key radiation tests for SALT chip using Chinese facilities during pandemic (IHEP/HNU)


Large improvement with UT

Lead development in control and safety monitoring software (IHEP)

Scintillating Fibers tracker (SciFi)

Brand new detector with scintillating fibers

- 3 station x 4 detection layers
- Fibers diameter and length: $250 \mu m / 2.4 m$
- Decay-time constant: 2.8 ns
- ~12 km fibers, covering 340m² area

Light detected by SiPMs installed at one end of the fibers

• −40 °C to reduce dark counts

New ASIC (PACIFIC), 64 channels 130 nm CMOS

 Clusterization of hits implemented in FPGA after signal digitization

Good performance in 2023 + 2024

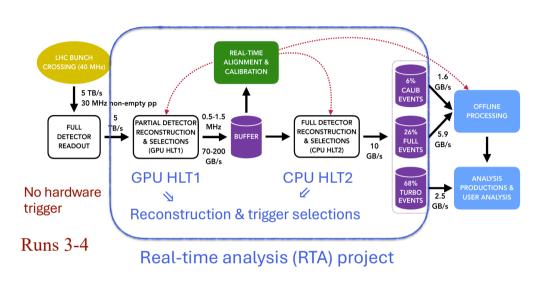
China group contribution to SciFi

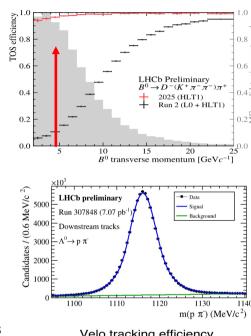
QA System for readout ASICs & the Front-End Board

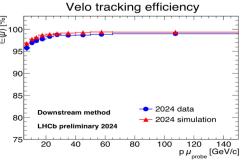
SciFi: 524,000 SiPM channels

SciFi readout ASIC (PACIFIC): a 64-channel SiPM readout

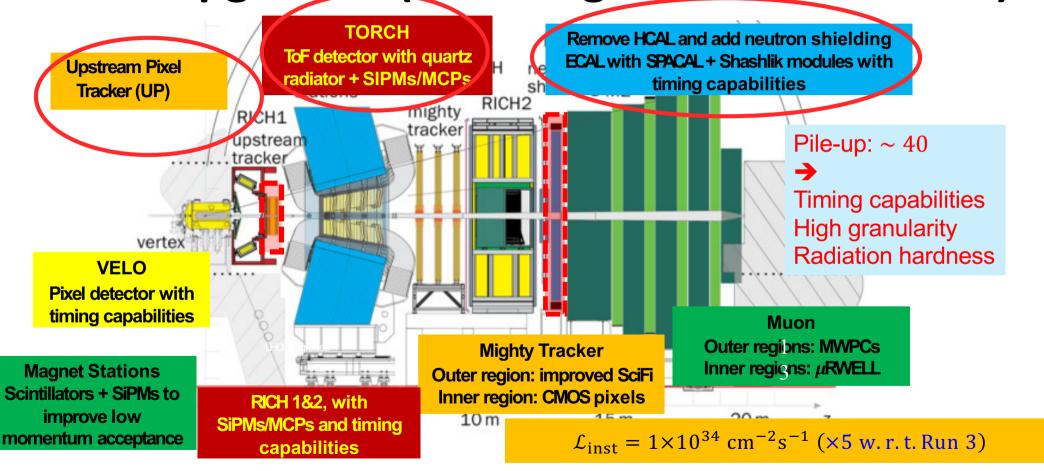
- LHCb SciFi China Group (Tsinghua U):
 - Co-design the ASIC Frontend Board (with Heidelberg)
 - Manufacture all 2,528 ASIC Boards (64,168 channels in total)
 - Test 1/2 of ASIC Boards and all the chips
 - 11 setups of Quality Assurance System for ASICs & boards

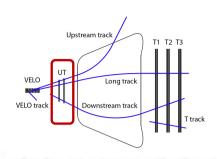


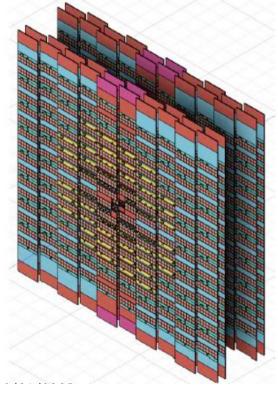




Run 3 Trigger & Performance (Real-time analysis)


- 2~4x times increase in the trigger efficiencies for hadronic decay modes
- Downstream tracking in HLT1 extends physics potential for long-lived particles
- Significant contribution of Chinese group to the RTA system
 - Long-term maintainer of the whole software
 - Responsible for Muon alignment & Tracking efficiency calibration
- Actively parcitipating in the reconstruction R&D for Upgrade II


- Upgrade I (2019 2023)
- L3 Enhancement (Q3.2026-2029)
- Upgrade II (2034 3035)


LHCb Upgrade II (including LS3 enhancement)

Upstream Pixel Tracker (UP)

- Upstream tracker is a key component in LHCb tracking system:
 - Speed up tracking to allow software-only trigger
 - Ensure efficient tracking for long-lived particles
 - Improve momentum resolution
- Current silicon strip based UT cannot handle the high data rate and radiation in Upgrade II
 - → New UT with silicon pixel detector
 - Hit density up to 4 hit/cm²/BX
 - Expected radiation level of 3 x 10¹⁵ n_{eq}/cm²

Upstream Pixel Tracker (UP)

- R&D collaboration formed mainly by Chinese and French institutes
- Leading development in all aspects
 - Simulation & performance
 - CMOS sensor R&D
 - Module and mechanics prototyping

PL: 王建春(IHEP, UT/UP)

DPL: Tomasz Skwarnicki (Syracuse, UT), Benjamin Audurier (IRFU, UP)

