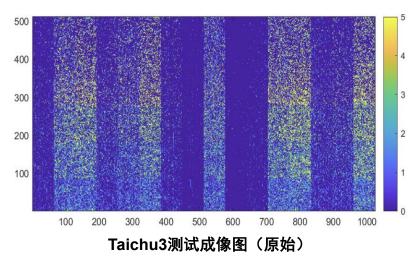

FASTOR重复读出bug复现和修正

汇报人: 邓思琪

导师:魏微


时间: 2025.10.23



- ➤ Taichu3原设计bug复现与修正
- ➤ Stitching设计参考

背景

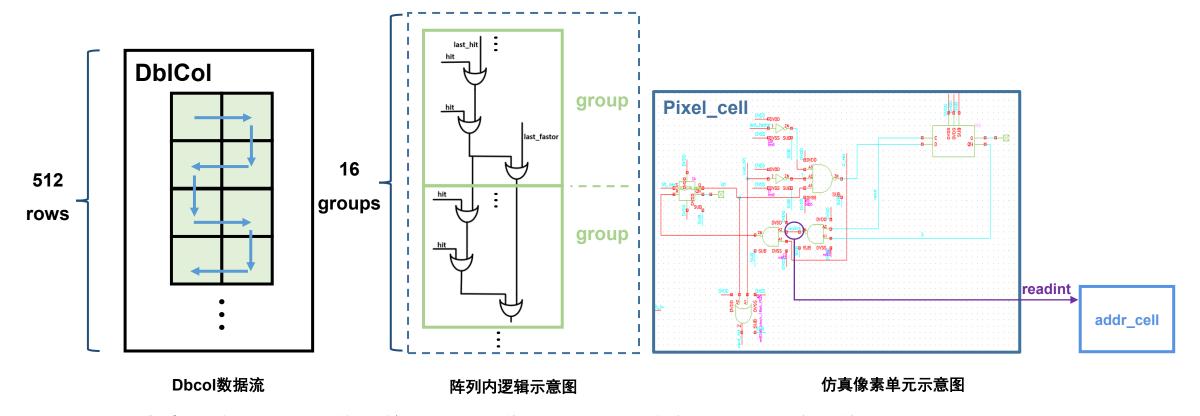
500 400 300 200 100 100 200 300 400 500 600 700 800 900 1000 Taichu3测试成像图(已清除重复数据)

□较高行的像素在被单次击中时会有重复读出

• 行号越高,重复数越多

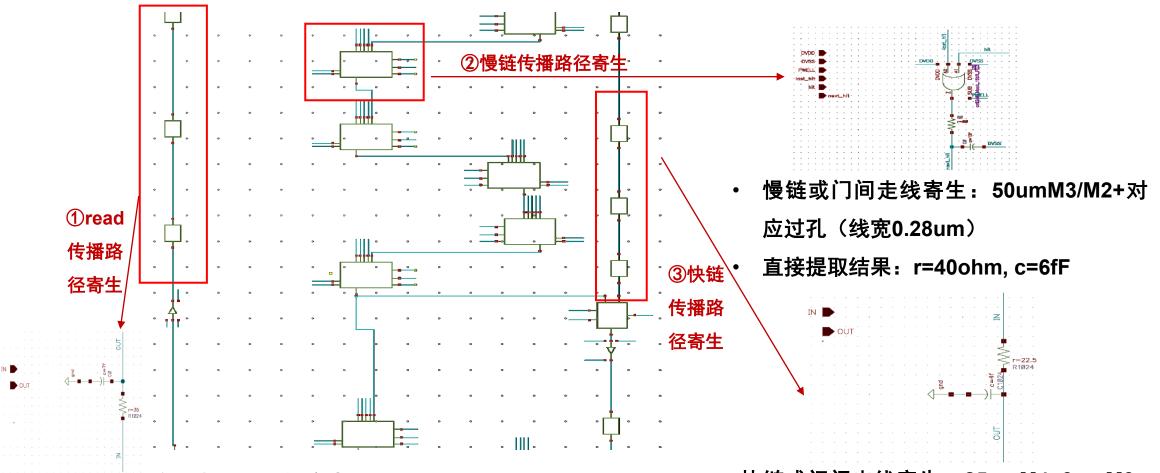
□ 形成原因:

