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Introduction
Strong CP problem
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. ~ : this total derivative is relevant, due to the nonperturbative
QCD vacumm

* Naive guess from CKM: 0.py ~ O(1)

« Experimental constraints from neutron EDM: <

> Strong CP problem: why 9 unnaturally tiny ?



Peccei-Quinn mechanism to address strong CP problem [Peccei.Quinn,PRL'77]

[Weinberg,PRL'78] [Wilzeck,PRL'78]
* Promote constant as a dynamical spin-0 field a(x)

* Impose new global U(1) PQ symmetry (anomalous under QCD)
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a(x) = a(x) +kfy = S — S+
* Vafa-Witten theorem: VEV of =0 in the vector-like theory, such as QCD

*  Weinberg and Wilczek: PQ mechanism indicates a pseudo-Nambu-Goldstone boson

*  This pNGB strips off the unwanted strong CP phase: Wilczek names it as Axion
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* Original PQWW axion: f,~vgw= 246 GeV (visible axion)
quickly ruled out by experiments: K—ra, Jiy—ya, Y > 7ya, ....

astrophysical constraints: Supernovae, Red giant, ... ... (NN —NNa)



Generic effective axion Lagrangian for light-flavor quarks
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Diverse viable axion models

PQWW: Ypo (SM fermion) £0, f, ~vgy (ruled out)
KSVZ: Ypo (SM fermion) =0, singlet Higgs and extra BSM fermions,
f.>>vgw (invisible axion)
model-dependent terms vanish: g, =0, ¢ =0
DFSZ: Ypqp (SM fermion) #0, extra singlet and doublet Higgs, f,>> vgy (invisible)
model-dependent terms retain: g, %0, ¢ %#0
QCD axion / ALP (axion-like particle): bare axion mass term m, (=0 / m, ;%0

ALP case: m, and f, are independent

QCD axion case: — (f,>>f,, axion: a very light BSM particle)



* Various constraints from rather different experiments
[Di Luzio, et al., Phy.Rep'20] [Sikivie, RMP'21] [Irastorza, Redondo,PPNP'18] ... ...

Cosmology, Astronomy, Colliders, Quantum precision measurements , Cavity Haloscope, ... ...

[O'Hare,Github, https://cajohare.github.io/AxionLimits/]
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Axion chiral perturbation theory



Axion chiral perturbation theory (AyPT)

*  We will focus on the QCD-like axion: m,,(#0) « f, with model-independent aG
interaction, i.e., the MODEL INDEPENDENT QCD axion interactions.

* Axion-hadron interactions are relevant at low energies.
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Two ways to proceed:

(1) Remove the aG  term via the quark axial transformation
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. [Bauer, et al., PRL'21]



(2) Explicitly keep the aG~ term and match it to yPT

Reminiscent:

QCD U(1), anomaly that is caused by topological charge density w(z) = oG, G**/(87)
is responsible for the massive singlet .

Axion could be similarly included as the n, via the U(3) yPT:
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0, is not needed in U(3) yPT.
* M= 61/F2, with T the topological susceptibility. Note that M,? ~ O(1/N,).
* 0 expansion scheme: 6 ~ O(p?) ~O(m,) ~ O(1/N,).

* Axion interactions enter via the axion-meson mixing terms.



n-1-17°-a mixing in U(3) AyPT  [6ao,ZHG,Oller,Zhou, THEP'23] [Gao,Hao,ZHG, et al.,EPTC'25]
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NLO: (kinetic & mass mixing)
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Fit to lattice data
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Two-photon couplings

3
L5, = 871\2?8“”’)08 AV3P A% (02 D), Q = Diag(%¥, -5, %)
228
LS, = 13 *Ff Epvpo I AVP AT (M, + dM,) Q) + 16k38MUp08“AU8'0A0(Q2)(

X Note: one needs the 7-1-1’-a mixing as input to calculate Sayy

FE®  — 0274 4+ 0.002GeV !

vy —4 -2
oExp f = —(3.8£2.4) x 107*GeV 2,
]ZW = 027420006GeY ¢ ks = (1.21 +0.23) x 10~

F,", = 0.344 +0.008GeV ',

isospin limit(LO) isospin breaking(LO) NLO

201 +3.4+(0.5+0.2)

ayy — 1
a

( IB corrections amount to be around 15%!)