Steve Blusk / Syracuse 袁煦昊/ IHEP

Simulation, reconstruction & performance

李一鸣/ IHEP Fabrice Guilloux / IRFU

Pixel sensor chip development

陈凯/ CCNU 徐子骏 / IHEP

Data acquisition system

Ray Mountain/Syracuse 俞洁晟/HNU Manuel Guittiere/Subatech

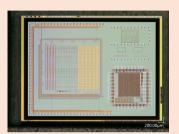
Module and stave

Theo Bigourdan / Subatech

Overall mechanics, integration & services

刘凯/ LZU
Christophe Renard / Subatech
Electronics

UP sensor development


- CMOS SENSOR IN FIFTY-FIVE NM PROCESS
- Parameter UP Specification

- High Voltage CMOS is a promising technology candidate
- A series of small prototypes developed using advanced process

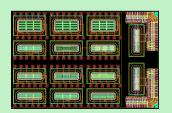
COFFEE 2

First HVCMOS 55nm prototype chip

- Breakdown at -70V
- Responsive to laser, X-ray and beta-ray sources

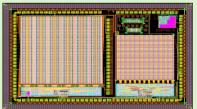
I didilictoi	or specimeation
Pixel size, square	$\leq 85 \times 85 \mu\text{m}^2$
$\operatorname{rectangular}$	$\leq 50 \times 200 \mu \mathrm{m}^2$
Substrate thickness	$< 200 \mu \mathrm{m}$
Pixel orientation	X
Max. Particle Rate (R_{Part})	$74(34) \text{ MHz/cm}^2$
Max. Hit Rate	$150 \text{ Mhit s}^{-1}\text{cm}^{-2}$
Max. length of data word	32
Overall efficiency	>96%
In-time efficiency	>99% within 25 ns
Noise rate (End of life)	$\leq 400 \mathrm{kHz/cm^2}$
Transmission rate	$N \times 1.28 \text{ Gbit/s}$
NIEL	$3 \times 10^{15} n_{\rm eq}/{\rm cm}^2$
TID	240 MRad
Power Consumption	$\leq 200 \text{ mW/cm}^2$

2022


2023

2024

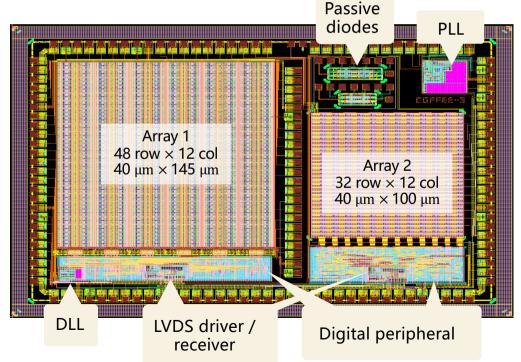
2025


COFFEE1

- Prototype in LL process
- Validation of deep N-well structure

COFFEE3

- Two pixel arrays with data-driven readout
- Designed for good timing resolution and moderate power consumption

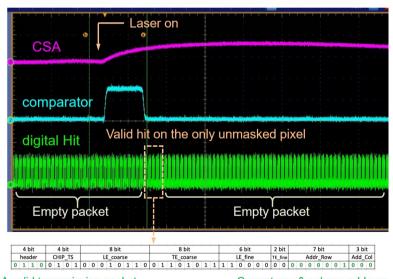

Large prototype planned around 2027

COFFEE3 sensor

- A prototype with key designs implemented to tackle high data rate at Upgrade II
 - 4mm x 3mm, submitted in Jan 2025, received in May 2025
 - Two novel readout architectures in two pixel arrays
 - Standalone function modules to integrate into full-size chip

Architecture 1:

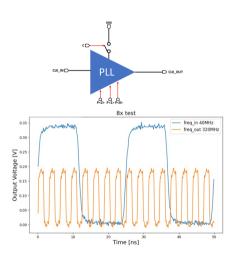
CMOS in-pixel digital design fully exploiting 55nm advantage



Architecture 2:

NMOS-only in-pixel digital design: lower power consumption in pixel; no process modification needed

First COFFEE3 results


- Preliminary tests show that both readout array function well
- Standalone modules meet design goal: PLL, LVDS, DLL

