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Background

SU(2) pure-gluon Lagrangian density with background field reads:
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G (T) = 0, A7 — O, A + f7° A A7, (2)

devide the field into two parts:
Al = /_XZ + aZ,A3 = Ay, (3)
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Tomin = g2/47r2. (6)
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SU(2) case

massive gauge field
2

L= ZGZVGW 4 %aua“ + DyeDV e+ ihD,a", (7)
charge n =+ — 0,
) [ yat +ihD a"] (8)
Redefine a new field A, = A, +i 1(’ Tha
d4p 1 D, D"
N I
Trin AL = (3fm(7793) + fo(n)), (10)
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gauge transformation

massive gauge field
L= tgn gua ™y s DLeDbc 4 ih Dt 11
= 1w —i-?aua—k wcDVc +ihD,a", (11)
LDW gauge, as a background field generalization of the Landau gauge, has a core
gauge condition given by

Duaz =0 (12)
if a local SU(N) transformation is applied to the background field as
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AT =UA U+ ;U@,LU !

at the same time, the transformation ¢ — Uc,oU_1 is imposed on the fluctuation field,
ghost fields, and Nakanishi-Lautrup field ¢ = (a, ¢, ¢, h), then the action S5 satisfies

the symmetry
Silel = Saw[UeU™]



The one-loop background field potential
can be written as

v, r) = g]—"m(T,r) - %fo(Tﬂ“)-
(13)

Vi (T ~ Fo(T,r).  (14)

The massive gluon contribution can be
ignored.7in = 0

1
Vid(Tor) = =S Fo(T,r).  (15)

The massive gluon contribution is
exponentially suppressed, massless modes
dominate,with the minimum located at
r=T.
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Fig. 2. The SU(3) background field potential in the rs =0 direction in d = 4, for
decreasing values of #i (increasing temperatuires) from top to bottor. The bottom
figure is a close-up view around T. (Color online: T = T (black). T < Tc (blue).
T> T (red))




Polyakov loop
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e SU(2) (solid line): the Polyakov

1 . loop increases continuously from a
sl value "close to zero” at low
temperatures to a non-zero value .
0.6 -
¢ e SU(3) (dashed line): Polyakov loop
04r exhibits a "jump” from a value "close
02f to zero” at low temperatures directly
oL to a non-zero value of approximately

T/T, ‘ 0.6..

Fig. 3. The Polyakov loop as a function of the temperature normalized to the transi-
tion temperature for N =2 (solid line) and N = 3 (dashed line). (Color online.)
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Conclusion
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T. (MeV) | one loop | two loop | lattice | FRG/DSE
SU(2) 238 284 205 | 230 (300)
SU(3) 185 254 270 275

® The one-loop calculation can capture the main features of the deconfinement
phase transition.

® The two-loop calculation gives better results in three ways: the critical
temperature matches lattice QCD data more closely, it removes an unphysical
problem with the Polyakov loop, and it corrects the issue of negative entropy.

® This approach is easy to use in calculations and can be systematically improved to
higher orders.



Q= 3700 g2) = 33 fmlne) = 3ol (16)
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