· 由于阵列和连线的延时过大,FASTOR信号 无法被及时清除


□目前解决方法

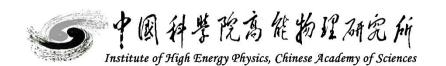
• 在FPGA中监测重复数据并将其清除

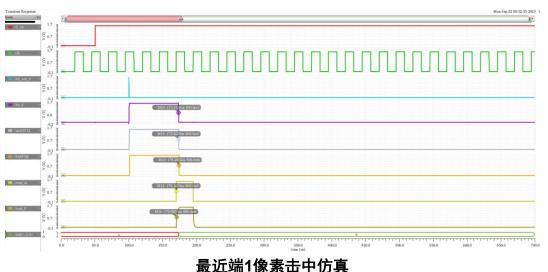

原设计基本情况及仿真模型搭建。中国科学党系统物设确完所

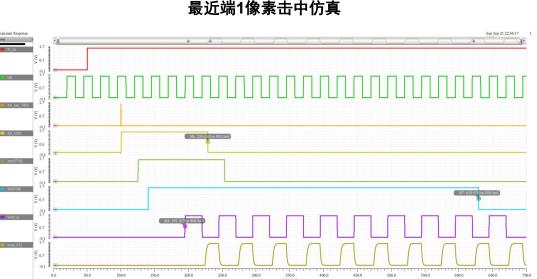


- 考虑到实际需求和仿真效率,选取像素中关键数字部分来代替完整像素功能
- 外围模块以列端行为级模型代替
- 考虑连线寄生

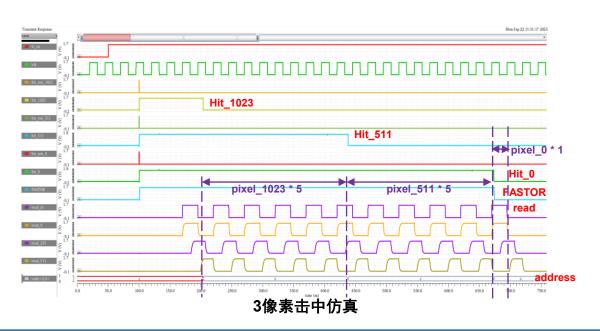
主要延时路径及寄生参数提取

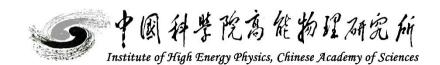



- 阵列内read总线寄生: 25umM4+12umM3+10umM2+ 对应过孔(线宽0.28um)
- 直接提取结果: r=35ohm, c=7fF

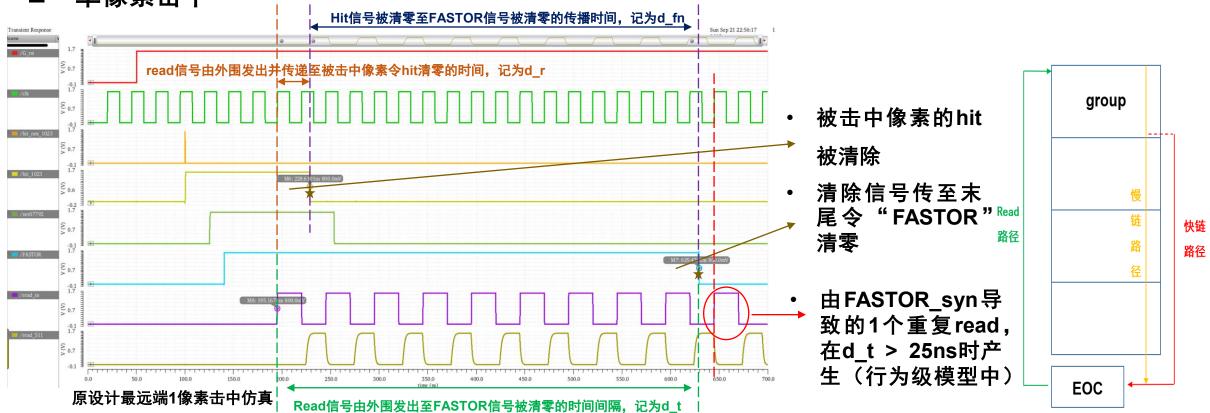

- 快链或门间走线寄生: 25umM4+3umM3+对
 应过孔(线宽0.28um)
- 直接提取结果:r=22.5ohm, c=4fF

原设计仿真

