Ridge correlation generated by CGC mechanism

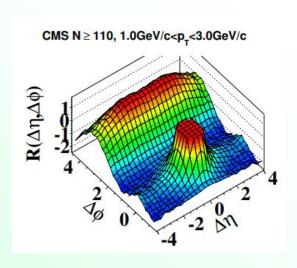
Luhua Qiu¹ supervisor: Yuanfang Wu¹, Mingmei Xu¹

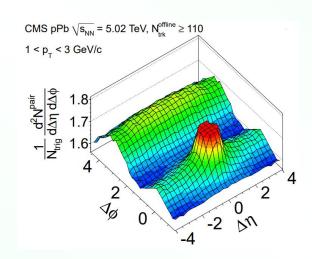
1 Institute of Particle Physics Central China Normal University

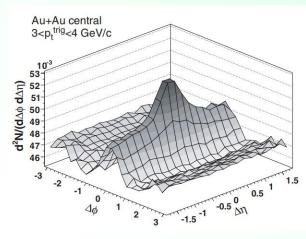
Reference:[1] Donghai Zhang, Yeyi Zhao, LuHua Qiu,
Mingmei Xu, Yuanfang Wu, arXiv:2501.12099v2.

[2]Ridge correlations of O+O from CGC is in preparation.

Nov 27, Wuhan


Introduction

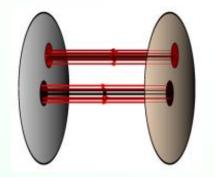

Near-side ridge discovered in high-multiplicity pp collisions and pPb.


(a) pp
$$\sqrt{s} = 7 \text{ TeV}$$

(b) pPb
$$\sqrt{s} = 5.02 \text{ TeV}$$

(b) pPb
$$\sqrt{s} = 5.02 \text{ TeV}$$
 (c) AuAu $\sqrt{s} = 200 \text{ GeV}$

JHEP 09 (2010)091


PLB 718 (2013) 795

PRC 80 (2009) 064912

What mechanism causes ridge in small systems?

Introduction

- ⊕ Hydrodynomics: random distribution of flux tube → asymmetric initial
 energy density → drive fluid expansion
- CGC: color flux tube → fracture generates particles (collimated)

color flux tube: boost invariant in rapidity

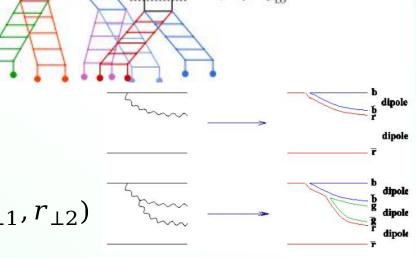
NPA 810 (2008) 91-108

theory	hydrodynomics	CGC
v_n	$\sqrt{}$	/
c ₂ {4}	×	$\sqrt{}$
the v_2 of heavy flavor:	×	$\sqrt{}$
the mass ordering of v_2	/	V

Theoretical framework

JIMWLK renormalization group equations: describe the evolution of gluons

 $[dN_1/d^3p]$


with energy.

NPA 836 (2010) 159-182

BK equation: in large Nc limit,gluons → dipole

$$\frac{\partial \mathcal{N}(r_{\perp}, x)}{\partial \ln (x_0/x)} = \int d^2r_{\perp 1} K^{run}(r_{\perp}, r_{\perp 1}, r_{\perp 2})$$

$$\times \left[\mathcal{N}(r_{\perp 1}, x) + \mathcal{N}(r_{\perp 2}, x) - \mathcal{N}(r_{\perp}, x) - \mathcal{N}(r_{\perp 1}, x) \mathcal{N}(r_{\perp 2}, x) \right]$$

Initial configuration

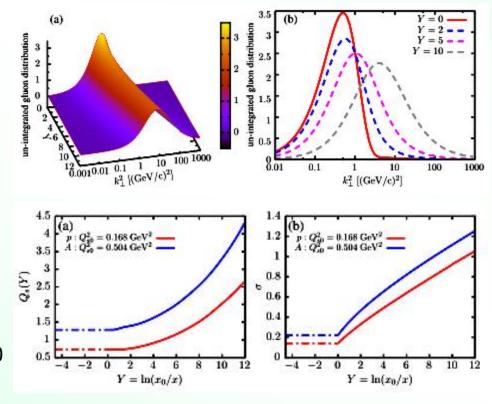
for nucleus 1

JIMWLK evolution
for nucleus 1
from Y_{beam} to Y_p

JIMWLK evolution for nucleus 1

from Yn to Ya

 $[dN_1/d^3q]_{10}$


Unitegrated gluon distribution (ugd)

 ugd: gluon density at a unit transverse area per rapidity of proton, or nucleus A, or B.

$$\Phi_{A(B)}(x,k_\perp) = \frac{\pi N_c k_\perp^2}{2\alpha_s} \int dr_\perp r_\perp J_0(k_\perp r_\perp) [1-\mathcal{N}(r_\perp,Y)]^2$$

- The transverse momentum corresponding to the peak of ugd is the saturated momentum Q_s.
- $Q_s: Q_{sA} > Q_{sp}$.
- \bullet σ : $\sigma_A > \sigma_p$.