X 1()_3,

Sayy = 4 dem Fuyy = (1.89 £ 0.02).

27 fa

which can be compared to: 1.92+0.04 [Grilli de Cortona, et al., JHEP'16] and 2.05%0.03 [Lu, et al., JHEP'20]
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Cosmology constraints on axion
thermalization rate
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* Axions can be copiously produced from
thermal bath in the early Universe.

* After decoupling, its thermal relics will
leave imprints today.

Excluded

e,
m
=
@)
= A
< 9
5 03 O
2]
= 3
5 02 &
ol CMB: Planck’18
0.0
50 100 150 200
Tp [MeV]

® Axion thermalization rate from reaction: a + - > 1+2 +3 4+ -
———— ~ _

i j

1 d*p;
Lo(T) = — RN
(T) na’/ [H (27)32E;

H@:)% (2m)*0 (Z pi — ij) Meaction|” Hf Hmfj( ]

{ 1 “+” for Bose enhancement
fi(zi) =

T bosonic,

prra b= BT “—” for Pauli blocking

, fermionic,
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Cosmology constraints on axion thermalization rate
Axion thermal production in the early Universe : Extra radiation (AN,.)

Extra effective number of relativisitc d.o.f :

4/ 43 \4

7 49 *§ ( TD )

“— ~N
2 (T) : effective number of T): axion decoupling temperature from
entropy d.o.f at temperature T the thermal medium

» CMB constraint (Plank’18) [Aghanim et al., 2020] ¢ AN < 0.28

» Tp : Instantaneous decoupling approximation
I'(Ty) = H(Ip)

~

Axion thermalization rate Hubble expansion parameter

Lu(T) = o / dF Mo—sul? [[ fie [IL £ fites))  H(T) = T*\/4xg,(T)/45/mp

Nga ] ;
/ 7 J

Axion-SM particle scattering amplitudes
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Key thermal channels of axion-SM scatterings at different temperatures
= T 2 1GeV: ag <+ gg.
[Masso et al., 2002, Graf and Steffen, 2011]

1= T'p < 1 GeV: Hadrons need to be included.

= T'p < 200 MeV: ar < 7.
[Chang and Choi, 1993, Hannestad et al., 2005,
Giusarma et al., 2014, D’Eramo et al., 2022]

U Reliable ax interaction is crucial to determine I, for 7, < T.= 155 MeV

» For a long time, only the LO an <>z amplitude is employed to calculate I, , e.g.,
[Chang, Choi, PLB’93] [Hannestad, et al., JCAP’05] [Hannestad, et al., JCAP’05] [D’Eramo, et al., PRL’22] ... ...

» Recent NLO calculation of I, : ¥PT invalid for T, > 70 MeV [Di Luzio, et al., PRL’21]

» Chiral unitarization approach for ax <>zz: [Di Luzio, et al., PRD’23]

> However, all the previous works have ignored thermal corrections to the ar <—zanx

amplitudes. Fhe first estimation of such effect is given: |[Wang, ZHG, Zhou, PRD’24|

To(T) = nleq/df M rirr|? Hfi(xi)H[l + fi(x5)]

a )
J

» First realistic calculation of aK <K shows significant contribution to axion

thermalization rate: [Wang, ZHG, Zhou, PRD-Letter’25] 6



Calculation of THERMAL an <7z amplitudes at one-loop level

e Finite-temperature effects are included by imaginary time formalism (ITF), where
[Kapusta and Gale, 2011, Bellac, 2011, Laine and Vuorinen, 2016]

P’ = iwn, withw, =2mnT ., ne€Z,

_i/(;:;]d_;—i/ﬁ (j:?dET;f(;i)h.