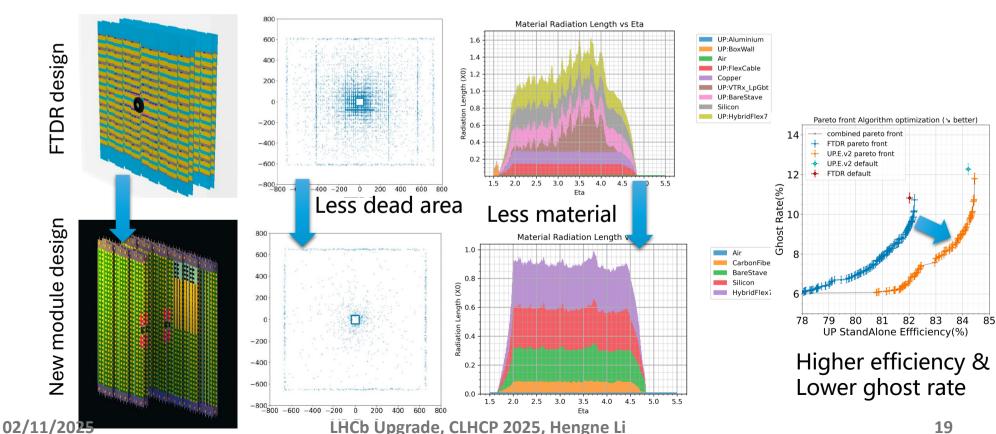

A valid transmission packet corresponding to a hit

Correct row & column address

Laser signal on a single pixel

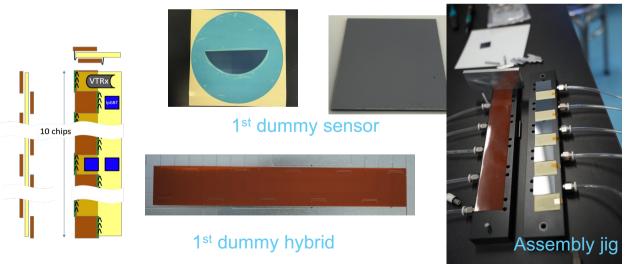
Phase Lock Loop works up to 640MHz

LVDS tranceiver works at 640MHz

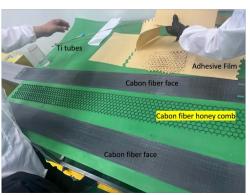


DLL delays main clock to achieve finer timing

corrected read

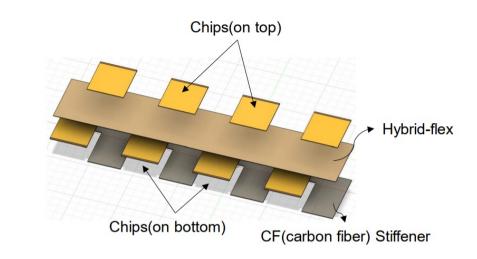

Simulation and performance study

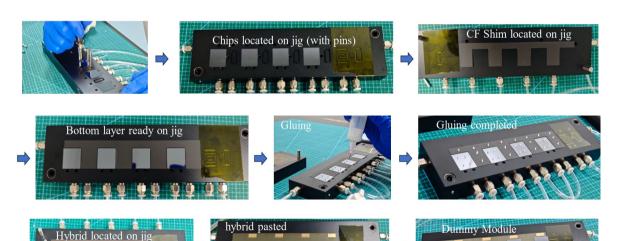
 New UP design implemented in LHCb official framework followed by tremendous work on tracking algorithm and detector optimisation



UP module and mechanics

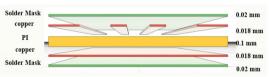
- Module design updated to reduce dead area
- Prototyping starting with dummy components
 - Dummy silicon sensors produced with similar thermal mechanical properties
 - Tools designed for assembly procedure
 - Thermal simulation + market survey for realistic mechanical design

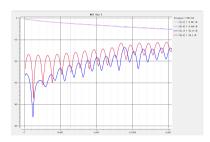




Module prototyping

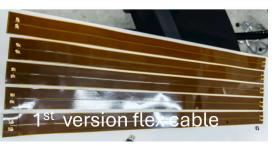
 First modules developed with dummy silicon sensors and dedicated tools

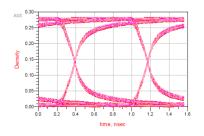


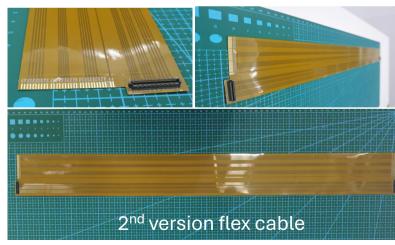


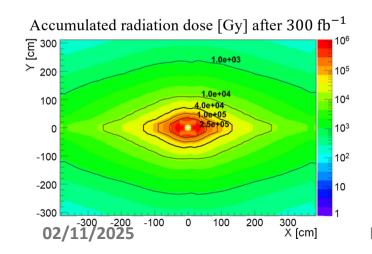
Electronics and readout

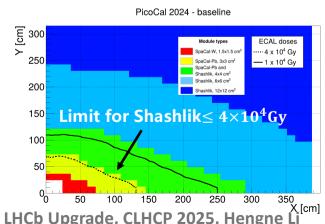
- Studied the signal integrity with flex cable prototype :
 ~70 cm long and 1.28 Gpbs
- Studies on cross talk with 2nd version flex cable is ongoing.
- Data format proposed.

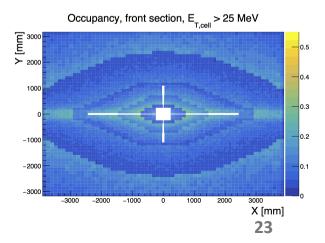







Normal	b'00	CI	hip	BXID	Col			Row	
	b'01	Chip		BXID		Nun	nHits		
Normal	Col 1		F	Row 1	Col 2		Row 2		
Compact		•	••		•••				
	Col N	J	R	low N	(0x5555, for odd NHits)				
b'10									
Calibration	b'10	CI	hip	BXID	Col			Row	
Calibration	b'10 0x0C		nip oT	BXID ToA	Col 0x0C	To	οT	Row ToA	




ECAL Upgrade II

Requirements for the Upgrade II:

- > Radiation doses up to $\frac{1 \text{ MGy}}{1 \text{ and}} = 6 \times 10^{15} \text{ 1 MeV neq/cm}^2$ in the centre for 300 fb^{-1}
 - New technologies required for the center
- > Pile-up mitigation crucial
 - Timing O(10 ps) precision
 - Increased granularity
 - longitudinal segmentation
- \triangleright Keep current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E \oplus 1\%}$

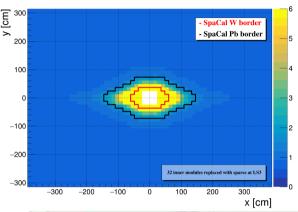
The Upgrade Strategy

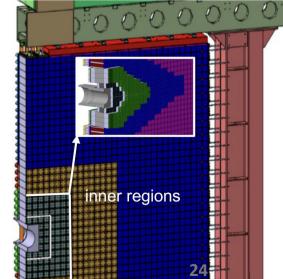
Run	3	LS3			Run 4		L	S4			Ru	n 5				
2024 202	5 202	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Run 3 in 2022-Q2/2026:

> Run with unmodified ECAL Shashlik modules at $L=2\times10^{33}\,cm^{-2}s^{-1}$ (new 40 MHz readout)

