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Domenech, 2402.17388, PBH book, Ch. 17 
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PBH-IGW crosscheck
G∙∙ = T∙∙

1/H

∇2ℛ ∼ δℓ

PBH

δℓ,cr

ℙ(δℓ)

PBH

β ∼ erfc( δc

2σδ
)

fPBH ≡
ΩPBH

ΩCDM

= 4.11 × 108β(M)( M
M⊙ )

− 1
2

induced GWs

□ hij ∼ ∇iℛ∇jℛ

ΩGW ∼ 10−6𝒫2
ℛ

∼ 10−6σ4
δ
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𝒫ℛ(k)

k

PBH-IGW crosscheck
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Saito & Yokoyama 0812.4339; 0912.5317 

Bugaev & Klimai 0908.0664; 1012.4697

Escriva et al, 2211.05767
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Fig. 1. Top: The energy density of the induced GWs for the power spectrum for a peak width, ∆ =
0.0, 1.0 × 10−3, 1.0 × 10−1, 1.0. Bottom: Energy density of scalar-induced GWs associated with PBH
formation together with current pulsar constraint (thick solid line segment) and sensitivity of various
GW detectors (convex curves). Solid wedged lines indicate the energy density with the parameters
(ΩPBHh2, MPBH) = (10−5, 102M⊙) (left), (10−1, 1020g) (right) for sufficiently small ∆ (thick lines) and
∆ = 1.0 (thin lines).

Downloaded from https://academic.oup.com/ptp/article-abstract/126/2/351/1838316
by guest
on 14 July 2018
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Luo et al., TianQin Whitebook, 2502.20138 

Hong, Kuroyanagi, Pi, Wang, Zhang, to appear
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Detectability

Luo et al., TianQin Whitebook, 2502.20138 

Hong, Kuroyanagi, Pi, Wang, Zhang, to appear
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Including non-Gaussianity
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𝒫ℛ ∼ 10−2

∼ 10−3
Gaussian

non-Gaussian

non-G
aussi

anGaussi
an

ℛ = ℛg + FNL(ℛ2
g − ⟨ℛ2

g⟩)

nonlinear coupling hℛℛ

FNL𝒫ℛ ∼ 10−2

Ω(NG)
GW ∼ 10−5F4

NL𝒫4
ℛ,g ∼ 10−12 > LISA

with FNL > 0

LISA/Taiji/TianQin can probe PBH-DM.

Cai, SP, Sasaki, 1810.11000

For perturbative non-Gaussianity:

gravitational collapse
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Why non-Gaussianity?
ℛ (1) 𝒞ℓ

ℙ(ℛ) (2) ℙ(𝒞ℓ)

(3) given 𝒞cr

(4) Window function
β = ∫

4/3

𝒞ℓ,cr

ℙ(𝒞ℓ)
M(𝒞ℓ)

MH
d𝒞ℓ

• (1) Use compaction function  which nonlinearly depends 

on . (Harada et al 1503.03934; De Luca et al 

1904.00970; Gow et al 2211.08348)


• (2) Primordial non-Gaussianity of  is usually non-

perturbative. (This talk, and many others)


• (3)  depends on profile. (Musco 1809.02127; Escrivà et 

al 1907.13311)

𝒞

ℛ

ℛ

𝒞cr

Non-Gaussianity must be taken into account：
Gaussian exponential 

tail
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Gaussian Curvature Perturbation 

Stewart and Sasaki, astro-ph/9507001

Lyth and Roquigez, astro-ph/0504045

Maldadena, astro-ph/0210603

V(φ)

φ

𝒫ℛ(k)

k

10−2

10−9
𝒫ℛ ≈

H2

8π2ϵH
∼ 10−9kns−1

ns − 1 = − 2ϵH − 2ηH

ℛ = ℛg +
3
5

fNLℛ2
g + ⋯

ℛg = −
H
·φ

δφ

fNL = −
5
12

(ns − 1)

ϵV =
1
2 ( V′￼

V )2 ≪ 1

ηV =
V′￼′￼

V
≪ 1

ϵH ≈ ηH

ηH = 4ϵV − 2ηV
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V(φ)