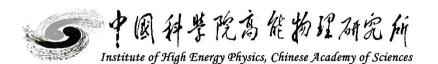


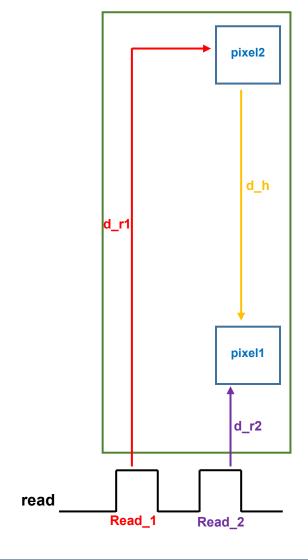


最远端1像素击中仿真


- □ SS + 2*RC条件下仿真(RC为所提取的寄生参数)
- □ 较近处像素被击中时无重复读出
 - 第1个像素(最近端)被单独击中时无重复读出
- □ 较远处像素被击中时重复读出
 - 第1024个像素(最远端)被单独击中时产生10个read信号, 即9次重复读出
 - · 第1024、512、1个像素被同时击中时,第1024个像素4次重复 读出,第512个像素4次重复读出,第1个像素无重复读出
 - 重复原因: FASTOR清除信号无法在下一个read到来之前传递 至下一个被击中像素

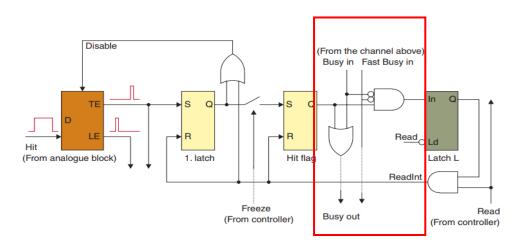
延时分析




- 总延时d_t = d_r + d_fn = 33.4 + 400.9 = 434.3 ns
- 延时过大根本原因:FASTOR信号被清除需要遍历完整慢链,此段时间过长,即d_fn
 - 根本性减小延时:减小d_fn → 阵列中修改
- 适当修改外围逻辑,清除最后一个重复read(行为级层面)
- 不重复约束条件: 0 < d_r + d_fn < 50 ns

