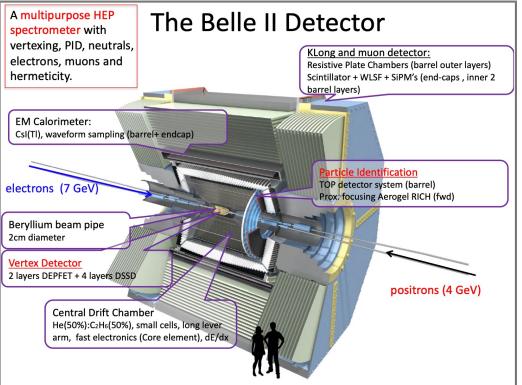
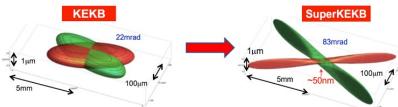

总第九十四期


Belle II实验上重味夸克偶素的研究

贾森 (jiasen@seu.edu.cn) 东南大学

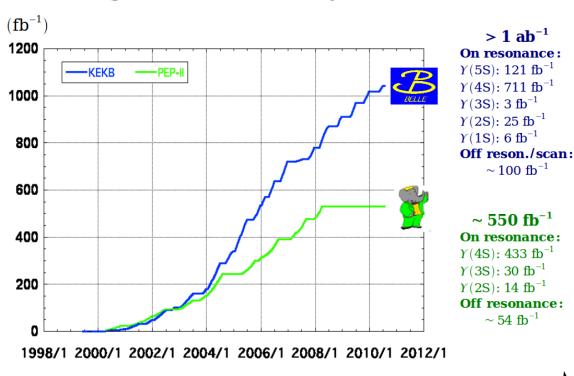

味物理讲座, 2025年11月20日

SuperKEKB and Belle II

Nano-beam design:

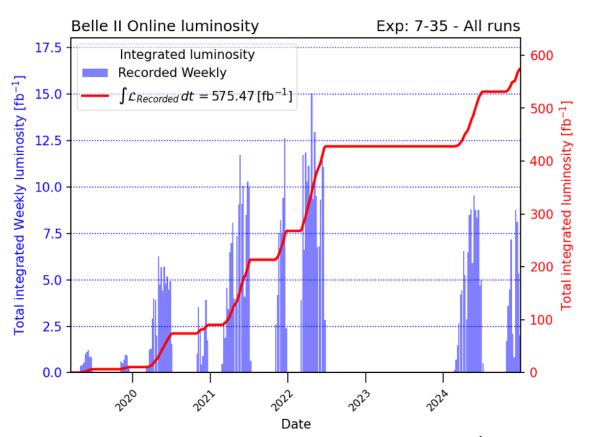
Nano-beam design:

Beam squeezing: ×20 smaller;


Beam current: ×2 larger

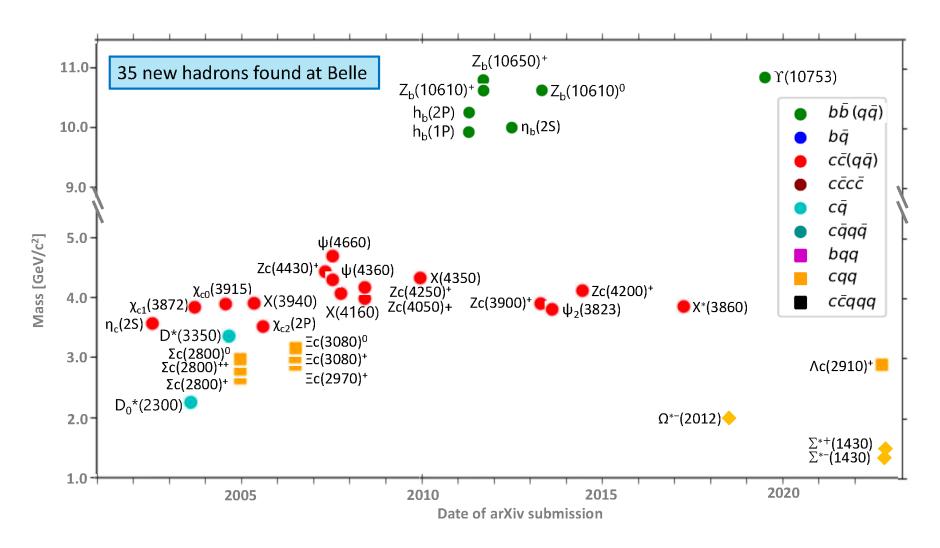
Target peak luminosity: KEKB×30

Belle and Belle II Datasets


- Belle (1999 2010)
- Belle II RUN-I (2019 2023)
- Belle II RUN-II (2024 2025)

Integrated luminosity of B factories

In December 2024


WORLD RECORD: 5. $1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Most data at or near the $\Upsilon(4S)$ resonance, and 19.6 fb⁻¹ near $\Upsilon(10753)$

The Belle II experiment began collecting data on 18 November.