LS3 consolidation in Q3/2026-2029:

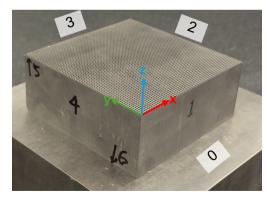

- Introduce single-section rad. tolerant SPACAL (2×2 and 3×3 cm² cells) in inner regions and rebuild ECAL in rhombic shape to improve performance at $L=2\times10^{33}$ cm⁻²s⁻¹
 - 32 SPACAL-W & 144 SPACAL Pb modules with plastic fibres compliant with Upgrade II conditions


LS4 Upgrade II in 2034-2035 (PicoCal):

- Introduce double-section rad. hard SPACAL (1.5×1.5, 3×3 & 4×4 cm² cells) and improve timing of Shashlik modules for a luminosity of up to $L = 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Innermost SPACAL-W modules equipped with crystal fibres
 - Include timing information and double-sided readout for pile-up mitigation

LHCB-TDR-023, LHCB-TDR-024, LHCB-TDR-026

Constant term [%] after 4 years of Run4 (60/fb)



China contributions to ECAL upgrade

- Simulation, reconstruction and performance studies
- Fast GAGG crystal fibre development, collaborating with SiPAT (电科芯片)+CERN, decay time $\tau_{\rm eff}$: 50 ns (2022) \rightarrow 20 ns (2024) \rightarrow 8 ns (2025)
- 3D printed tungsten (W) absorbers, collaborating with LaserAdd (雷佳)
- Light-guide system development
- Module assembly for beam tests:
 - SpaCal-W-GAGG prototype assembly in 2024
 - SpaCal-W-Polystyrene prototype assembly in 2025
- PMT R&D: (just started) collaborating with NNVT(北方夜视)

ECAL/PicoCal management structure

ECAL organisation towards LS3 enhancement

ECAL Upgrade Project Leader: Philipp R. (since July 2024)

WP1: Absorbers

CERN & China*

Hubert G.

Sergey K. & L. Wang

WP2: Optics assembly (fibers & lightguides)

Maryland & Mil no & China*

Matteo S. & Z. Yuan

WP3: Organic & crystal fibers R&D

CERN & Chip

Etiennette A. & Ming Z.

WP4: PMT & HV & LED system

CERN, ICCLIP, CSIC, Maryland, Cincinnati, Bologna, Milano

Phoebe H. & Yuri G. & Onor H.

WP5: Electronics

IJCLab, LPC, LAPP, ICCUB, CSIC, Syracuse

Patrick R. & Christophe B.

WP6: Infrastructure (incl. cabling)

CERN, LAPP, Imperial

Rolf L. & Andrei G.

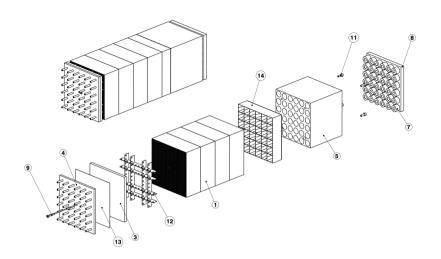
WP7: Detector Software

CERN, China* La Salle, Milano-Bicocca, Padova, MIT, Syracuse

Marco P. & Liupan A.

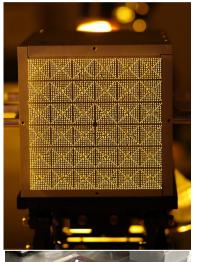
WP8: Testbeam coordination & analysis

CERN & All

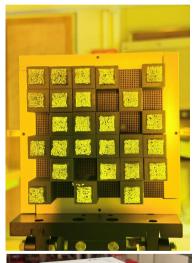

Loris M. & Daniele M.

* China: Peking, Tsinghua, Wuhan, SCNU

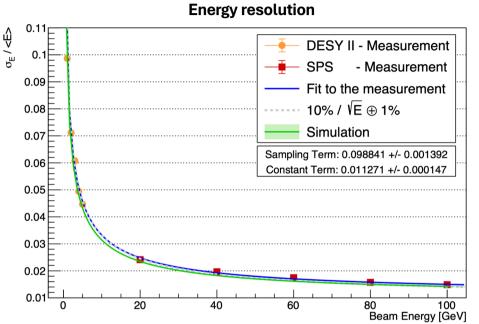
Ongoing R&D: Assembly for LS3



R9880U PMTs

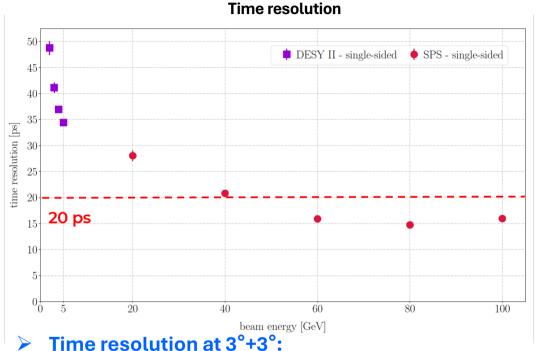


Module assembled in Beijing in May 2025


Beam tests in May, Sept., and Nov. 2025 CERN SPS beam tests:

- First test of full Run 4 chain with 2 new prototypes assembled in Beijing and CERN:
 - W absorbers from China group.
 - 3HF green plastic fibres (square fibres $1 \times 1 \text{ mm}^2$)
 - Optics assembly with bundlers and long "hollow" light guides
 - Cable clipping circuits, 10 m signal calbes, read-out with Run 3&4 FE electronics

Test plan with new prototype in Nov. 2025 at DESY and CERN with final assembly strategy


SpaCal - W Absorber - Polystyrene Fibres

LHCB-TDR-024 NIM A 1079, 170608 (2025)