@ Compute the thermal Green functions in ITF

Gl airbne(P1,02:93,94) = D Gai(p])Graj(93)Grn (03)Gine (03) Aijiki (P1, P25 13, 1a) -
b o i!jﬁkﬁg
T T
D ,
= i‘t““vi \/ \ N & \/
@ <X X0 X
" . > Feynman diagrams for amputated functions up to NLO.

o The effective Lagrangian at O (p*)

B fﬁl‘i <xaUT + Ux£> <xaU“ + le) + %4 <3uU<9“UT> <xaUT + le> Tilnpo 2 — i <Q“ {G#U’ UT}> <8VU8DUT>
— 1 (xalT = U (! = Uxh) + B | (et + U )) -2 {Qu{au,ut}) (oruerut +orvarut)
+ ((xatt - UX)2>)2 ~ 2 <X%UTXQUT + leUxD] + %”Jﬂmo, = i% (Qa{0"U,Ut}) (xaU" +UXL) -
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Unitarization of the partial-wave ar —zr amplitude

Inverse amplitude method (IAM)

1. f+2
Mm;15(Eem) = 5/ dcosO M gr.1(Eem, cos8)Py(cosf)
—1
s 1 7 g
IInMa?I‘;IJ(Ecm) = 50’?T?T(Ec'm)M?TiIT;?TT(M(L?T;IJ’ (Ecm > 27”’”)

2

T J’!'T(Ecm) ECﬂl 4m?r 1

Ecm = i 1) 2 ¥ T — — , -

pra(Bem) = ZEEm (1 2mp(Z2)| L on(e) =41 222 na(B) =

@ Resonances poles on the second Riemann sheet
fo(500) /0 p(770)
o ; I
M, :I:TJITG [ — ﬂ’{p:l:?’TP ‘fagpaa'rl

T = 0 MeV 422 +i240 MeV ~ 0.032 GeV? 739 £i72 MeV  0.035 GeV?
T = 100 MeV™ 368 £+ 1310 MeV 0.037 GeV? 744 £ 77 MeV 0.036 GeV?

*Only include s-channel unitary thermal correction.
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Resulst from the thermal-IAM improved axion rates [Wang,ZHG,Zhou,PRD'24]

—~ 100} UL e 140}
£
% 10f Hubblerate T e 120¢
5 it | 2100
&= By T M, =2 55L07 GEY 2 gof
o 000k £ " e By FT My, £;=2.5<107 GeV 4 <
3 ——— By ZT M. fo=6x10° GeV 60¢
ooy /0 By FT Miaw. £,=6x10° GeV ] 40} —— By ZT Mg |
----- By FT Miaym
0.00 . . ; i i i \ ; i ; i
EO 40 60 80 100 120 140 160 2 1x10'° 2x10'° 3x10°
T [MeV] fo [MeV]
Updated bounds on the axion parameters
0.40 ' . . . " 0.40
0-353 Planck'l 8, 2¢ exclusion ! 0.35¢
Planck'l8, 20 exclusion
.. 0.30f [
£" . 0.30
< 0.25¢} % —— miO, ZT My
' — _ByZT M, e I miO,FT Mis
S S W N
0.20F  ----- By FT Miam o2of (¥ m;m i
T>155 MeV i T5 155 MeV
0.15 : - - . - : : - :
1x1010 2x10'° 3x10'0 015757 0.4 0.6 0.8 1.0
fa [MeV] m, |eV]

-1 The constrians 1%, corrections are observed

lower limit of f,  upper limit of m, by mE=©  upper limit of m, by mYL©

ZT 2.3 x 107 GeV 0.24 eV 0.25 eV
FT 2.1 x 107 GeV 0.27 eV 0.28 eV
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Combined analyses with ar —nr & aK <—aK channels

