

Probing triple Higgs production via $4\rightarrow 2\rightarrow$ decay channel at a 100 TeV hadron collider

Sunday, 14 December 2025 09:00 (20 minutes)

A comprehensive study of triple Higgs boson production in the $4\rightarrow 2\rightarrow$ decay final state is performed for the first time at a future 100 TeV hadron collider. The analysis incorporates modified Higgs self-couplings via trilinear Higgs self-coupling λ_3 and quartic Higgs self-coupling λ_4 , enabling for a model-independent investigation of potential new physics effects. Higgs bosons are reconstructed using both resolved and boosted techniques. To optimize sensitivity across different kinematic regions, we introduce a novel event categorization strategy based on the triple Higgs invariant mass spectrum and the multiplicity of boosted Higgs bosons. In addition to a traditional cut-based analysis, a Boosted Decision Tree (BDT) approach is employed to exploit multivariate correlations among kinematic observables, leading to a significant improvement in sensitivity. Our result demonstrates that the $4\rightarrow 2\rightarrow$ channel provides a viable pathway for probing the Higgs quartic coupling, complementing the existing multi-Higgs production studies, and could reach 5 σ in significance for $\lambda_3 \leq -1$ and $\lambda_4 \geq 10$ in the scanned range.

This work has been published on JHEP: [https://doi.org/10.1007/JHEP08\(2025\)040](https://doi.org/10.1007/JHEP08(2025)040)

Co-author: SUN, Xiaohu (Peking University)

Presenter: DONG, Zhenyu (Peking University)

Session Classification: Contributed session