φ

𝒫ℛ(k)

k

10−2

10−9?
ns − 1 = − ηH = 6

Gaussian Curvature Perturbation 

𝒫ℛ ≈
H2

8π2ϵ
∝ k6

ℛ = ℛg +
3
5

fNLℛ2
g + ⋯

ℛg = −
H
·φ

δφ

fNL = −
5
12

(ns − 1) = −
5
2

ϵV =
1
2 ( V′￼

V )2 ≪ 1

ηV =
V′￼′￼

V
≪ 1

ϵH ∝ a−6

ηH = − 6
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Ultra-slow-roll inflation

Starobinski, JETP Lett. 55, 489

Yokoyama, Inoe, hep-ph/0104083

Biagetti et al., 1804.07124

Byrnes, Cole, Patil, 1811.11158

Cole, Gow, Byrnes, Patil, 2204.07573

SP, Wang, 2209.14183

Domenech, Vargas, Vargas, 2309.05750

slow-roll approx.
ns − 1 = 6

k4

k6

Next-to-leading order 
in gradient expansion

fNL =
5
2

fNL = − 5/2

V(φ)

φφ*

Ultra-slow-roll

Slo
w-ro

ll

Slow
-ro

ll



random φa

random φb

fiducial ⟨φ⟩

quantum fluctuation δφ

Hubble patch H−1

ti

tj

In each separate-universe of size ,(σH)−1

Separate universe approach and  formalismδN

ds2
3 ≃ a2e2ℛ(x)(δij + E,ij)dxidxj

H(x) = H + ·ℛ(x) + 𝒪(∇)

physical scale

time

🎲



21

random φa
random φb

fiducial ⟨φ⟩

time

tj

te

local expansion 

Nb = N + δNb

local expansion

 Na = N + δNa

global expansion N

comoving scale
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random φa
random φb

fiducial ⟨φ⟩

time

tj

comoving scale

te

local expansion 

Nb = N + δNb

local expansion

 Na = N + δNa

global expansion N

Na = ∫
te

tj

Hadt = ∫
te

tj

(H + ·ℛa)dt +
1
3 ∫ ∇2σdt ≈ N + ℛ(te) − ℛ(tj) = N + ℛc(te) ⟹ ℛc = δN

(in each patch “a”)

Starobinsky, JETP Lett. 42 (1985) 152

Salopek and Bond, PRD 42 (1990) 3936

Sasaki and Stewart, astro-ph/9507001

Wands, Malik, Lyth, Liddle, astro-ph/0003278



V(φ) N(φ̄)

N(φend) = 0
N(φa)

Starobinsky, JETP Lett. 42 (1985) 152

Salopek and Bond, PRD 42 (1990) 3936

Sasaki and Stewart, astro-ph/9507001

Wands, Malik, Lyth, Liddle, astro-ph/0003278

P(δφ)

δφ

P(ℛ) =
∂δφ
∂ℛ

P(δφ)

(nearly) Gaussian

φend φ̄ φφa

ℛ = δN
(in each patch “a”)

🎲



 formalismδN

Cruces, SP, Sasaki, 2505.24590

PDF of inflaton  
at the horizon exit

φ

PDF of the comoving 
curvature perturbation at the 

end of inflationδn
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φ

V(φ) π′￼+ 3π = 0

dN = Hdt

φ*

π = π*e−3(N−N*)

N − N* = −
1
3

ln
π(N)

π*
π

Ultra-slow-roll inflation

π*

(π ≡
dφ
dN )

φ′￼′￼+ 3Hφ′￼ = 0

SP and Sasaki, 2211.13932

SP, 2404.06151

(  is the attractor solution)π = 0

(superhorizon, not background)
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φ

V(φ)

φ*

N̄ − N* = −
1
3

ln
π(N̄)

π*

In the “fiducial” patch

ℛ = δN = N − N̄ = −
1
3

ln
π(N)
π(N̄)

= −
1
3

ln (1 +
δπ(N)
π(N̄) )

By  formalism, the curvature perturbation isδN

Ultra-slow-roll inflation

ππ*

N − N* = −
1
3

ln
π(N)

π*

In a perturbed patch

π̃π̃*
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φ

V(φ)