New hadrons found at Belle(II)

Belle II has been designed to make precise measurements of **weak interaction parameters**, **study exotic hadrons**, and search for **new phenomena** beyond the Standard Model of particle physics.

Charm spectroscopy

Selected topic:

- $1.D_{s0}^{*}(2317)^{+} \rightarrow D_{s}^{*+}\gamma$
- 2. ISR of $e^+e^- \rightarrow h^+h^-J/\psi$ (h = π , K, p)
- 3. $Br(B \rightarrow X(3872) \text{ K}) [MC study]$

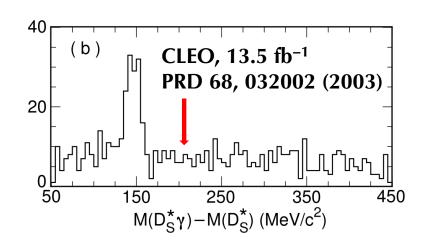
First observation of $D_{s0}^*(2317)^+ \rightarrow D_s^{*+}\gamma$

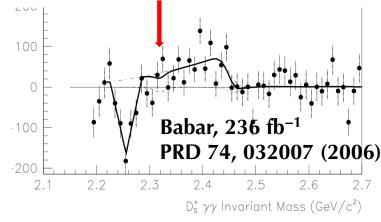
arXiv: 2510.27174

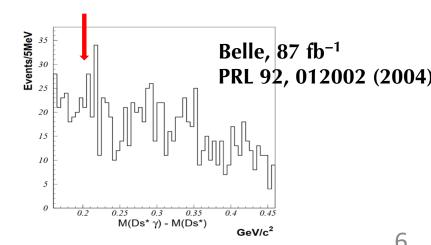
 $D_{s0}^*{(2317)}^\pm$ DECAY MODES

 $D_{s0}^{st}(2317)^-$ modes are charge conjugates of modes below.

Mode		Fraction (Γ_i / Γ)	Conf. Level	P(MeV/c)	
Γ_1	$D_s^+\pi^0$	(100 $^{+0}_{-20}$) $\%$		298	~
Γ_2	$D_s^+\gamma$	<5 %	CL=90%	323	~
Γ_3	$D_s^*(2112)^+\gamma$	<6 %	CL=90%		~
Γ_4	$D_s^+ \gamma \gamma$	<18 %	CL=95%	323	~
Γ_5	$D_s^*(2112)^+\pi^0$	<11 %	CL=90%		~
Γ_6	$D_s^+\pi^+\pi^-$	$<4 imes10^{-3}$	CL=90%	194	~
Γ_7	$D_s^+\pi^0\pi^0$	not seen		205	~

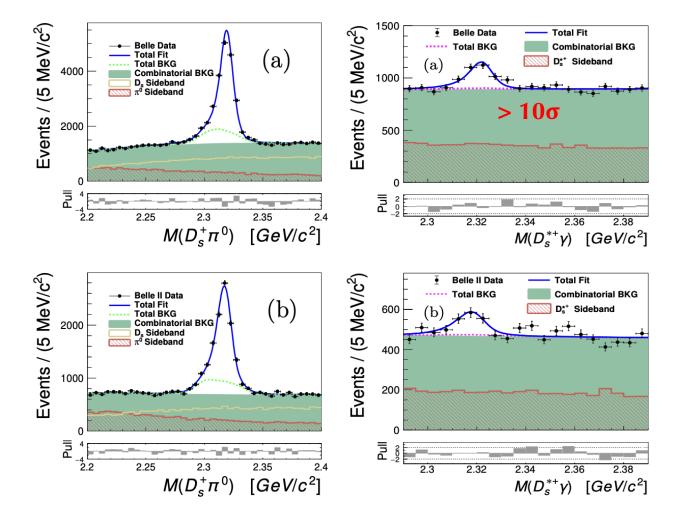

Mass of $D_{s0}^*(2317)^+$ is much lower than the quark model predictions of the lowest $c\overline{s}$ mesons with $J^P = 0^+$


- Modifying the cs quark model
- D*K hadronic molecule
- Compact tetraquarks
- Chiral partners of the ground state D_s^* meson

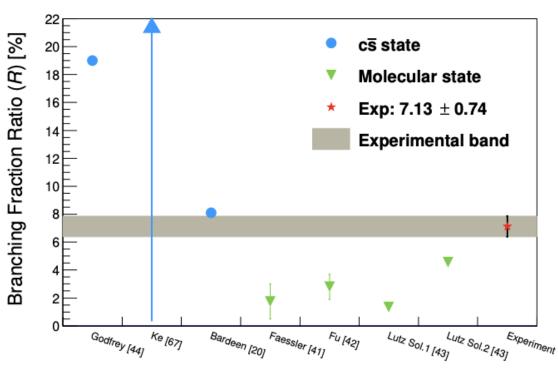

Partial decay widths: unique in discriminating between various models

The $D_{s0}^*(2317)^+ \rightarrow D_s^+\pi^0$ was first observed by BaBar in 2006 [PRL 90, 242001 (2003)]. The $D_{s0}^*(2317)^+ \rightarrow D_s^{*+}\gamma$ was searched from by CLEO, Belle, and BaBar, but no signals were found.