SU(3) Axion ChPT@LO [Wang, ZHG, Zhou, PRD-Letter’25]
F2
pyrt ] 7
L2 =" 0,U0"U"+x(a)U +Ux'(a 2fa Zc L
_ ~i3%Qa —i5%Qa W=M"1/(M? _F2y 1y (singlet component of
x(a) = 2Boe "% Mge "2 Q q / g ) Jg,i =3 Ait0"U, U'}) axial currents neglected )
_ 2 2 _
Cy — z(1 7“)27 - z(147r)% —4r e ma ) matmg
2r+z(1+r) V31[12r + 2(147)?] m md 2
Unitarized partial-wave axion-meson/meson-meson amplitudes
—1
Unitarized T =10 |17 - 1= - 1. 6. 1] .1
meson-meson
Amp: ImT = TT.q/(87+/5). T
-1
Ugitarized M}‘}“ = TI(?]). [TI(?]) — Tﬁ)LECS - TI(?]). g. TI(?])} .M ﬁ)
axion-meson
Amp: ImM = TT.q/(87/3). M
2 . i(s,m%l,mﬁz) m%l - m%z -5+ ,/A(s,m%l,m%z)
g= diag(Gn, G, - ) G,(s) = G(ay,s,m, ,m, )= — (4n)? al.—1+log n:;z + - s log 2m, m,,
~ ~ (2)
Example: 0. = 00 o (2)
00, 00 00
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Relevant channels: S + P waves
Man®—>ata, w0’
1J=00: 1,(500), 7,(980) [K-Kbar coupled-channel included]
1J=20: nonresonant case [single nn channel]
2)ant— w0
1J=11: p(770) [K-Kbar coupled-channel included]
1J=20: nonresonant case [single nn channel, same as an® case]
B)a Kt - K, n? K+
1J=1/2 1: K*892) [Kn coupled-channel included]
1J=1/2 0: K*,(700) [Kn coupled-channel included]
1J=3/2 0: nonresonant case [single Knt channel]
1J=3/2 1: nonresonant case [neglected]
4)aK'—>a Kr,a' K [similar as aK* case]

(5) Other channels can be obtained via the charge-conjugation symmetry. ’1



[degrees]
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Lueyive
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=T
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300

250° — 250¢
Q
200 © 200
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150° S 150
100: >
100+
0 ¥ O(QK‘ 50_
=50 : : : : 0L : : : : 0l : : :
400 600 800 1000 1200 1000 1050 1100 1150 1200 1000 1050 1100 1150 1200
\s [MeV] \s [MeV] \s [MeV]
80 n
L. — — 2
150 g 150; g oo . 7=3
Ioar =, 100 =)
M w 20 I
5 ¥
50} ~ 1 50f T e
—IN K N‘»Ok = —;-_____I—_
-20} == =%1 7 |
0 : : : 0 : : : : : : : :
400 600 800 1000 1200 700 800 900 1000 1100 1200 700 800 900 1000 1100 1200
\s [MeV] \s [MeV] \s [MeV]
Subst. const. Low energy constants
77,00 _ +0.24 £ 3 +0.02
KK.,00 _ +0.20 2 3 +0.05
11 _ +0.33 £ 3 _ +0.10
1 +0.18 ? 3 +0.09
1 +0.76 7 3 +1.39
7 3 _ +0.20
i 3 +0.24
7 3 +0.37
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4r— )
3 L ata S at KO
é [ 0,0 é [0k
E 3j ﬂjﬂ() ﬁ 15_— /TU 1{()
P Lk '
3 s I 1 K ]
N/\ I ™ 1
o L - — L J
SNl ; * -
1+ s R 5t -
~— | i L 4
0 ; fpvan s oy 4—4 r o  EE ﬂt PR ~ 0- . —~;
400 600 800 1000 1200 700 800 900 1000 1100 1200
\s [MeV] s [MeV]
esonance poles
R pol

p: (754.3-i67.9) MeV ; K*: (889.5 -i28.0) MeV;
£0(500): 435.4-i238.0; £,(980): 981.1-i11.4; K*,(700): 801.9-1195.2;

Clear enhancement from the unitarized amplitudes (solid lines)
p(770) & K*(892) lead to the most prominent effects
Scalar resonances mostly give mild contributions

an related processes are much less important than the aK ones. (working in progress)

YV V VYV V V

axion-baryon is expected to be much suppressed, due to the heavy thresholds.
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an - nnm,

an-nn,

LO

uni

0.20F

1

fan->nn&akK -

1

2

—
£, in unit of [10’xGeV

0.04
_: fo >3.18T003

1.0

0.8

0.6

0.4

Len(T) /T (T)

0.2+

100 200

T[MeV]