φ*

Ultra-slow-roll inflation

( fNL =
5
2

, gNL = −
25
3

, ⋯)

ππ*

π̃π̃*

Namjoo, Firouzjahi, Sasaki, 1210.3692

Chen, Firouzjahi, Komatsu, Namjoo, Sasaki, 1308.5341

Cai, Chen, Namjoo, Sasaki, Wang, Wang, 1712.09998

Biagetti, Franciolini, Kehagias, Riotto, 1804.07124

Passaglia, Hu, Motohashi, 1812.08243

SP and Sasaki, 2211.13932 

SP, 2404.06151, PBH book ch.7

Jackson et al 2410.13683, Cruces et al 2410.17987

Ballestores et al 2412.14106, Caravano et al 2506.11795

Artigas, SP, Tanaka, 2408.09964

Escriva, Garriga, SP, 2512.04986

ℛ = −
1
3

ln (1 +
δπ(N)
π(N̄) ) = −

1
3

ln (1 +
δπ
π̄ )
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φ*

V(φ)

φf0

V1(φ) = V0 +
m2

1

2
φ2

piecewise quadratic potential 
ηV =

m2
1

3H2 λ± =
3 ± 9 − 12ηV

2
Characteristic roots 

(Liyapnov exponent)slow-roll parameter

φ = c+eλ+N + c−eλ−N

 and  are given by boundary conditions c+ c− (φ*, π*)

⟹ N(φ, π)

π = c+λ+eλ+N + c−λ−eλ−N

⟹ ℛ = δN = δN(δφ, δπ)

SP and Sasaki, 2211.13932

SP, 2404.06151

(φ, π)

(φ*, π*)

(δπ*)

(δφ, δπ)
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φ*

V(φ)

φf0

−
1
λ±

ln (1 +
δπ*(δφ, δπ)
π* + λ∓φ* )

+
1
λ̃±

ln (1 +
δπ*(δφ, δπ)

π* + λ̃∓(φ* − φm) )

ℛ ≡ δN =
1
λ±

ln (1 +
δπ + λ∓δφ
π + λ∓φ )

−
1
λ̃±

ln (1 +
δπf(δφ, δπ)

πf + λ̃∓(φf − φm) )

Logarithmic relation (i.e. non-Gaussianity) 
will be important when the evolution 
deviates from attractor.

Logarithmic Duality 

SP and Sasaki, 2211.13932

SP, 2404.06151

(φf, πf)

(δφ, δπ)

(δπ*)

(φ*, π*)

(φ, π)

(δπf)
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ℛ(δφ, δπ)

ℛ = −
1
λ

ln (f(ℛG))
Extensions,

Celoria et al, 2103.09244 

Kawaguchi et al, 2305.18140

−
1
λ±

ln (1 +
δπ*

π* + λ∓φ* ) + ⋯ℛ =
1
λ±

ln (1 +
δπ + λ∓δφ
π + λ∓φ )

Logarithmic Duality 
SP and Sasaki, 2211.13932

SP, 2404.06151

ℛ = − H
δφ
·φ

+
3
5

fNL (−H
δφ
·φ )

2
λ−

≪ 1(fNL = −
5
6

λ− ≈ −
5
6

η)

Slow-roll inflation

Stewart and Sasaki, 1995

Lyth and Roquigez, 2005

c.f. consistency relation


fNL =
5
2

ϵV −
5
6

ηV

λ+
≈ 3

λ −
=

− 1/μ

Constant-roll

Atal, Garriga, Marcos-Caballero, 1905.13202

Atal, Cid, Escrivà, Garriga, 1908.11357

Escrivà, Atal, Garriga, 2306.09990

Inui, Motohashi, SP, et al, 2409.13500

ℛ = − μ ln(1 −
ℛg

μ )

λ +
=

3 − 1/μ

ℛ = −
1
3

ln (1 +
δπ*

π* )
Ultra-slow-roll

Namjoo, Firouzjahi, Sasaki, 1210.3692

Cai, Chen, et al 1712.09998

Biagetti et al 1804.07124

Passaglia et al 1812.08243

λ− = 0

λ+ = 3

ℛ =
2
3

ln (1 + δ)