NPA 955 (2016) 88-100

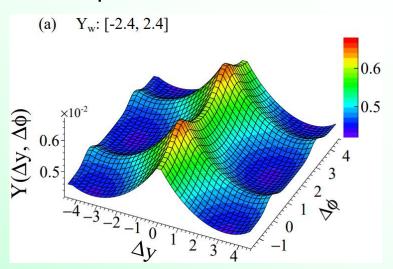
The single- and two-gluons distirbutions

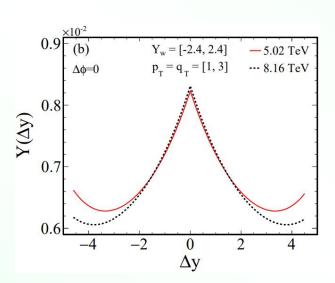
In leading logarithmic accuracy in x, the signle gluon distribution is:

$$\frac{dN_1}{d^2p_{\perp}dy_p} = \frac{\alpha_s(p_{\perp})N_cS_{\perp}}{\pi^4(N_c^2-1)} \frac{1}{p_{\perp}^2} \int \frac{dk_{\perp}^2}{(2\pi)^2} \Phi_A(y_p, k_{\perp}) \Phi_p(y_p, p_{\perp} - k_{\perp})$$

the two gluons distribution

$$\begin{split} \frac{dN_2^{corr}}{d^2p_{\perp}dy_pd^2q_{\perp}dy_q} \\ &= \frac{C_2}{p_{\perp}^2q_{\perp}^2} \big[\int \frac{dk_{\perp}^2}{(2\pi)^2} (D_1 + D_2) + \sum_{j=\pm} \big[D_3(p_{\perp}, jq_{\perp}) + \frac{1}{2} D_4(p_{\perp}, jq_{\perp}) \big] \big] \\ \frac{d^2N_{Assoc}}{d\Delta\phi d\Delta y} &= \int\limits_{y^{min}}^{y^{max}} dy_p \int\limits_{y^{min}}^{y^{max}} dy_q \, \delta(y_q - y_p - \Delta y) \int\limits_0^{2\pi} d\phi_p \int\limits_0^{2\pi} d\phi_q \\ &\times \delta(\phi_q - \phi_p - \Delta\phi) \int_{p_{\perp}^{min}}^{p_{\perp}^{max}} \frac{dp_{\perp}^2}{2} \int_{q_{\perp}^{min}}^{q_{\perp}^{max}} \frac{dq_{\perp}^2}{2} \frac{dN_2^{corr}}{d^2p_{\perp}dy_pd^2q_{\perp}dy_q} \end{split}$$

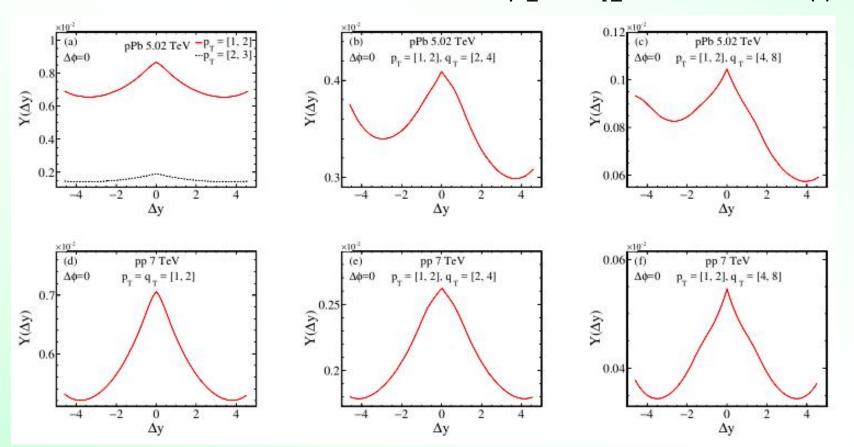

The per-trigger yield


• The per-trigger yield:

$$Y(\Delta y, \Delta \phi) = \frac{1}{N_{Tria}} \frac{d^2 N^{Assoc}}{d\Delta y d\Delta \phi} = B(0,0) \frac{S(\Delta y, \Delta \phi)}{B(\Delta y, \Delta \phi)}$$

● Higher energy → the rebound of large-rapidity ridge correlations shifts to larger rapidity gap.

pPb
$$\sqrt{s} = 7 \text{ TeV}$$



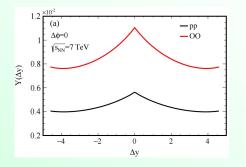
Transverse momentum dependence of long-range rapidity correlations

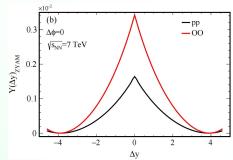
ullet Large-rapidity ridge correlations exhibit a strong p_{\perp} -dependent asymmetry in pPb collisions.