- Noise contribution subtracted
- R14755U-100 PMT
- Symmetric LGs: square to octagon
- Sampling term: 9.9 + 0.1%
- 1.13 + 0.01%Constant term:
- Very good agreement with simulation

- Multi-Anode(R7600U-M4) PMT with 4 channels
- Asymmetric LGs: square to square
- Single-sided readout
- Time resolution above 40 GeV: better than 20 ps

Performance in line with targets

SpaCal - W Absorber - Crystal Fibres

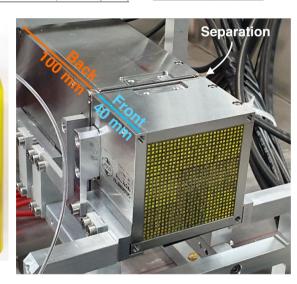
IM A 1000, 165231 (2021)

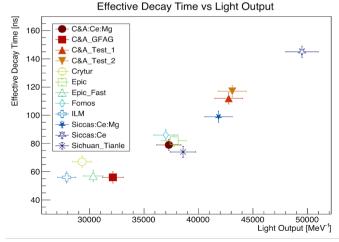
NIM A 816 (2016) 176

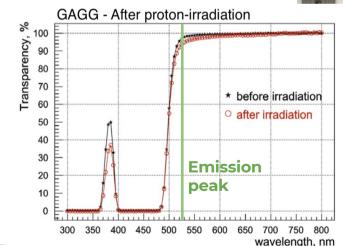
SPACAL prototype with W absorber and garnet crystals

Module details:

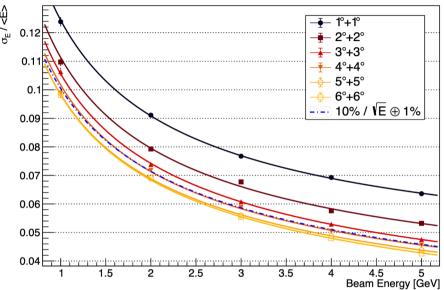
- Absorber in pure tungsten 19 g/cm³
- 9 cells of 1.5×1.5 cm²


 $(R_{\rm M} \sim 1.5 {\rm cm})$


4+10 cm long


 $(7 + 18 X_0)$

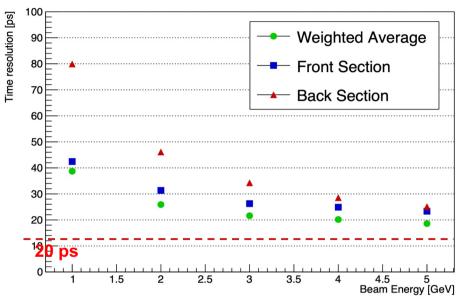
- Reflective mirror between sections
- Squared garnet crystal fibres ($1 \times 1 \text{ mm}^2$ cross section)


GAGG as scintillating material

- High light output and relatively fast decay time ($\sim 50 \text{ ns}$)
 - Tunable scintillation properties
- Radiation hardness tested up to 1 MGy

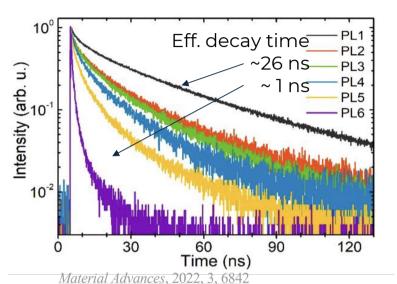
SpaCal - W Absorber - Crystal Fibres

NIM A 1045, 167629 (2022)



- Resolution improves increasing the incidence angle
- **Energy resolution at 3°+3°:**
 - Sampling term: $10.2 \pm 0.1 \%$
 - Constant term: 1 - 2%

Performance in line with targets


Time Resolution C&A GFAG

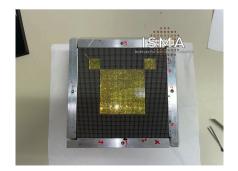
- > Time stamps obtained using CFD algorithm
- Time resolution C&A GAGG at 3°+3°:
 - Measurement in direct contact with MCD(R7600U-20) PMTs for ultimate performance
 - Double-sided readout

LHCb Upgrade, CLHCP 2025, Hengne Li - 18.5 \pm 0.2 ps @ 5 GeV

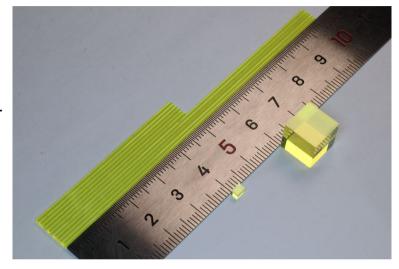
Ongoing R&D: Accelerating Scintillation

front back

- The issue: current commercial GAGG has scintillation decay time > 40 ns
 - Mitigate spill-over effect on time resolution
- Novel GAGG compositions developed to quench scintillation
 - Light yield reduced
 - Decay time accelerated
 - Time resolution kept competitive
- > R&D to produce large-size and homogeneous Czochralski ingots

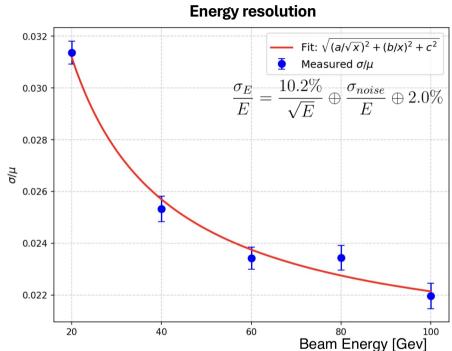

FZU Fyzikální ústav Akademie věd České republik

- Collaboration with:
 - SiPAT, China
 - FZU and Crytur, Czech Republic



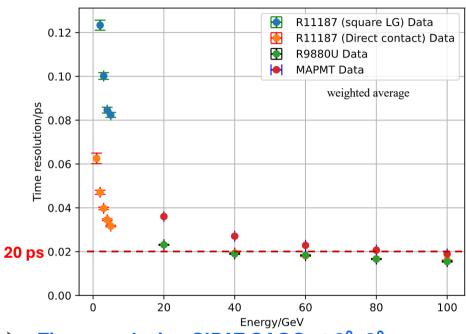
- SiPAT GAGG with decay time ~ 20 ns
- 3D-printed absorber with LaserAdd, China
- Two more cells filled in 2025 with new GAGG fibers with decay time ~10 ns
 - > FZU/Crytur & SiPAT