Curvaton scenario,

SP and Sasaki, 2112.12680

Ferrante et al, 2211.01728

Hooper et al. 2308.00756

λ
− = − 3/2

λ
− = 9/2
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Probability Distribution Function
ℛ ≡ δN =

1
λ−

ln (1 +
δπ + λ+δφ
π + λ+φ )⟹

P(ℛ) =
eλ−ℛ

2πσδφ

λ− φ exp [−
φ2

2σ2
δφ

(eλ−ℛ − 1)2]

P(ℛ)dℛ = P(δφ)dδφ
Gaussian PDF with variance σ2

δφ

P(ℛ) ∼ eλ−ℛ P(ℛ) ∼ exp (−c2e2λ−ℛ)

λ−
< 0 λ− > 0

exponential tail Gumbel-distribution-like tail

For the simplest single-logarithm case:

SP and Sasaki, 2211.13932

SP, 2404.06151



ℛ = − μ ln(1 −
1
μ

ℛg)

𝒫ζ

Atal, Garriga, Marcos-Caballero, 1905.13202

Atal, Cid, Escrivà, Garriga, 1908.11357

Escrivà, Atal, Garriga, 2306.09990

ℛg = − H
δϕ

·ϕ

Inflation near a bump,

or constant-roll

32

Application to Constant-roll
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33
φ*

V(φ)

φ0

π

ℛ ≡ δN =
1
λ−

ln (1 +
δπ + λ+δφ
π + λ+φ )

φ

attractor

solution:

π + λ−φ ≈ 0

−
1
λ−

ln (1 +
δπ*

π* + λ+φ* )

SP and Sasaki, 2211.13932

SP, 2404.06151


c.f. Atal et al, 1908.11357 

1905.13202

Application to Constant-roll



π*

34

−
1
λ±

ln (1 +
δπ*

π* + λ±φ* )

+
1
λ̃±

ln (1 +
δπ*

π* + λ̃∓(φ* − φm) )

ℛ ≡ δN =
1
λ±

ln (1 +
δπ + λ∓δφ
π + λ∓φ )

−
1
λ̃±

ln (1 +
δπf

πf + λ̃±(φf − φm) )

φ* φ

V(φ)

φ φf0

π

(λ− = 0, λ+ = 3)
(λ̃− = η̃, λ̃+ = 3 − η̃)

non-attractor

φm

USR-to-SR transition
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φ* φ

V(φ)

φ φf0

π

−
1
3

ln (1 +
δπ*

π* )

+
1
λ̃−

ln (1 +
δπ*

π* + λ̃+(φ* − φm) ) −
1
λ̃−

ln (1 +
δπf

πf + λ̃+(φf − φm) )

ℛ ≡ δN = 1
3

ln (1 +
δπ + 0 ⋅ δφ
π + 0 ⋅ φ )

non-attractor

φm

attractor

solution:

π ≈ − η̃(φ − φm)

USR-to-SR transition (λ− = 0, λ+ = 3)
(λ̃− = η̃, λ̃+ = 3 − η̃)
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φ* φ

V(φ)

φ φf0

π

−
1
3

ln (1 +
δπ*

π* ) +
1
λ̃−

ln (1 +
δπ*

π* + λ̃+(φ* − φm) )

non-attractor

attractor

solution:

πatt ≈ − λ̃−(φ − φm)

ℛ ≡ δN =

USR-to-SR transition (λ− = 0, λ+ = 3)
(λ̃− = η̃, λ̃+ = 3 − η̃)

Smooth transition:

π* ≫ λ̃−(φ* − φm)

Sharp transition:

π* ≪ λ̃−(φ* − φm)

⟹ ϵ* ≪ ϵV ⟹ ϵ* ≫ ϵV

ℛ =
( fNL = 5/2) ( fNL = − 5η̃/6)
δNUSR +δNSR

• Sharp (smooth) transition means 
acceleration (deceleration) in the 
following slow-roll stage.


• When , two logarithms 
are comparable, thus no simple 
exponential tail.