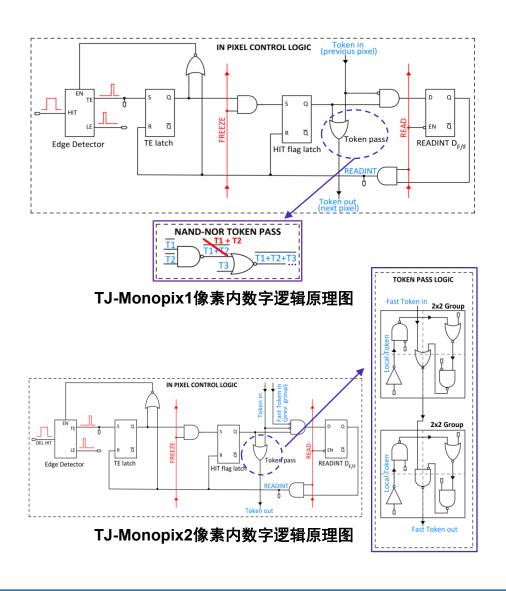
延时分析

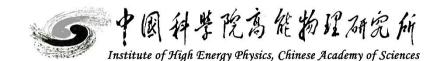
■ 多像素击中

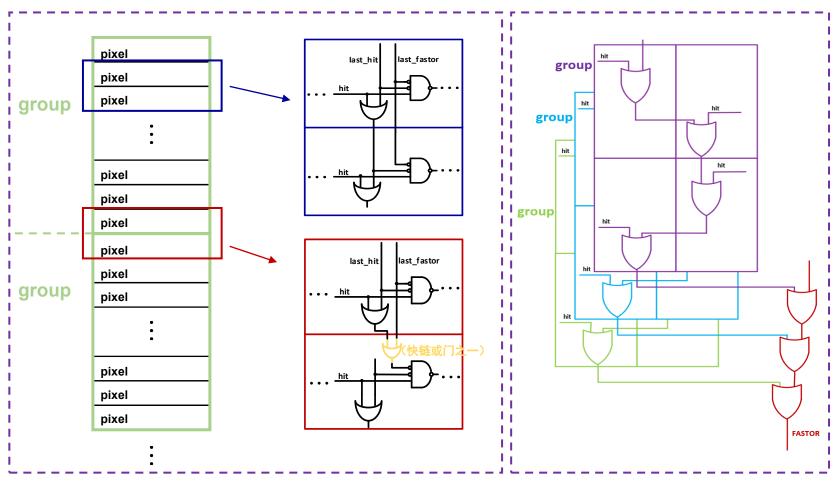

■ Pixel1不重复条件:

- · 直观理解:hit清零信号需要在第2个read信号到达pixel1之前到达 pixel1
- ・ 数学表达: d_r1 + d_h d_r2 < 50 ns
- Pixel2不重复条件与该像素被单独击中时情况相同(参考上一页)
- 综合不同情况分析,延时最坏的情况为最远端像素被单次击中, 满足上页不重复约束条件即可
- 优化: 视初步修改后的结果而定

注*: d_r1为第1个read信号由外围发出传递至pixel2,并令其hit清零的时间 d_r2为第2个read信号由外围发出传递至pixel1,并令其hit清零的时间 d_h为hit清零信号由pixel2传递至pixel1的时间


相关调研


FEI3像素内数字逻辑原理图

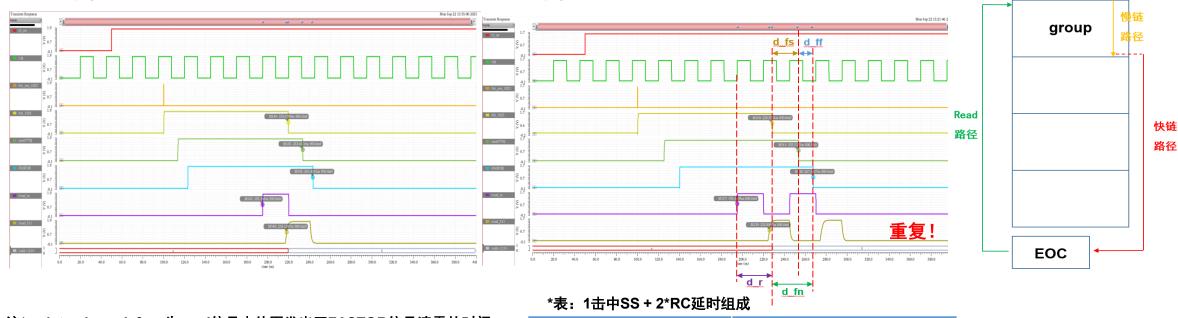

- FEI3: 将一列分块,引入fast busy进行块级的信号传递, Taichu采用了同样的策略,只能加快busy(fastor)传"1"的速度;
- TJ-Monopix1:将"或门"替换为"与非门-或非门" 交替出现:
- TJ-Monopix2: 2×2像素组,引入快速令牌逻辑。