Scala Factori



First observation of $D_{s0}^*(2317)^+ \rightarrow D_s^{*+}\gamma$

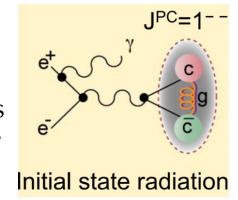

arXiv: 2510.27174

- Target: $D_{s0}^{*}(2317)^{+} \rightarrow D_{s}^{*+}\gamma$
- Control channel: $D_{s0}^*(2317)^+ \rightarrow D_s^+\pi^0$
- Using all Belle data (983 fb⁻¹) and Belle II data (427 fb⁻¹)

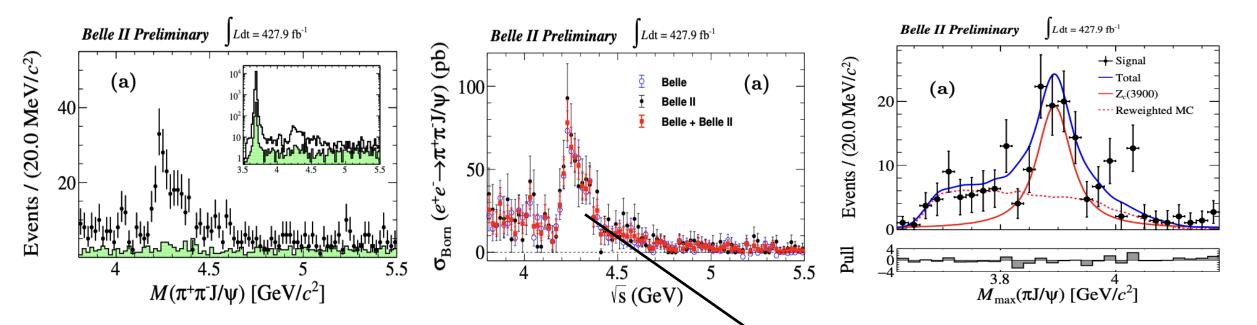
$$\mathcal{R} = \frac{\mathcal{B}(D_{s0}^*(2317)^+ \to D_s^{*+}\gamma)}{\mathcal{B}(D_{s0}^*(2317)^+ \to D_s^+\pi^0)}$$

 $= [7.14 \pm 0.70(\text{stat.}) \pm 0.23(\text{syst.})]\%$

 $D_{s0}^*(2317)^+$ could be the mixture state of pure $c\bar{s}$ state and molecular state.


$e^+e^- \rightarrow h^+h^-J/\psi$ (h = π , K, p) via initial-state radiation (ISR) at Belle II

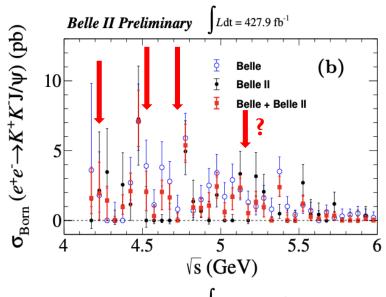
Adavantages of ISR:

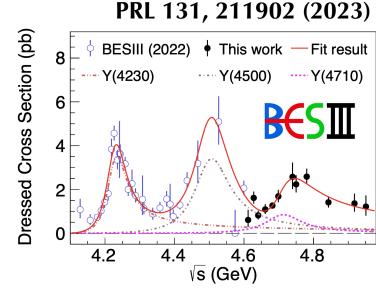

- Allows to study energies below E_{c.m.}
- Wide energy range available
- Measure more precisely the line-shapes

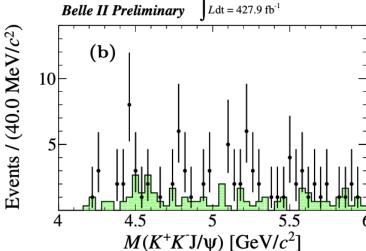
Disadvantages of ISR:

- The effective integrated luminosity decreases as the c.m. energy decreases
- The detection efficiency is also smaller

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ via ISR:

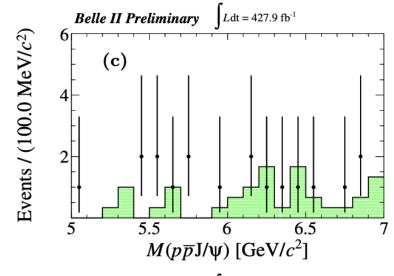


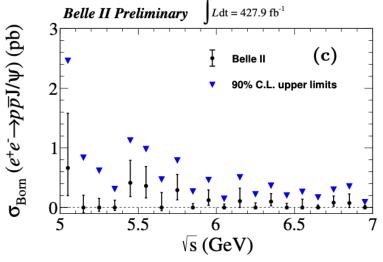

- We can see the Y(4008) evidence and Y(4260) signal.
- The significance of $Z_c(3900)$ is 5.3σ .


There seem to be two peaks.