ϵ* ∼ ϵV
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V(φ)

V0

φm0

Ne = 0

Nt

ultra-slow-roll
acceleration

slow-roll attractor

N

φe φ

πtπ

φ -1.0 -0.5 0.0 0.5 1.0 1.5

-0.5

0.0

0.5

1.0

φ/H
π/
H

Sharp transition

SP and Sasaki, 2211.13932

SP, 2404.06151

δN
≈

10 −2

δN ≈ 0
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Smooth transition

φ

V(φ)

V0

φ φe0

Ne = 0

Nt

πt

ultra-slow-roll slow-roll attractor

N

π

deceleration -1.0 -0.5 0.0 0.5 1.0 1.5
-0.5

0.0

0.5

1.0

1.5

φ

π
SP and Sasaki, 2211.13932

SP, 2404.06151

δN
≈

10 −2

δN ≈ 10−2
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φ* φ

V(φ)

φ φf0

π

ℛ ≡ δN = −
1
3

ln (1 +
δπ*

π* ) +
1
η̃

ln (1 +
δπ*

π* + (3 − η̃)(φ* − φm) )
• Loop corrections.

• Transiting to stochastic approach

• Sharp transition will make the 
separate universe approach (thus 
δΝ formalism) invalid transiently.

Pattison et al., 2101.05741

Ballesteros et al 2406.02417

Cruces, SP, Sasaki, 2505.24590

non-attractor

Domenech et al., 2309.05750

Jackson et al., 2311.03281

Artigas, SP, Tanaka, 2408.09964

Briaud et al., 2509.05124 

Kristiano & Yokoyama, 2211.03395, 2405.12145

Motohashi & Tada, 2303.16035

Riotto & Firouzjahi, 2304.07801

Fumagalli, 2305.19263


USR-to-SR transition (λ− = 0, λ+ = 3)
(λ̃− = η̃, λ̃+ = 3 − η̃)



Application: PBH as DM

PBH=DM

• Primordial NG must be taken into account when 
calculating PBH abundance


• When fixing PBH abundance, NG impact on 
SGWB is mild


• LISA/Taiji/TianQin can probe the induced GW 
when PBH=DM

Press-Schechter-type w/. NG

ℛ = ℛg +
3
5

fNLℛ2
g
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Cai, SP, Sasaki, 1810.11000

SP, 2404.06151
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ℛ = −
1
3

ln (1 − 3ℛg)
• Quadratic: Cai, SP, Sasaki 1810.11000; Unal 1811.09151  


• Higher orders: : Adshead+ 2105.01659; Abe+ 2209.13891; : 

Garcia-Saenz+ 2207.14267. : Yuan+, 2308.07155; Li+, 

2309.07792. : Perna+, 2403.06962


• When fixing PBH abundance, NG impact on SGWB is mild

fNL

gNL

iNL
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Detectability

c.f. Iovino et al. 2512.13648
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Application: nHz SGWB
NANOGrav, 2306.16213 CPTA, 2306.16216

NANOGrav, 2306.16219

ΩGW( fyr) = 3.6+2.4
−1.6 × 10−9



NANOGrav, 2306.16213
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Induced GW gives the 
best fit for nHz SGWB

Induced GW

NANOGrav, 2306.16219

Application: nHz SGWB
CPTA, 2306.16216
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Crosscheck by PBH and IGW

10−2

10−9

Kohri, Terada, 2009.11853

SP and Domenech, 2010.03976

NANOGrav, 2306.16219

Inomata, Kohri, Terada, 2306.17834

Ω(g)
GW ∼ 10−5𝒫2

ℛ,g ∼ 10−9

PBH=

microlensing 

events

k*
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NANOGrav (EPTA/PPTA/CPTA)

NANOGrav

𝒫ℛ ∼ 10−2
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PBH>DM!

k*

��-� ��-� ��-�

��-��

��-��

��-�

��-�

��-�

�

Ω
�
�
��

NANOGrav (EPTA/PPTA/CPTA)

Ω(g)
GW ∼ 10−5𝒫2

ℛ,g ∼ 10−7

𝒫ℛ ∼ 10−2
𝒫ℛ ∼ 10−1

NANOGrav

NANOGrav, 2306.16219

Inomata, Kohri, Terada, 2306.17834



IGW as nHz SGWB

𝒫ℛ = Aδ(ln k − ln k*) 𝒫ℛ =
A

2πΔ
exp (−

(ln k − ln k*)2

2Δ2 )

