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PBH constraints
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“Including non-Gaussianity
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Why non-Gaussianity?
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Gaussian Curvature Perturbation
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Ultra-slow-roll inflation
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Ultra-slow-roll inflation
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Logarithmic Duality
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Application to Constant-roll
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Vip)

u =0, 2, =3)

USR-to-SR transition  «-¢ »->

| oy | A
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Sharp transition: Smooth transition:
e << A_(g«— @) s 3> A_(@« — @)
:€*<<€V $€*>>€V

R =0Ncn +0Ngr

T (nL =3572) (fap = — 517/6)

» Sharp (smooth) transition means
acceleration (deceleration) in the
following slow-roll stage.

* When €. ~ €y, two logarithms
are comparable, thus no simple

P @y @, @ exponential tail.
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slow-roll attractor ——>
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Application: PBH as DM -

' Press-Schechter-type w/. NG

B EG/GC y—ray S S %
B Subaru HSC - > o
= OGLE ; 10713} 1%
P3H DM M EROS/MACHO ||
B Planck(disk) |- 3 B
| | o R ISP, 2404.06151 I
L Pl — shite 10— oo
~15 ~10 -5 0 i - -
l0910(MpeH/Mg) P =—"1n (1 _ 3P ) f/HZ
3 g
* Primordial NG must be taken into account when + Quadratic: Cai, SP, Sasaki 1810.11000; Unal 1811.09151
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 When fixing PBH abundance, NG impact on

SGWB is mild

* LISA/Taiji/TianQin can probe the induced GW
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|IGW as nHz SGWB
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B SIGW-CAUSS + SMBHB
B SIGW-GAUSS

NANOGrav, 2306.16219

|IGW as nHz SGWB

How to solve the PBH overproduction

* (1) Use more conservative method to calculate. (Inomata
et al 2306.17834; lovino et al 2406.20089)
* (2) Suppress PBH abundance by increase the threshold,

usually by changing the equation-of-state. (Domenech and
SP, 2010.03976; Domenech, SP, et al, 2402.18965)
* (3) Suppress PBH abundance by negative non-

Gaussianity, where curvaton scenario is the only known
model. (SP and Sasaki 2112.12680; Franciolini et al. e R ATAR RN
—9 — -2 -1 0

2306.17149) log,( fx/Hz log,q A )
A Ink — In k.
@9@ — CXp ( . . )
V27 A 2A°

lognormal [SP and Sasaki 2005.12300]




Curvaton and PBH

SP and Sasaki, 2112.12680
SP and Sasaki, 2211.13932
Ferrante et al, 2211.01728

2
P 5 22—%+<i—%>] when r < 1
inflaton ¢ GRO oy transfersto ¢+ — r(5y1y) —
at curvaton decay %ln ) +Z_x when 7 ~ 1

» ((0y) degenerates to a logarithmic relation
(fny = — 5/4) when the curvaton dominates.
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Topic 1: Gradient Expansion

power spectrum

Starobinski, JETP Lett. 55, 489 at the end of inflation

Yokoyama, Inoe, hep-ph/0104083

Biagetti et al., 1804.07124 1 A
Byrnes, Cole, Patil, 1811.11158 10~ F /\/W

Cole et al, 2204.07573

Jackson et al. 2311.03281

SP, Jianing Wang, 2209.14183

Domenech, Vargas, Vargas, 2309.05750

Exact
T It\ o =0.5
\/ power spectrurs----- o =0.1
EG <l.n=-6 ‘ atthe horizon- _
exit and later o =01
10° 10

QP+ k/kT
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Starobinsky, JETP Lett. 42 (1985) 152
Salopek and Bond, PRD 42 (1990) 3936
Sasaki and Stewart, astro-ph/9507001
Wands, Malik, Lyth, Liddle, astro-ph/0003278

l, l, . 1
N, = J H dr = J (H+ R )dr + gjvzadt ~ N+ A(t,) — %(tj) =N+ R () — %C = oNN
{. t:

(in each patch “a”)

time
Shear determined by

momentum constraint Gl.o = Tl.O

€
local expansion obal on N local expansion
N, = N + 6N, Jobal EXpansion N, =N+ 6N,
l} ........................... random Q)

random @,

comoving scale
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Separate Universe. -

local curved
1 FLRW universe a b

HK(N,) = ON(6¢p(N,))

-20 =15 -1.0 -=-0.5 0.0 0.5 1.0 .
log,o(—kmn)
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Time

I/H
fiducial —x—O

N

oN formalism

Physical Length

—~
perturbed

The final comoving curvature
perturbation is a gauge transformation

of £ in ON gauge
R N,) = R(N)) + EN(K(N,, %))

The curvature perturbation in ON
gauge evolves as

_ CRN) oy o
AWN) = RN) +—— (7N — e72N)

initial: 0/NV gauge, comoving slice
2

. R(N,) = ’ K
SR a? 7y

4 R(N;) + -

PN
0 0(N;) =
N CD( z) 3 Clle(%
k2

2 H? K(N;) + O(py)

Artigas, SP, Tanaka, 2408.09964



Separate Universe.  »

O __I I I l I I I T
L _
: cH
& -4 :
o0 _
O I
-6 ]
i local curved
_gl 1 FLRW universe a b
| | R(N,) = R(N,) + SNK2R(N,))
| (Note that k*Z% ~ K)

-20 -15 -10 -05 00 05 1.0 1.5

log,,(—kmn)
Artigas, SP, Tanaka, 2408.09964
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Topic 2: Bubble relics

¢O.. _

PDF of inflaton ¢
at the horizon exit

PDF of the comoving

T 2|
~

curvature perturbation at the
| end of inflation
1 ' '_ ok
O i
-0.5 0.0 0.5 1.0 1.5 2.0

Cruces, SP, Sasaki, 2505.24590



Topic 2: Bubble relics
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> R

2,Cr

Ultra-slow-roll inflation

- P with %g < 1 vanilla universe
ON = — % ln<1 — 396?8) =PBH with&#,> 3, local closed universe
— 00 with A ;> 1/3 baby universe

baby universe
Hy> 113 (Local) eternal inflating patches
C are baby universes connected

to our universe by a throat.

R e L
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PBH In

logarit
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PBH from bubbles

PBH In
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Constant-roll inflation
and bubble channel
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Qualitative picture

Fluctuations type I-> dominant
contribution

adie
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From Jaume Garriga’s slide at Paris IHT

Fluctuations type II-> dominant
contribution

bubble channel
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Escriva, Atal, Garriga, 2306.09990



PBH in logarithmic &
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= I'le > astro-ph > arXiv:2512.04986

Astrophysics > Cosmology and Nongalactic Astrophysics

ubmitted on 4 bec 20231 Escriva, Garriga, SP, 2512.04986
Inflationary relics from an Ultra-Slow-Roll plateau

Albert Escriva, Jaume Garriga, Shi Pi
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ubmitted on 4 bec 20231 Escriva, Garriga, SP, 2512.04986
Inflationary relics from an Ultra-Slow-Roll plateau

Albert Escriva, Jaume Garriga, Shi Pi
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Conclusion

e On super-horizon scales, the nonlinear evolution of the curvature perturbation can
be well described by 0N formalism, which gives a sum of logarithmic functions of

R (5, bp).

e The extended ON considers spatial curvature %, which takes into account the
NLO term in gradient expansion.

e Ultra-slow-roll inflation inevitably generates Type-B PBHs formed by the bubble
channel, which account for a few percent of all PBHs.