Ongoing R&D: Accelerating Scintillation


- > Chinese group started R&D of fast GAGG in the end of 2021
 - Collaboration with SIPAT (a company in Chongqing, China) for GAGG production
 - A new laboratory was built at Peking University (PKU) for scintillator characterization
 - Students from Tsinghua University (THU) and PKU involved in the R&D
- ➤ Novel GAGG compositions are developed at SIPAT to decrease the decay time
 - First batch of SIPAT GAGG samples delivered to PKU in Jan. 2023
 - About 60 ingots with optimization have been produced so far
 - Tests on the samples show significant improvement in decay time
- Close collaboration with CERN colleagues in GAGG testing
 - Besides testing at PKU, half of the samples are also delivered to and tested at CERN

Increase doping, LY decrese, time resolution increase

SpaCal - W Absorber - Crystal Fibres


Energy resolution at 3°+3°:

— Sampling term: $10.6 \pm 0.2 \%$

— Constant term: ~2 %

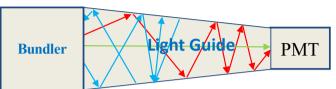
First measurements performed with non-optimal configuration degradation of energy and time resolution expected

Time resolution

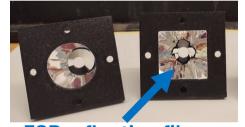
Time resolution SIPAT GAGG at 3°+3°:

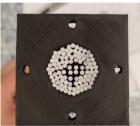
- R11187 (Direct contact) and R9880U have similar performance (<20 ps when > 20 GeV)
- MAPMT and R11187 (square LG and only front part) much worse in time resolution

Light Guide System for SpaCal


- Conventional plastic Light Guide is not rad-hard
- Radiation-hard Hollow Light Guide

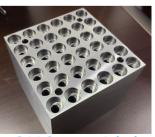
Hollow ESR Light Guides


- ESR foil radiation-hard (>90% reflectivity at 300 kGy)
- Fast timing (~60 ps jitter)


New Fiber Bundling Process

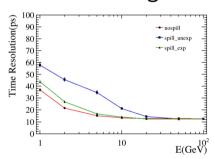
- Higher light yield (>30% increase)
- Uniform response (<10% nonuniformity)
- Design & validation for LS3 enhancement are done
- Preparing for production

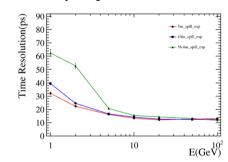
Test light guide and bundler

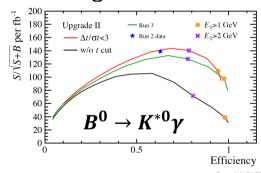


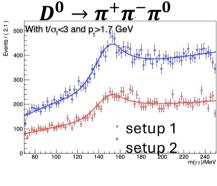
ESR reflection film

Test different production method

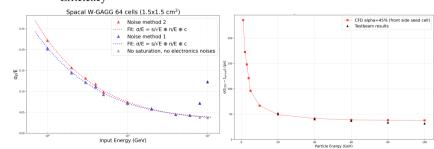


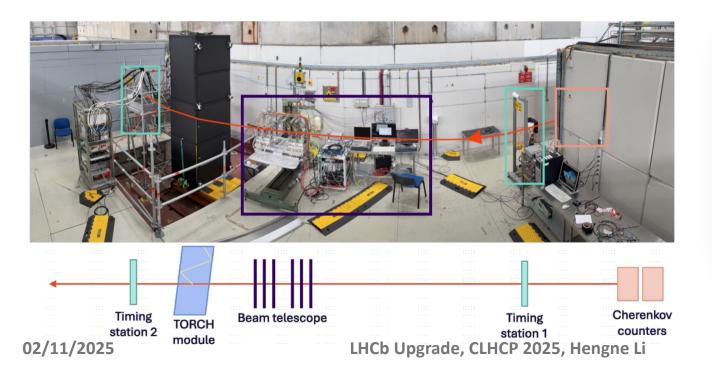

CNC machining


PicoCal: Simulation study and software development


- Simulation study
 - ✓ Material R&D: study of spill-over effect to identify target decay time of garnet crystal
 - ✓ Performance compared between different scenarios for benchmarking physics modes

→ Timing information plays a critical role in background reduction



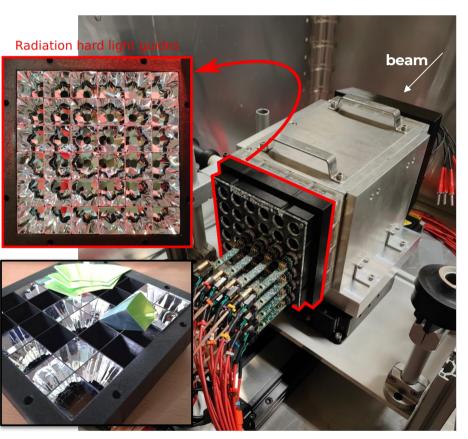


- Software development
 - ✓ Construction of simulation in LHCb official framework
 - → templated pulse method for digitization
 - ✓ Integration of reconstruction algorithm to the LHCb official framework

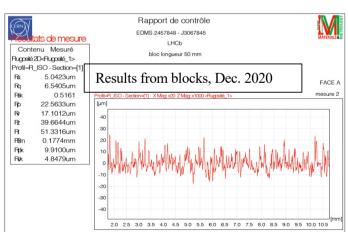
New efforts: TORCH detector

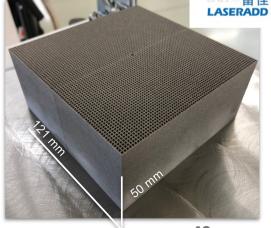
- TORCH for Upgrade II: Dedicated PID for low-momentum tracks (<10 GeV/c) to boost LHCb's flavor physics.
- LHCb China Teams: UCAS, USTC, and AUST are engaged in simulation, SiPMs, mechanics, and test beams.
- Leadership & Milestone: Convening simulation (Peilian Li); 2025 test beam for full-size module validation.