NANOGrav, 2306.16219

Too much PBHs

Too much PBHs

monochromatic lognormal [SP and Sasaki 2005.12306]

NANOGrav, 2306.16219



𝒫ℛ =
A

2πΔ
exp (−

(ln k − ln k*)2

2Δ2 )

NANOGrav, 2306.16219

• (1) Use more conservative method to calculate. (Inomata 
et al 2306.17834; Iovino et al 2406.20089)


• (2) Suppress PBH abundance by increase the threshold, 
usually by changing the equation-of-state. (Domenech and 
SP, 2010.03976; Domenech, SP, et al, 2402.18965)


• (3) Suppress PBH abundance by negative non-
Gaussianity, where curvaton scenario is the only known 
model. (SP and Sasaki 2112.12680; Franciolini et al. 
2306.17149)

How to solve the PBH overproduction

Too much PBHs

IGW as nHz SGWB

lognormal [SP and Sasaki 2005.12306]



ρ

curvaton 
decays

r ∼
ρχ

ρtot decay

a

inflaton φ

radiation ρ
r ∝

a −4curvaton χ

curvaton 
oscillation 

 ρχ ∝ a −3

ζr ≈ 0 ζ = ζ(δχ/χ) ⟶

r
3 [2 δχ

χ + ( δχ
χ )

2] when r ≪ 1

2
3 ln 1 + δχ

χ when r ∼ 1

SP and Sasaki, 2112.12680 
SP and Sasaki, 2211.13932  
Ferrante et al, 2211.01728

•  degenerates to a logarithmic relation 
( ) when the curvaton dominates.
ζ(δχ)
fNL = − 5/4

curvaton 
oscillates

inflation ends

 transfers to  

at curvaton decay
δχ ζ

Franciolini et al, 2306.17149

Curvaton and PBH



CONTENT

• Introduction: PBH and induced GW


• Nonlinear evolution of the curvature perturbation


• Application: gradient expansion and bubble relics


• Conclusion 



power spectrum 

 at the horizon-
exit and later

power spectrum

at the end of inflation
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Topic 1: Gradient Expansion

φ

V(φ)

π

Starobinski, JETP Lett. 55, 489

Yokoyama, Inoe, hep-ph/0104083

Biagetti et al., 1804.07124

Byrnes, Cole, Patil, 1811.11158

Cole et al, 2204.07573

Jackson et al. 2311.03281

SP, Jianing Wang, 2209.14183

Domenech, Vargas, Vargas, 2309.05750

φ*

ϵ ≪ 1, η = − 6
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random φa
random φb

fiducial ⟨φ⟩

time

tj

comoving scale

te

local expansion 

Nb = N + δNb

local expansion

 Na = N + δNa

global expansion N

Na = ∫
te

tj

Hadt = ∫
te

tj

(H + ·ℛa)dt +
1
3 ∫ ∇2σdt ≈ N + ℛ(te) − ℛ(tj) = N + ℛc(te) ⟹ ℛc = δN

(in each patch “a”)

Starobinsky, JETP Lett. 42 (1985) 152

Salopek and Bond, PRD 42 (1990) 3936

Sasaki and Stewart, astro-ph/9507001

Wands, Malik, Lyth, Liddle, astro-ph/0003278

momentum constraints
momentum constraints

Shear determined by 

momentum constraint G0

i = T0
i
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Separate Universe

 validδN
 invalidδN

k4

k6

ba

t1

t2

0λ

-1cH

λ

sλ

local curved 

FLRW universe

ℛ(Ne) = δN(δφ(Ni))



1/H

{

Time

N = ∫ H dt

1/H

{
{

 fo
rm

al
is

m
δN

fiducial perturbed

1/H{ 1/H

initial:  gauge, comoving slice 

, 








δN
δφ(Ni) = 0

k2

a2
i

ℛ(Ni) =
3
2

K

∂Nδφ(Ni) =
φN

3
k2

a2
i H2

0
ℛ(Ni) + ⋯

∂Nℛ(Ni) =
k2

a2
i H2

0
ℛ(Ni) + 𝒪(φN)