$e^+e^- \rightarrow h^+h^-J/\psi$ (h = π , K, p) via initial-state radiation at Belle II

$e^+e^- \rightarrow K^+K^-J/\psi$ via ISR:

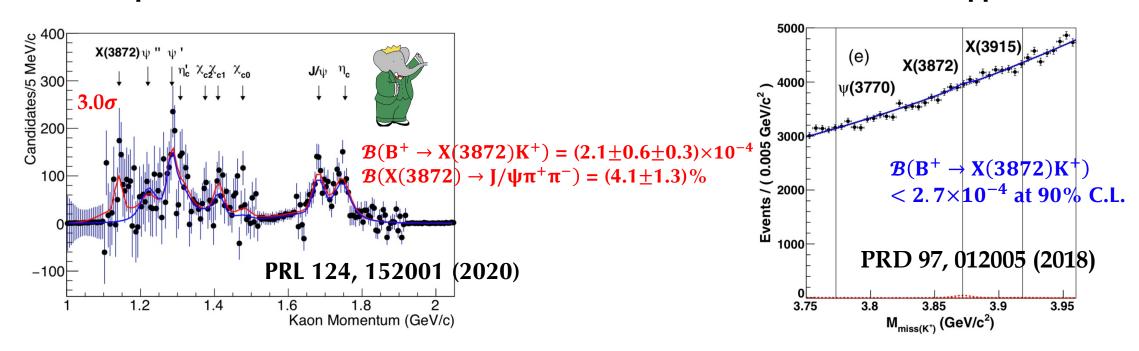




- No clear signals were observed at Belle II.
- More data are needed.

$e^+e^- \rightarrow p\overline{p}J/\psi$ via ISR:

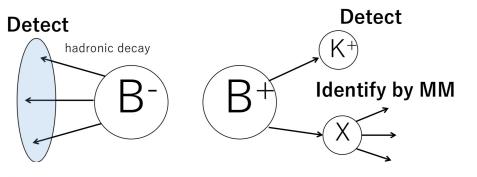
The cross section for $e^+e^- \rightarrow P_c\overline{p}$ is estimated to be $\lesssim \mathcal{O}(0.1 \text{ pb})$ [arXiv: 2508.08694].

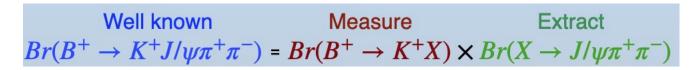


Inclusive measurement of Br(B → X(3872) K)

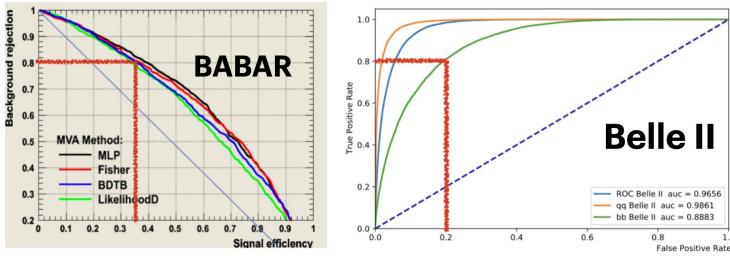
• Determination of the Br(B \rightarrow X(3872) K) leads to the absolute branching fraction for the X(3872) decay, bringing useful information regarding complex nature of the X(3872).

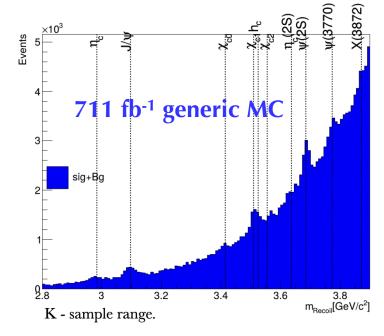
Branching fraction	Structure		
$\mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-) \sim 50\%$	Tetraquark State [PRD 71, 014028 (2005)]		
$\mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-) < 10\%$	Molecular state [PRD 72, 054022 (2005), PRD 69, 054008 (2004)]		


BaBar reported an evidence for X(3872) in the inclusive measuremnt; Belle set upper limits.

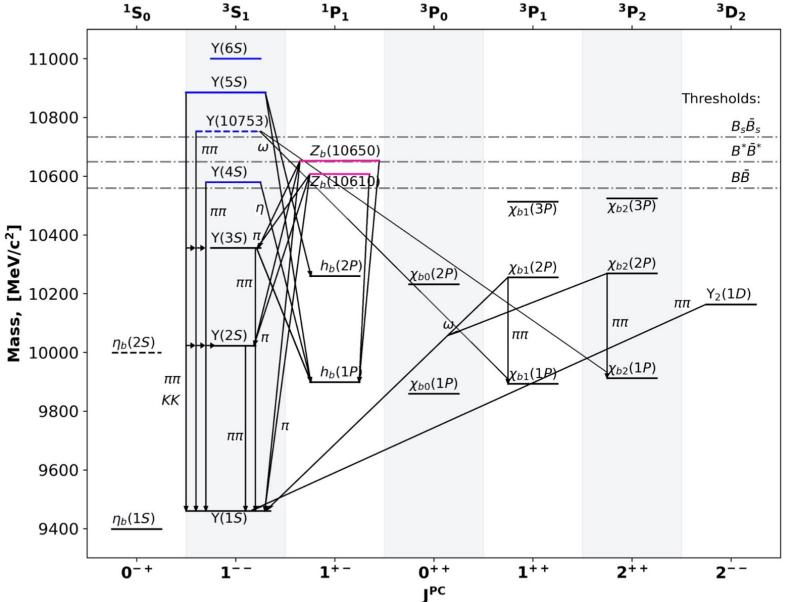


Inclusive measurement of Br(B → X(3872) K)