[Wang, ZHG, Zhou, PRD-Letter’25]

fo > 2457003 x 107 GeV  (am—mn)

(an—7an + aK—nK)

x 107 GeV

» Enhancement in T—v_Ka is also seen. However this belongs to a Cabibbo

suppressed reaction. |[Hao, Duan, ZHG, 2507.00383]
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Axion production in y—zra decay
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Axion production from n—nrta decay in SU3) yPT

Why focus on axion in 1 decay:

v Valuable channel to search axion @colliders: many available experiments
with large data samples of n/n’ [BESIIIL, STCF, JLab, REDTOP, ... ... ]

v n—nann (IB suppressed), n—nna (no IB suppression)

v’ mn—omnra: theoretically easier to handel than )’ —nra (next step)

Previous works:

\/

** Most of them rely on leading-order yPT

\/

** Possible issue: bulk contributions@LO ¥yPT are constant terms, and
potential large corrections from higher orders may result.

\/

** Hadron resonance effects may lead to enhancements.
Advances in our work :

» Study of renormalization of n—nma @1-loop level in SU3) yPT
» To implement unitarization to the n—nwa yPT amplitude

» Uncertainty analyes in the phenomenological discussions
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[Alves,Gonzalez-Solis, THEP'24] MD(S) = P(S)QS(S)

T

n—ana LO amplitude Omnes function: tw FSI
I I L R B R R T T T [ T LI A L B O ‘N L B (I 1
E_ LOw/ar g = F LOw/ nr pg .
= E —= 107 =
= 7 = | E
E = > 3
E 3 <& s
C 7 — 1077 —
E E X 3
= S \ J = -
10*8 ; Lo RS N * ; zl:‘ 10_8 ? LO S ] =
E E & = S
E = T 5 \
ol 5T E 1wl ¥ N
10 £~ == Quark-dominance (Q = Q) Q ¥ Dm: g == Quark-dominance (Q = Q,) | L) o -"E
E == Gluon-dominance (Q = Qg) * N\ i}: E —— Gluon-dominance (Q = Qc) é‘ N
07 o b e e b 107 o b e b e b e b
. = e e L L B A B . = e LALLM
s .
D’; : \ | & . \ |
o) an)
~ ~~
E 2.5+ - E} 2.5+ -
~ ~
/M ol 111 Lo b v b by \ /M ol 1111 Lo b b b !
0 50 100 150 200 250 0 50 100 150 200 250
Mg [MeV] m, [MeV]

Our improvements:
» NLO perturbative decay amplitude include -and ( )-channel interactions perturbatively.

» The unitarized decay amplitude will be constructed to account for the -channel final state
interaction (FSI) effect that respect the chiral symmetry.

» Dalitz plots will be explored to decode the dynamics in n—mnna.
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: F2 i o d,.a 1
LO yPT Lagrangian L= T<(}“U OHUT + x UT + Uxl) + 2f; F’HL(} + zdu”d”a - Ef”i 00’
: . a F
= L% M(a)=exp| —1—Q, | Me 1 5 Y o AL 1
Xa = 2ByM (a) (a) tXP( “2f, @ ) t'Xp( quQ ) JalLo = —i 5 (Qa {(}* U, u }:'
Note: we consider the octet part () of Q, in SU(3) yPT
t vt a @7
Ly =L (9,U*UND,UUY) + Thlxro
NLO 4PT Lagrangian f
o = — 4L1(Q.{UT, 0"U})(0,U0"UT) +
7(p1) 7 (p1) 7(p1)
Feynman diagrams / Q/
n(Fy) Q& T(p2) n(Fy) m(p2) n(Fy) 2 m(p2)
up to NLO
\\\\ a(pa) \\\\ a(pa) \\\\ a(pa)
m(p1) m(p2) m(p1)
n(Py) 4ﬁ< w(p2) () Salp) 0Py ™ a(pa)
"~ alpa) 7(p1) m(p2)
Parameters Masses and F;. [MeV] LECs L!(u) at g = 770 MeV (in unit of 1073)
m. mxg m, F. | L Lj Ly , Ly L Lt Lt
137 496 548 92.1 | 1.0(1) 1.6(2) —3.8(3) 0.0(3) 1.2(1) 0.0(4) —0.3(2) 0.5(2)

[J. Bijnens and G. Ecker, Ann. Rev. Nucl. Part. Sci. 64, 149 (2014)]

v Renomarlization condition is verified to be consistent with conventional ChPT.
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Observations:
» Strong isospin breaking effects enter the n—nama amplitudes at the order of (m,-m,)?2

» In the isospin limit (m,=m,), the amplitudes with w*7- and %7 in n—7nwa processes
are identical.