δN(K(Ni, x))

The curvature perturbation in  
gauge evolves as 





δN

ℛ(N) = ℛ(Ni) +
k2ℛ(Ni)

6H2 (e−2Ni − e−2N)

The final comoving curvature  
perturbation is a gauge transformation 

of  in  gauge



ℛ δN
ℛc(Nf ) = ℛ(Nf ) + δN(K(Ni, x))

Physical Length Artigas, SP, Tanaka, 2408.09964



ba

t1

t2

0λ

-1cH

λ

sλ
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local curved 

FLRW universe

ℛ(Ne) = ℛ(Ni) + δN(k2ℛ(Ni))

Separate Universe

k4

(Note that )k2ℛ ∼ K

Artigas, SP, Tanaka, 2408.09964



PDF of inflaton  
at the horizon exit

φ

PDF of the comoving 
curvature perturbation at the 

end of inflationδn

Topic 2: Bubble relics

Cruces, SP, Sasaki, 2505.24590



PDF of inflaton  
at the horizon exit

φ

``stuck’’ trajectories

 with δN → ∞

normal trajectories

 with δN = ℛ

δn
Eternal inflation

Topic 2: Bubble relics
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φ

V(φ)

φ*

Ultra-slow-roll inflation

δN = −
1
3

ln(1 − 3ℛg)
with ℛg ≪ 1

ℛg > 1/3

{
= ℛ

→ ∞ with ℛg > 1/3

(Local) eternal inflating patches 
are baby universes connected 
to our universe by a throat. 

with ℛg > ℛg,th= PBH local closed universe

ℛg > ℛg,cr

Our Universe

baby universe

baby universe

vanilla universe
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μ c
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Type I μ2γ sinc(k*r) > 1
μ 2

γ

ℛg = μ2sinc(k*r)

No PBH

PBH in logarithmic ℛ

⟹ ℛ → ∞
⟹ δN → ∞

Inui, SP, et al. 2411.07647

c.f. Shimada et al. 2411.07648

ℛ = −
1
γ

ln(1 − γℛg)

PBH from bubbles

PBH Type A
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++++++
++++++

++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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μ 2

γ

ℛg = μ2sinc(k*r)

No PBH

PBH in logarithmic ℛ

⟹ ℛ → ∞
⟹ δN → ∞

Inui, SP, et al. 2411.07647

c.f. Shimada et al. 2411.07648

ℛ = −
1
γ

ln(1 − γℛg)

PBH from bubbles

PBH Type A

ℙ(ℛg)

PBH Type A
PBH from bubbles
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Constant-roll inflation 
and bubble channel

Escriva, Atal, Garriga, 2306.09990
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From Jaume Garriga’s slide at Paris IHT

Escriva, Atal, Garriga, 2306.09990

adiabatic channel

bubble channel

adiabatic channel

bubble channel
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++++++
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++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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0.0

0.2

0.4

0.6

0.8

1.0

γ

μ c
Type II

Type I μ2γ sinc(k*r) > 1
μ 2

γ

ℛg = μ2sinc(k*r)

No PBH

PBH in logarithmic ℛ

⟹ ℛ → ∞
⟹ δN → ∞

Inui, SP, et al. 2411.07647

c.f. Shimada et al. 2411.07648

ℛ = −
1
γ

ln(1 − γℛg)

PBH Type I Bubble PBH dominates
PBH from bubbles

USR fNL = 5/2

We should expect a small 
population of bubble-

channel PBHs from USR!



63

103 105 107 109

10°11

10°9

10°7

10°5

10°3

adia
batic

 c
hannel

bubble  
channel

Escriva, Garriga, SP, 2512.04986
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• On super-horizon scales, the nonlinear evolution of the curvature perturbation can 
be well described by  formalism, which gives a sum of logarithmic functions of 

. 


• The extended  considers spatial curvature , which takes into account the 
NLO term in gradient expansion. 


• Ultra-slow-roll inflation inevitably generates Type-B PBHs formed by the bubble 
channel, which account for a few percent of all PBHs.

δN
ℛ(δφ, ·δφ)

δN 𝒦

Conclusion