Analysis method:


- Fully reconstruct one of the two charged B mesons (B_{tag})
- Identify the signal by calculating K momentum in the B_{sig} system or the recoil mass of K

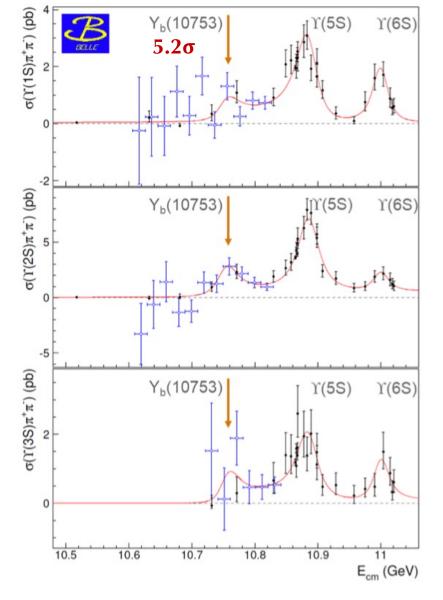
- A more efficient tagging reconstruction algorithm (FEI)
- Better performing deep NN to suppress combinatorial Bg.



A better separation: for the same Bg rejection of 80% in the X(3872) region: Belle II: 80% sig-efficiency; Babar: 36% sig-efficiency

Bottomonium(-like) -Focus on Y(10753) and X_b

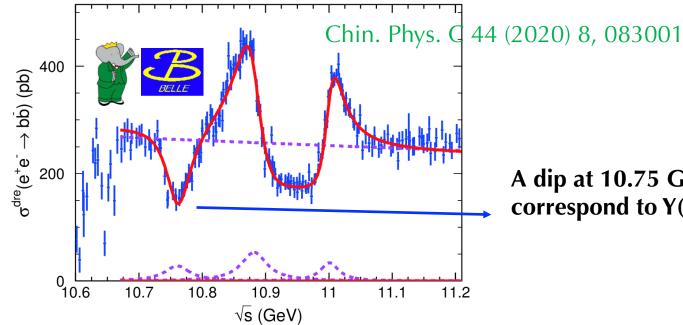
Bottomonium



Conventional bottomonium (pure bb states)
Bottomonium-like states

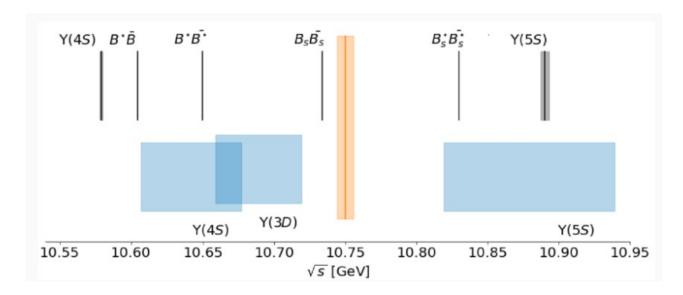
(mix of $b\bar{b}$ and $B\bar{B}$) Exotic charged states (Z_h^+)

- Below BB thresholds –
 bottomonia are well
 described by the potential
 models.
- Above BB thresholds bottomonia express unexpected properties.


Discovery of $\Upsilon(10753)$

JHEP 10, 220 (2019)

- Belle: several $\sim 1 \text{fb}^{-1}$ scan points below $\Upsilon(5S)$
- New structure observed in $\pi^+\pi^-\Upsilon(nS)$ transitions


	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma \ ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

A dip at 10.75 GeV may correspond to Y(10753).

Theoretical interpretations

Godfrey and Moats, PRD 92, 054034 (2015)

• Mass does not match $\Upsilon(3D)$ theoretical predictions, and D-wave states are not seen in e^+e^- collisions.