® Dalitz plots to show the NLO/LO convergence

2 4 9 | 2) |2 Wang,ZHG,Lu,Zhou, JHEP'24
(2ME, e (MB,.) + |MB )/ |IME,| [Wang.ZHG,Lu, Zhou, :
1.6 m,=0 MeV mg=0.5 m, My=my

0.15} ! 1l
1.4
1.2
ST
2 0.10
0.6 5
04 S
0.2 0051 [o]
0.
F0.2
0000 05 020 025 030 0.10 0I5 020 025 030 0.10 0I5 020 025 030
m2, [GeV?] m2_ [GeV?] m2_ [GeV?]

Important lessons:
» Non-perturbative effect in the amt subsystem can be important.

> Perturbative treatment of the ar subsystem is justified.
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® Unitarization of the partial-wave n—ama amplitude

00,L
MOO,Uni(S) . Mn;ﬂwa(s)
N, TTQ T 00,(2) )
]— G?TT['(S)TTFW—)WTF(S)
1 m? or(s) —1
Grr(s) = — log — — 0,(s)1 —1],
(S) (477')2 (Og MQ s (S) Og 0'71—(5) _|_1 )
Mapa(s) = Ma2a(s) + Mia(s) — Gan(s) Mo (s) Ton(s)
The unitarized amplitude satisfies the relation
ImM2to(s) = prr()MESTE(S) (Tensan(s))” s (2me < /5 < 2my)

with the unitarized PW nr amplitude Tk (S) =

TIT—>TTT

]- _ GWW(S)TT(B??'f?)rW(S)
® Unitarized PW amplitude based on LO n—nwra amplitude

00,(2) Resemble the method:
- S TTQ
Mgo%ggl Lo (S) = il (SO 22) " [Alves,Gonzalez-Solis, THEP'24]

L= G?T?T(S)TWW—)TFTF(S)

Mo(s) = P(s)2(s)
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Phase shifts from the unitarized PW nir amplitude

100 : : : :
- . Roy equation 3
7700, Uni (s) = TrrnSrn(S) 80 - | 5: i
e 1 — Gorn(8) Ton2hn () [R. Garcia-Martin, ct.al., PRD 2011] 3]
60- | —
oo
40- | |
20- 3 A
O f | L | L | 1 | | 1 | : L | L L |
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® Pole pOSitiOIl of ( )/ \/— — 457 + 251 Mev
Jorxg = °l
00,Uni,II  _YornGoan Lo
M'r];ﬂ'ﬂ'a (S)’!g—)so. S — SU (E 6}
[P
\5 I
EN
0k ‘ . ‘ ‘
000 005 010 0I5 020 025
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Predictions of the n—nmra branching ratios by varying m,
Uncertainty bands:
I
1.0(1)

L
1.6(2)

L L
—3.8(3) 0.0(3)

I

(]

1.2(1)

I
0.0(4)

L
—0.3(2)

Ly
0.5(2)

» Lighter regions:

» Darker regions: freeze the 1/Nc¢ suppressed ones (L ,Lg,L-)
[Wang,ZH6G,Lu,Zhou, JHEP'24]
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Possible detection channels: a—yy, a—ete, a—>pp

[LA9D] ”
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Summary

* Chiral effecitive field theory provides a systematical and
useful framework to study the axion-hadron reactions.

* Synergies of Lattice QCD, hadron phenomenologies and
chiral EFT are demonstrated to be powerful to build axion
amplitudes.

* Futher involvements with the experiments, cosmology,
astronomy are needed to set up stronger constraints on
axion parameters!
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