Upgrade Talks at CLHCP 2025


Talk/Poster	Title	Speaker	Upgrade/Computing Session, Date and Time
	R&D on the fast GAGG for LHCb upgrade II	Zhiyang Yuan (Peking University)	Oct 31, 2025, 2:00 PM
	Development and test-beam measurements of LHCb PicoCal modules	Xiaofan Pan (Tsinghua University)	Oct 31, 2025, 3:00 PM
	Software development for LHCb ECAL upgrade	Zifan Li (Peking University)	Oct 31, 2025, 3:20 PM
	Simulation studies for LHCb ECAL upgrade	Chenjia Zhang (Peking University)	Oct 31, 2025, 3:40 PM
	The simulation and reconstruction studies on LHCb UP detector for Upgrade II	Mingjie Feng (IHEP)	Oct 31, 2025, 5:00 PM
Talks	Development of 3D-Printed Tungsten Absorbers for the LHCb ECAL Upgrades	Jike Wang (Wuhan University)	Oct 31, 2025, 6:00 PM
	Sensor development for LHCb Upstream Pixel Tracker	Zeng Cheng (IHEP, CAS)	Nov 1, 2025, 2:00 PM
	LHCb UP Module and Stave Assembly Development	Zhijie Wang (Lanzhou University)	Nov 1, 2025, 3:20 PM
	Operation and performance of LHCb Upstream Tracker	Yuan YUAN (IHEP)	Nov 1, 2025, 4:40 PM
	Real-time analysis at LHCb for Run 3 and beyond	Peilian Li (UCAS)	Nov 1, 2025, 3:30 PM
	Status of LZU Tier 2 and 3 cluster	Kunpeng Yu (Lanzhou University)	Nov 1, 2025, 2:20 PM
Doctor	UP bare stave design and thermal study	Tiange Li (Hunan University)	Oct 30, 2025
Poster	Test of signal integrity in flex cable	Hanbing Liu (Lanzhou University)	Oct 30, 2025

Summary


- LHCb upgrade is needed to continue deliver excellent physics results
- China group is contributing more than before in the upgrade projects.
- Upgrade I, made critical contributions, including Run3 trigger & performance.
 - UT (installation and radiation test)
 - SciFi (QA system and Front-End Board)
- LS3 enhancement and Upgrade II, now playing a leading role in UP and ECAL
 - UP: Taking leading roles in 5 of the 6 WPs, esp. in CMOS chips as the key technology.
 - ECAL: Taking leading roles in W Absorber and GAGG Fiber, and critical contribution in simulation and software, optical assembly, prototyping, also starting in PMT.
 - TORCH: New efforts started!


backups

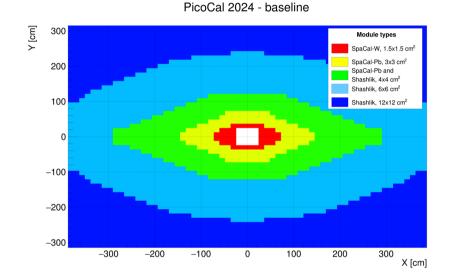
SpaCal - W Absorber - Polystyrene Fibres

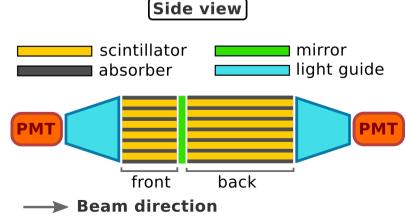
- Full size $121 \times 121 \text{ mm}^2$ Module 0 assembled at CERN in 2023:
- Passive materials:
 - 3D-printed W absorber
 - $3\times50 \text{ mm} + 1\times40 \text{ mm} \text{ long blocks}$
 - R&D performed with EOS, Germany
 - Very good mean roughness $R_a = 5 \mu m$ achieved
 - Smooth surface mandatory not to damage fibres
 - Radiation-hard "hollow light guides" made of 3M ESR
- Active materials:
 - Single-cladded Kuraray SCSF-78 square fibres 1×1 mm²

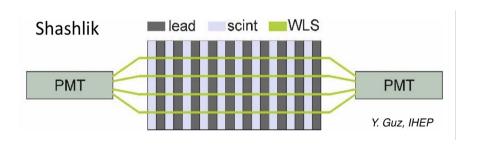
Technologies for ECAL Upgrade II

LHCB-TDR-023, LHCB-TDR-024, LHCB-TDR-026

SPACAL technology for inner region.