Conventional bottomonium

Eur. Phys. J. C 80, 59 (2020)

Phys. Rev. D 101, 014020 (2020)

Phys. Rev. D 102, 014036 (2020)

Phys. Lett. B 803, 135340 (2020)

Phys. Rev. D 104, 034036 (2021)

Prog. Part. Nucl. Phys. 117, 103845 (2021)

Eur. Phys. J. Plus 137, 357 (2022)

Phys. Rev. D 105, 114041 (2022)

Phys. Rev. D 106, 094013 (2022)

Phys. Rev. D 105, 074007 (2022)

Phys. Rev. D 109, 014039 (2024)

Phys. Rev. D 109, 114007 (2024)

Phys. Rev. D 111, 114027 (2025)

Phys. Lett. B 870, 139960 (2025)

Eur. Phys. J. C 85, 814 (2025)

Chin. Phys. C 49, 073102 (2025)

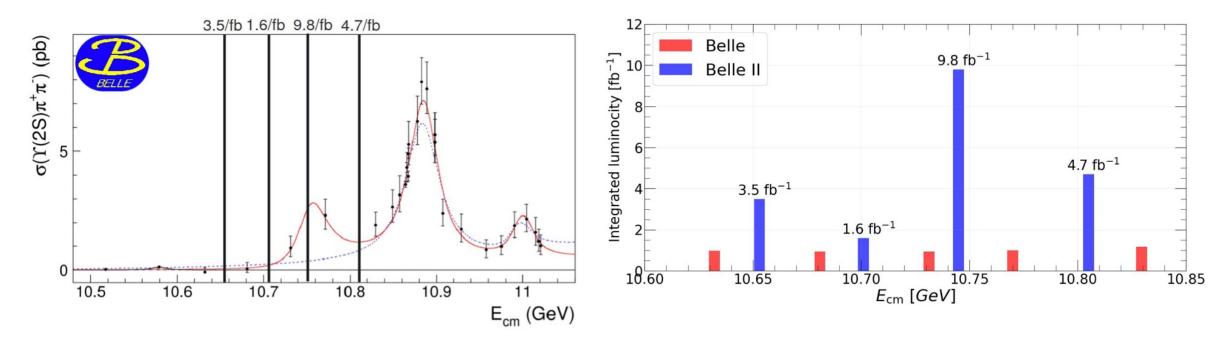
☐ Tetraquark / Hybrid

Chin. Phys. C 43, 123102 (2019)

Phys. Lett. B 802, 135217 (2020)

Phys. Rept. 873, 1 (2020)

Phys. Rev. D 103, 074507 (2021)


Phys. Rev. D 104, 034019 (2021)

Phys. Rev. D 107, 094515 (2023)

Phys. Part. Nucl. Lett. 20, 381 (2023)

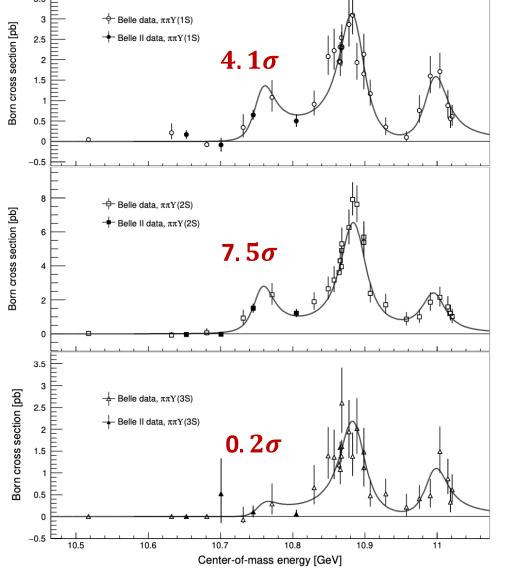
arXiv: 2503.00552

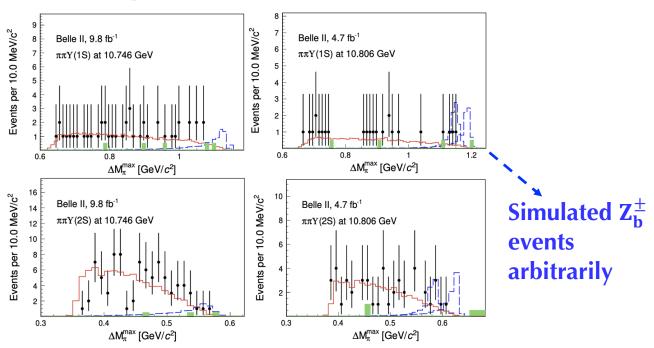
Unique scan data near $\sqrt{s} = 10.75$ GeV