Reversible: when the p_{\perp} and q_{\perp} intervals are swapped

Transverse momentum dependence of long-range rapidity correlations

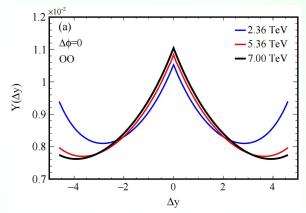
 Asymmetric collision system: There is a deviation between laboratory and center-of-mass frames.

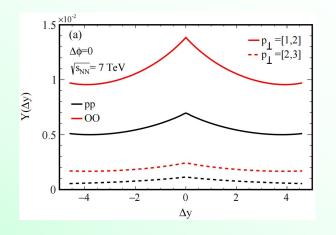

Acceptance (Lab)	$Y_W = [-2.4, 2.4]$		
Collision system	pp	pPb	
Acceptance (COM)	$Y_W = [-2.4, 2.4]$	$Y_W = [-2.865, 1.935]$	
Rapidity gap	$\Delta y = -3.5 \qquad \Delta y = 3.5$	$\Delta y = -3.5 \qquad \Delta y = 3.5$	
x-values	$x_q = \frac{q_T}{\sqrt{s}} e^{2.0}$ $x_q = \frac{q_T}{\sqrt{s}} e^{2.0}$ $x_p = \frac{p_T}{\sqrt{s}} e^{1.5}$ $x_p = \frac{p_T}{\sqrt{s}} e^{1.5}$	$x_{q} = \frac{q_{T}}{\sqrt{s}} e^{2.4} \qquad x_{q} = \frac{q_{T}}{\sqrt{s}} e^{0.9}$ $x_{p} = \frac{p_{T}}{\sqrt{s}} e^{0.9} \qquad x_{p} = \frac{p_{T}}{\sqrt{s}} e^{2.4}$	
$ x_q-x_p $	alway identical at same $ \Delta y $	only $p_{\perp} = q_{\perp}$ is identical at smae $ \Delta y $	

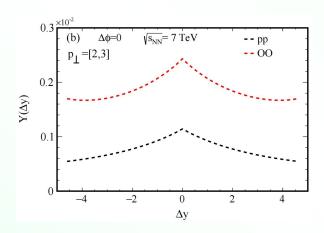

The per-trigger yield of OO collisions

The yield of OO collision is significantly higher than that of pp collision.

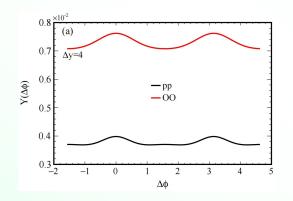
OO $\sqrt{s} = 7 \text{ TeV}$ pp $\sqrt{s} = 7 \text{ TeV}$ Y_w: [-2.4,2.4] OO: 7 TeV (d) Y_w: [-2.4, 2.4] 0.9 0.4 ×10⁻² $Y_2(\Delta y,\Delta \phi)$ 0.8 $\times 10^{-2}$ $Y(\Delta y, \Delta \phi)$ 0.5 0.9 -2 -3 -4PRD 107, 056017 (2023)

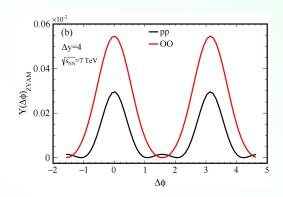

ullet OO collision does not change the Δy correspoinding to the start point of the rebound.

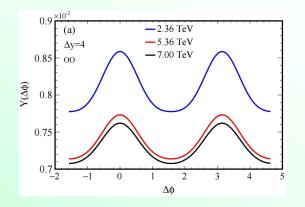


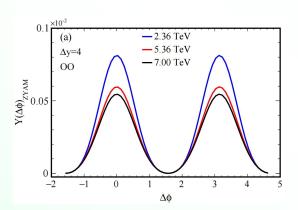

The rebound of OO collision

Rebound more significantly at low energy.


Throughout the entre transverse momentum interval [1,3] GeV/c, the rebound of OO collision still exists..




The long-range $\Delta\phi$ distribution


- The yield and net yeild of OO collisions are both higher.
- ullet pp collision exists a Fourier coefficient $\cos{(4\Delta\phi)}$, while OO collision does not.

The rebound of OO collision is more significantly at low energy.

Summary

- The rebound of the ridge correlation structure at large rapidity after it bottomed out was reproduced in both pPb and OO collisions.
- ullet The near-side rapidity correlations demonstrate the p_{\perp} -dependent asymmetry in p-Pb collisions.
- ullet OO collision does not change the Δy correspoinding to the start point of the rebound.
- Predict that it is eaiser to oberve the rebound of OO collision at low energy.
- OO collision have a rebound in larger transverse momentum interval.