对后续修改和优化具有一定参考意义

阵列内逻辑修改示意图

修改后逻辑示意图

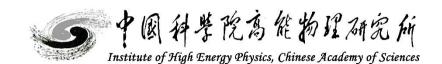
- □ 阵列内逻辑修改(根本)
 - · 慢链(像素内)的或门在 分组处断开但优先级仲裁 处保持连接
 - 加快FASTOR信号的清除 但不影响优先级仲裁
- □ 外围逻辑修改(行为级层面 /辅助)
 - · 修改read翻转条件
 - 原设计: FASTOR_syn为 高的时钟上升沿翻转
 - 修改后: FASTOR_syn & FASTOR



初步修改后仿真与分析

• 1击中TT(TT + 1.8V + 27℃)+ 2*RC

• 1击中SS(SS + 1.6V + 50℃) + 2*RC

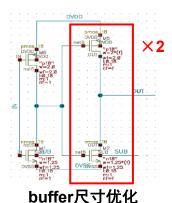

注*: d_t = d_r + d_fn, 为read信号由外围发出至FASTOR信号清零的时间 d_r为read信号由外围发出并传递至被击中像素令hit清零的时间 d_fn = d_fs + d_ff, 为hit信号被清零至FASTOR信号被清零的传播时间 d_fs为hit信号被清零至慢链被全部清零的传播时间 d_ff为慢链被全部清零至快链被全部清零的传播时间

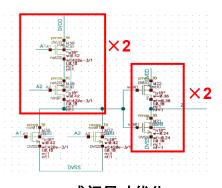
	d_t		72.4 ns					
al u	d_	fn	33.4	39				
d_r	d_fs	d_ff	33.4	25	14			

- TT仿真无重复读出,SS仿真有1次重复读出
- · 需针对主要延时路径进一步优化,即read路径、慢链和快链路径

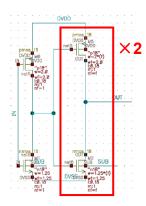
延时优化

> 针对慢链和快链的优化:

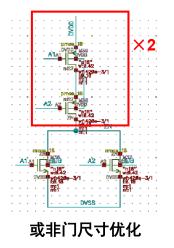

- 方案一:保留"纯或"逻辑,优化关键逻辑门尺寸
 - 修改慢链和快链中的或门尺寸
 - · 修改快链路径中的buffer尺寸


■ 方案二: NAND-NOR逻辑交替

- 将OR替换为NAND-NOR交替出现,并修改关键 NAND/NOR尺寸
- 逻辑复杂,面积节省空间小,延时优化情况与方案一相当(见本报告P13、P14)


> 针对read路径的优化:

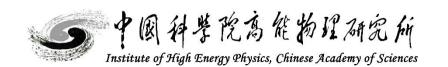
· 修改read路径中的buffer尺寸



或门尺寸优化

buffer尺寸优化

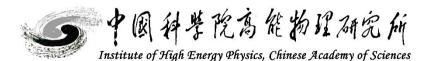
与非门尺寸优化

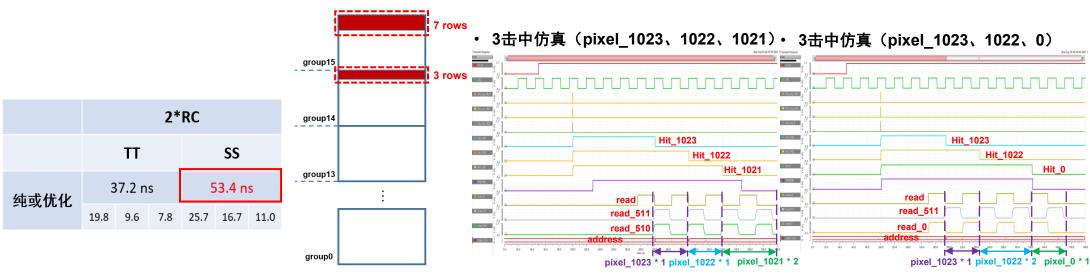

	像	素内增加(〈修改OR〉/像素	像素外:		OR & NAND & NOR & r)/组	Read路径			
		2*PMOS	$\left(\frac{W}{L}\right)_{R} = \frac{0.42u}{0.18u}$		2*PMOS	$\left(\frac{W}{L}\right)_{P} = \frac{0.42u}{0.18u}$				
纯或逻辑					1*INV	$\left(\frac{W}{L}\right)_{N} = \frac{0.24u}{0.18u}, \left(\frac{W}{L}\right)_{P} = \frac{0.36u}{0.18u}$	2*INV	$\left(\frac{W}{L}\right)_{N} = \frac{1.25u}{0.18u}, \left(\frac{W}{L}\right)_{P} = \frac{2.0u}{0.18u}$		
		1*INV	$\left(\frac{W}{L}\right)_{N} = \frac{0.24u}{0.18u}, \left(\frac{W}{L}\right)_{p} = \frac{0.36u}{0.18u}$		2*INV	$\left(\frac{W}{L}\right)_{N} = \frac{1.25u}{0.18u}, \left(\frac{W}{L}\right)_{P} = \frac{2.0u}{0.18u}$				
		2*NMOS	$\left(\frac{W}{L}\right)_{N} = \frac{0.42u}{0.18u}$		2*NMOS	$\left(\frac{W}{L}\right)_{N} = \frac{0.42u}{0.18u}$				
	像素内 NAND	1*INV	$\left(\frac{W}{L}\right)_{N} = \frac{0.24u}{0.18u}, \left(\frac{W}{L}\right)_{p} = \frac{0.36u}{0.18u}$	NAND 逻辑组		第一个NAND需额外增加1*INV, 0.24 <i>u (W</i>) 0.36 <i>u</i> 、				
	逻辑	(注・慢链中	(注:慢链中每组第一个NAND在此基础上需		$\left(\frac{\overline{L}}{L}\right)_{N} =$	$\frac{0.24u}{0.18u}$, $\left(\frac{W}{L}\right)_{p} = \frac{0.36u}{0.18u}$				
NAND-NOR			增加1*INV,尺寸同上)		2*INV	$\left(\frac{W}{L}\right)_{N} = \frac{1.25u}{0.18u}, \left(\frac{W}{L}\right)_{p} = \frac{2.0u}{0.18u}$	2*INV	$\left(\frac{W}{L}\right)_{N} = \frac{1.25u}{0.18u}, \left(\frac{W}{L}\right)_{R} = \frac{2.0u}{0.18u}$		
交替	像素内			NOR 逻辑组	2*PMOS	$\left(\frac{W}{L}\right)_{P} = \frac{0.42u}{0.18u}$		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	NOR	NOR 2*PMOS	$\left(\frac{W}{L}\right)_{P} = \frac{0.42u}{0.18u}$		1*INV	$\left(\frac{W}{L}\right)_{N} = \frac{0.24u}{0.18u}, \left(\frac{W}{L}\right)_{P} = \frac{0.36u}{0.18u}$				
	逻辑				2*INV	$\left(\frac{W}{L}\right)_{N} = \frac{1.25u}{0.18u}, \left(\frac{W}{L}\right)_{P} = \frac{2.0u}{0.18u}$				

注*: 对于像素外增加的部分,尺寸为 $\left(\frac{W}{L}\right)_N = \frac{0.24u}{0.18u}$, $\left(\frac{W}{L}\right)_P = \frac{0.36u}{0.18u}$ 的INV为逻辑门中所增加;尺寸为 $\left(\frac{W}{L}\right)_N = \frac{1.25u}{0.18u}$, $\left(\frac{W}{L}\right)_P = \frac{2.0u}{0.18u}$ 的INV为快链中Buffer所增加