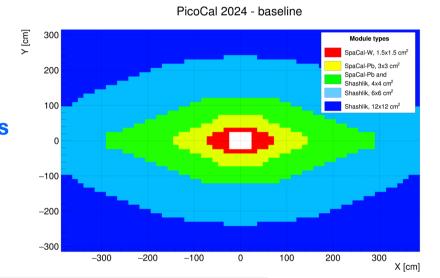

- \rightarrow 1. 5×1. 5 cm² cell W absorber and crystal fibres
 - Development of radiation-hard crystal fibres
 - Polystyrene fibres for Run 4, then replaced by crystals
- \rightarrow 3×3, 4×4 cm² cell Pb absorber and plastic fibres:
 - Need radiation-tolerant plastic fibres


Shashlik technology for outer region


 \rightarrow 4×4, 6×6, 12×12 cm² cell

02/11/2025

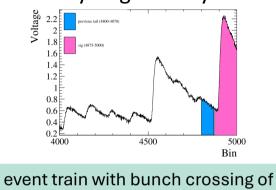
Timing improved with faster WLS fibres and double-sided readout

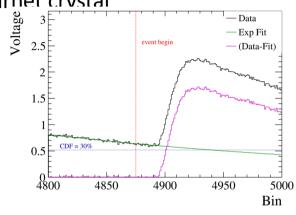


ECAL configuration to be installed during LS3

LHCB-TDR-023, LHCB-TDR-024, LHCB-TDR-026

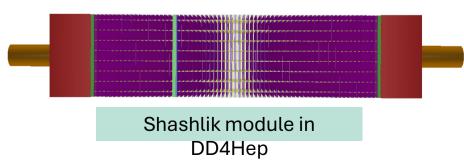
- > 176 new SpaCal modules in the inner region
 - → This region covers about 35% of photons and neutral pions from B-hadron decays over the ECAL acceptance
- The existing modules will be rearranged in rhombic areas (32 Shashlik modules with 4x4 cm² cell size will be replaced)

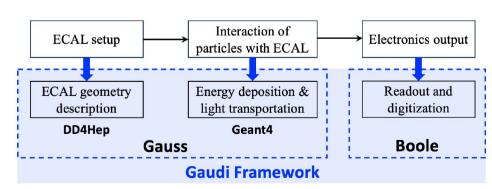



Cell size:	Modules:	Number of cells:
$2 \times 2 \text{ cm}^2$	16 new SpaCal-W modules with plastic fibres	576
$2 \times 2 \text{ cm}^2$	16 new SpaCal-W modules with plastic fibres - special shape	480
$3 \times 3 \text{ cm}^2$	104 new SpaCal-Pb modules with plastic fibres	1664
$3 \times 3 \text{ cm}^2$	40 new SpaCal-Pb modules with plastic fibres - special shape	480
$4 \times 4 \text{ cm}^2$	176 existing Shashlik modules	1584
$6 \times 6 \text{ cm}^2$	448 existing Shashlik modules	1792
$12 \times 12 \text{ cm}^2$	2'512 existing Shashlik modules	2512

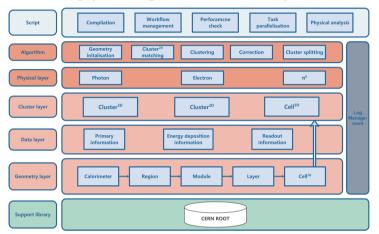
Simulation, reconstruction and performanc stuides

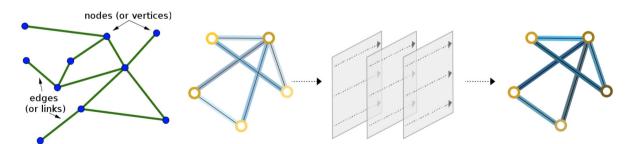
Material R&D: study of spill-over effect to identify target decay time of garnet crystal

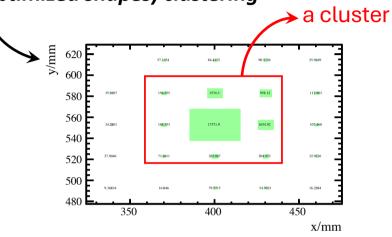


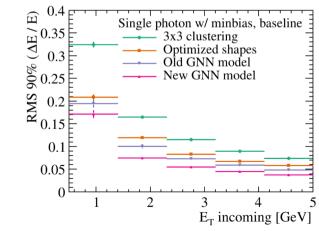


✓ spill-over effect on energy & time resolution being studied by subtracting contribution from previous events with exponential fit

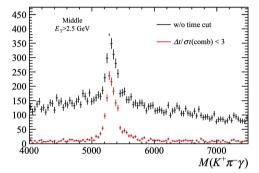

Construction of simulation in LHCb official framework

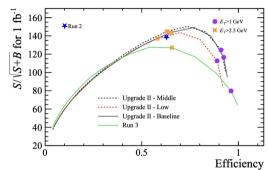



PicoCAL - reconstruction


Build-up of a working package based on layered 3x3 (& optimized shapes) clustering

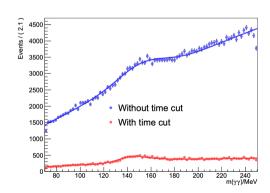
 Development of machine learning approaches for clustering – GNN method

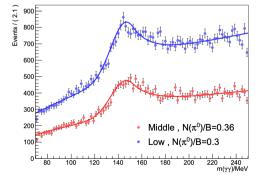



PicoCAL - performance

 Performance compared between different scenarios for benchmarking physics modes

B^0	\rightarrow	$K^{*0}\gamma$	
-------	---------------	----------------	--


Baseline	Middle	Low
$1.5\times10^{34}\rm cm^{-2}s^{-1}$	$1.0\times10^{34}\mathrm{cm^{-2}s^{-1}}$	$1.0 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
	<u>PicoCal</u>	
40 SpaCal-W	$40 \; \mathrm{SpaCal\text{-}W}$	40 SpaCal-W
408 SpaCal-Pb	408 SpaCal-Pb	408 SpaCal-Pb
2864 Shashlik	2864 Shashlik	2864 Shashlik
double R/O	double R/O	single R/O except 176 inner
30,976 channels	30,976 channels	20,224 channels



$$D^0
ightarrow \pi^+\pi^-\pi^0$$

- Studies based on 3x3 clustering approach
- Timing information plays a critical role in background reduction
- Results included in
 LHCb Upgrade II Scoping Document
 [CERN-LHCC-2024-010, LHCb-TDR-026]