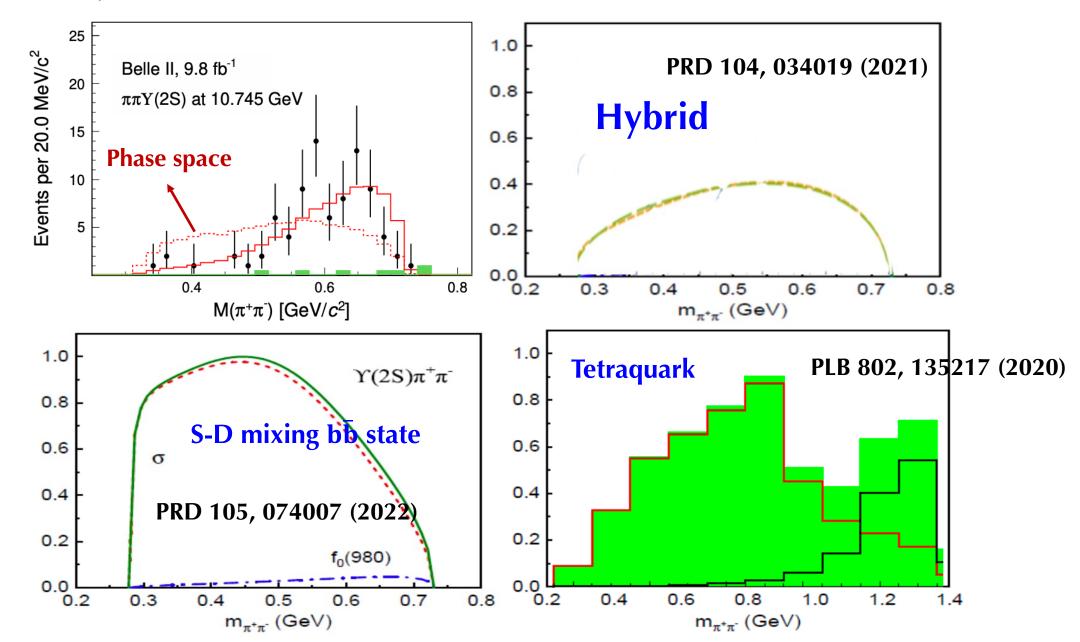
- In November 2021, Belle II collected 19 fb⁻¹ of unique data at energies above the Y(4S): four energy scan points around 10.75 GeV.
- Belle II collected the data in the gaps between Belle energy scan points.
- Physics goal: understand the nature of the $\Upsilon(10753)$ energy region.

Channels Analyzed

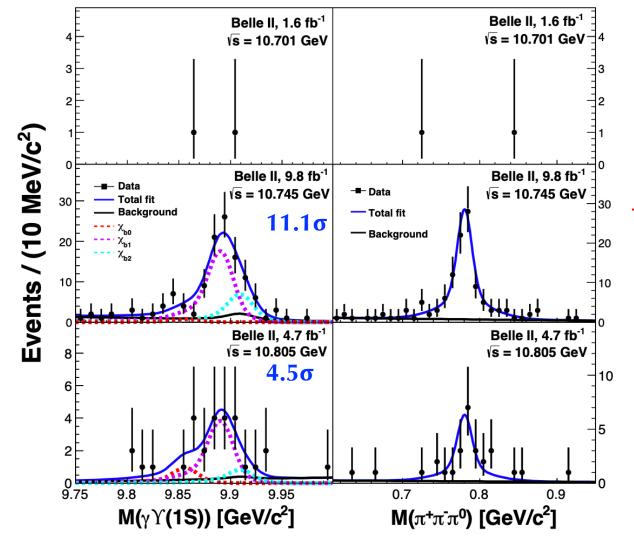
$$\begin{array}{l} \checkmark e^{+}e^{-}\!\!\to\!\!\pi^{+}\pi^{-}\Upsilon(nS)\;(n=1,2,3)\\ \\ \checkmark e^{+}e^{-}\!\!\to\!\!\omega\chi_{b1,b2}\;\text{and}\;e^{+}e^{-}\!\!\to\!\!(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b1,b2}\\ \\ \checkmark e^{+}e^{-}\!\!\to\!\!\omega\eta_{b}(1S)\;\text{and}\;e^{+}e^{-}\!\!\to\!\!\omega\chi_{b0}\\ \\ \checkmark e^{+}e^{-}\!\!\to\!\!B\overline{B},\;B\overline{B}^{*},\;\text{and}\;B^{*}\overline{B}^{*}\\ \\ \checkmark e^{+}e^{-}\!\!\to\!\!\eta\Upsilon(1S,2S)\\ \\ \checkmark e^{+}e^{-}\!\!\to\!\!\pi^{+}\pi^{-}\!\Upsilon_{J}(1D)\;(J=2,3)\\ \\ \checkmark e^{+}e^{-}\!\!\to\!\!\gamma\chi_{bJ}\;(J=0,1,2) \end{array}$$


Measurement of $\Upsilon(10753) \rightarrow \pi^{+}\pi^{-}\Upsilon(nS)$ at Belle II


JHEP 07 (2024) 116

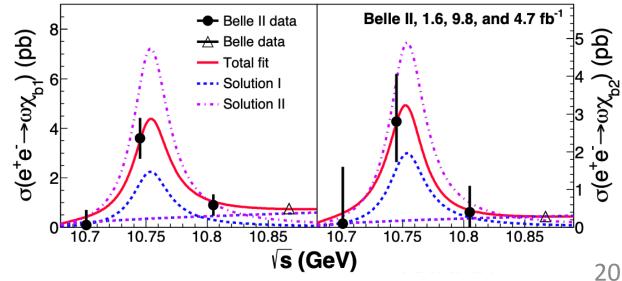

Mass	$(10756.3\pm2.7\pm0.9)~\text{MeV/c}^2$	
Width	(29.0±8.8±1.2) MeV	
$\mathcal{R}_{\sigma(1S/2S)}^{\Upsilon(10753)}$	$0.46^{+0.15}_{-0.12}$	
$\mathcal{R}_{\sigma(3S/2S)}^{\Upsilon(10753)}$	$0.10^{+0.05}_{-0.04}$	