- 两种方案在面积消耗方面相当
- 版图评估:无法在原设计布局基础上直接修改,需重新布局和绘制。

不同情况延时结果1

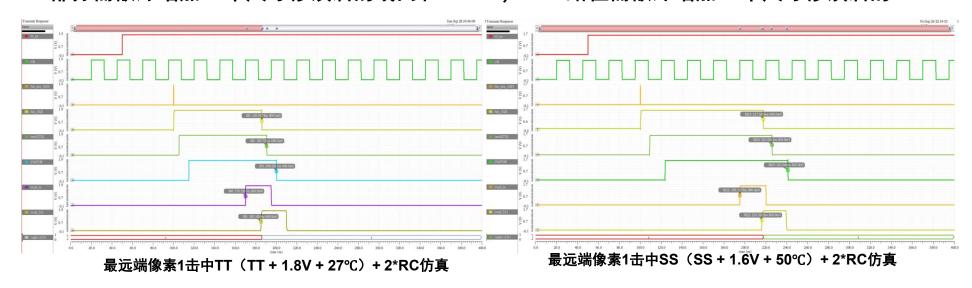

					最远端像素1击中																
						2*	RC			1.5*RC						1*RC					
					TT	TT SS				TT		SS			TT			SS			
	عالم		原设计	249.0 ns		434.3 ns						191.2 ns		ıs	339.8 ns						
			/// C/1	24.6	22	4.4	33.4	40	0.9						15.1	170	6.1	22.0	317	7.8	
	d_t		初步修改	48.3 ns		72.4 ns															
				24.5	14.0	9.8	33.4	25.0	14.0												
	А	fn	纯或优化	3	37.2 n	S	5	53.4 n	S	3	0.0 n	S	4	4.9 ns	S	2	3.9 n	S	3	7.3 ns	\$
dr	_	> 6-20, 1/6 PG	19.8	9.6	7.8	25.7	16.7	11.0	15.0	8.8	6.2	20.2	15.4	9.3	10.9	8.0	5.0	15.5	13.9	7.9	
d_r	d_fs	fc d ff	_fs d_ff Nand-nor	Nand-nor	3	36.8 ns		53.7 ns													
	u_is u_		ivand-nor	19.8	9.4	7.6	25.7	17.3	10.7												


未完全满足要求,具体分析见下页

- 在优化方面,针对"纯或逻辑"和"NAND-NOR逻辑"两种方案,延时优化效果相当
- · 结合两者面积消耗情况相当,且考虑到NAND-NOR方案逻辑更为复杂,选择纯或逻辑方案

纯或优化SS + 2*RC情况分析

- 可能重复的像素位置:第16组(最远端的组)中远端7行像素和第15组中远端3行像素,即20个像素所在位置(针对一个Dbcol)
- 重复情况:
 - · 单像素击中:以上20个位置的任意像素被单独击中时,会重复读出1次,其余1004个位置的像素不重复
 - 多像素击中:以3个像素被击中为例
 - 若3个连续像素被击中,则当3个像素中最近端的像素处在以上20个位置之中时,最近端像素重复读出1次,其余2个像素不重复。即3像素被击中,最终读出4次。
 - 若3个不连续像素被击中,则像素间隔较远时,上述20个位置中的像素有几率重复读出1次,其余像素不重复。即3像素被击中,最终读出4次。
- 综上,该情况下无论是单像素被击中还是多像素被击中,均只有1个像素有几率重复读出1次,占比小,且对死时间和数据带宽的影响不大。可以选择在FPGA中处理。



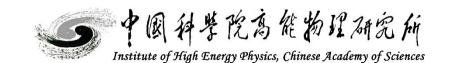
进一步优化选择

■ 彻底优化方案:

- 将Dbcol分为32组,每组16行/32像素
- · Read路径相应分为32节
- 版图代价:相较于修正后的16组方案,慢链部分无额外开销,即像素内无需额外增加晶体管;快链部分需额外增加16个尺寸修改后的或门和buffer; read路径需额外增加16个尺寸修改后的buffer。

		TT		SS					
32组方案	3	0.1 n	S	45.9 ns					
о - //	15.8	4.8	9.5	22.4	8.3	15.2			

- ✓ 该情况下彻底满足不重复要求,在条件允许范围内(如版 图面积等)可优先选择该方案
- ✓ 原设计FASTOR重复读出bug解决



不同情况延时结果2

					最远端像素1击中																	
					2*RC					1.5*RC					1*RC							
					TT SS				TT		SS			TT				SS				
			原设计	24	249.0 ns		434.3 ns						191.2 ns		339.8 ns		IS					
	d_t		73.00.71	24.6	22	4.4	33.4	40	0.9							15.1	170	6.1	22.0	317	7.8	
	u_t		初步修改	48.3 ns		72.4 ns																
				24.5	14.0	9.8	33.4	25.0	14.0													
	Ч	d_fn 纯或优化		3	37.2 ns		53.4 ns		30.0 ns		5	44.9 ns		23.9 ns		S	37.3 ns		5			
d_r	u_	-'''	=0-3% /U /U	19.8	9.6	7.8	25.7	16.7	11.0	15.0	8.8	6.2	20.2	15.4	9.3	10.9	8.0	5.0	15.5	13.9	7.9	
 .	d_fs	d ff	32细方室	3	0.1 n	S	45.9 ns															
	u_13	a_tf	d_ff 32组方案	32.血门未	15.8	4.8	9.5	22.4	8.3	15.2												

			RSU Height [um]	RSU Width [um]	Matrix 行数 R	Matrix 列数 C	Matrix 个数 N	RSU 个数	读出 方式	端口 数量	读出速率 [Mbps]	Buffer功耗 密度
1		24.600 x 158.400	24600	12750	440	64	14	12	独立	168	259.98	73.1 mW/cm ²
	158.								汇总	48	1039.92	62.7 mW/cm ²

- Matrix大小: 440rows × 64cols;
- 阵列布局时可采用与Taichu(修正后)相似的方案
 - 若采取Taichu-16组类似方案,则stitching-tile中一个双列可分为14组,其中有1组为24行/48像素(其余13组为32行/64像素);
 - · 若采取Taichu-32组类似方案,则stitching-tile中一个双列可分为28组,其中有1组为8行/16像素(其余27组为16行/32像素);
- 考虑延时最小化,较短的一组放置在最远端(针对以上提到的两种方案分别记为第14组或第28组),则14组方案中延时最坏的像素为14组最远端像素或13组最远端像素,28组方案中延时最坏的像素为28组最远端像素或27组最远端像素。

均满足不重复要求!

			14组	方案		28组方案						
		14组最远端	計像素击中	13组最远端	指像素击中	28组最远端	端1像素击中	27组最远端1像素击中				
d _	t	44.9	9 ns	46.9	9 ns	37.	2 ns	40.4 ns				
d_r	d_fn	22.7	22.2	21.3	25.6	19.7	17.5	19.1	21.3			

注*: 4组结果均在SS + 2*RC情况下仿真所得

➤ Taichu3设计

- Bug复现: 较坏情况下最远端1个像素被击中时有9次重复读出
- 问题分析: 阵列内FASTOR清零延时过大,需满足0 < d_r + d_fn < 50 ns即可 达到不重复要求
- 修改与优化:保留纯或逻辑的基础上,16组方案基本可以满足需求,32组方案可彻底解决问题,资源允许的情况下可优先选择

• 16组方案: 434.3 ns → 53.4 ns

• 32组方案: 434.4 ns → 45.9 ns

➤ Stitching设计参考

■ 类似Taichu3修正后方案,可选择14组方案或28组方案,视条件选择

14组方案: 46.9 ns

・ 28组方案: 40.4 ns

Thanks!