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Introduction

e In high-energy heavy-ion collisions, jets traverse the quark-gluon plasma (QGP), depositing energy into the medium and inducing medium response.
This modifies jet structure, impacting observables such as jet shape and fragmentation function.

e Simulating jet-induced medium response requires a model that accurately captures the evolution of hard and soft partons, along with significant
computational resources for full-scale simulations. So using a generative neural network trained on ~-jet events from Pb-+Pb collisions (5.02 TeV,
0 — 10% centrality), we demonstrated that the energy-momentum of v and jet, along with jet initial positions can predict the Mach-cone’s location
and maintain a particle spectrum within the same order of magnitude as actual data.

Flow matching model Initial data and Generative results

First, Consider a simple differential equation: The initial data(vy - jet events) are showed below.

e We rotate the gamma ¢ into the ¢ = 0 direc-
tion, with up to three jets and medium-response
particle spectra rotating correspondingly.

e The transverse label is ¢ from [0,27] and The
vertical label is 1 from [—2.7,2.7]

dx

(1)

If we know the initial condition of x(t = t3) and the time
evolution relationship u(z,t), we can calculate the final
solution z(t) of the above function.

Flow matching method consider the problem in the same
way. We can consider transforming a distribution pgy to
another distribution p; just like the above case. At ¢t = 0,
x satisfies xg ~ po distribution. When t=1, x satisfies
x1 ~ pi distribution. In this way, we only need to learn
the time evolution relationship ug(x,t) by our neural net-
work because we have already known the initial condition
distribution xg ~ pg. The we can solve differential equa-
tions just by employing a straightforward finite difference
approximation.

e We use the v and up to three jet’s p* and jet’s
position(x,y) in transverse plane as the initial
condition to predict the particle spectra of hydro
response.

e We compress each particle spectra of hydro re-

sponse about - Pjﬁi\; 3 into 50 numbers.

Here is a comparison between the means of the real data and the generated data:
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Consequently, the final distribution function can be ob-
tained through a multi-step iterative solution of the dii-
ferential equations. Of course there are many methods to
solve the ODE such as the Euler discretization method and
the Runge-Kutta method. Things become so simple and
clear. Actually, the transformation capability of the Flow
Matching method is pretty powertul and efficient.
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Iy The jet and diffusion wake are aligned in pseudorapidity (7)), yet they are oriented back-
o7 T o (4) to-back in azimuthal angle (¢). We compared the An and A¢ distributions between the

brightest and darkest points of all real and generated events.
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