• Search for $Z_b^{\pm} \rightarrow \pi^{\pm} \Upsilon(1S)$ with $\Delta M_{\pi}^{max} = M(\pi^{\pm} \mu^{+} \mu^{-}) - M(\mu^{+} \mu^{-})$

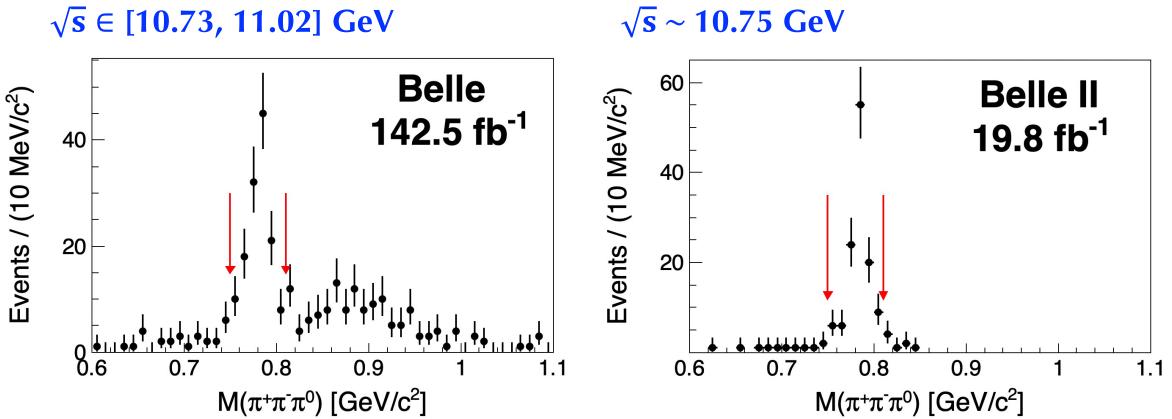


$M(\pi^{+}\pi^{-})$ distributions

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}$

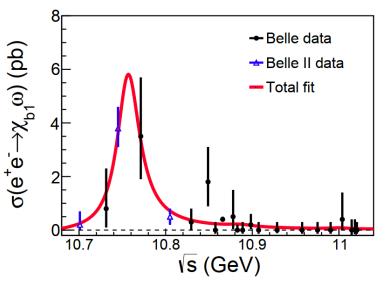

Two dimensional unbinned maximum likelihood fits to the $M(\gamma \Upsilon(1S))$ and $M(\pi^+\pi^-\pi^0)$ distributions.

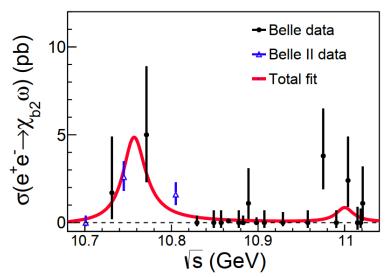
PRL 130, 091902 (2023)

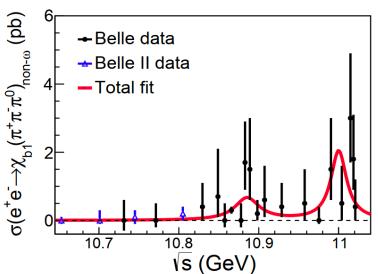

Channel	\sqrt{s} (GeV)	N ^{sig}	σ _{Born} (pb)
ωχ _{b1}	10.745	68. 9 ^{+13.7} _{-13.5}	$3.6^{+0.7}_{-0.7}\pm0.4$
ωχ _{b2}	10.743	$27.6^{+11.6}_{-10.0}$	$2.8^{+1.2}_{-1.0}\pm0.5$
ωχ _{b1}	10.005	$15.0^{+6.8}_{-6.2}$	1.6 @90% C.L.
ωχ _{b2}	10.805	3.3+5.3	1.5 @90% C.L.

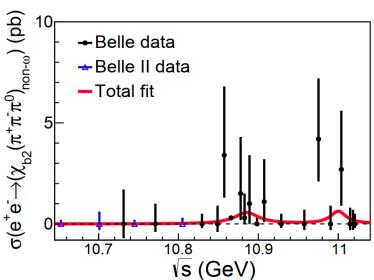
The $e^+e^- \rightarrow \omega \chi_{bJ}$ (J = 1, 2) cross sections peak at $\Upsilon(10753)$.

$e^+e^-\to\omega\chi_{bJ}$ and $e^+e^-\to(\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$ at Belle and Belle II


arXiv: 2510.25461




In addition to ω signal candidates, there are some events from non-resonant decays at Belle.


$e^+e^-\to\omega\chi_{bJ}$ and $e^+e^-\to(\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$ at Belle and Belle II

arXiv: 2510.25461

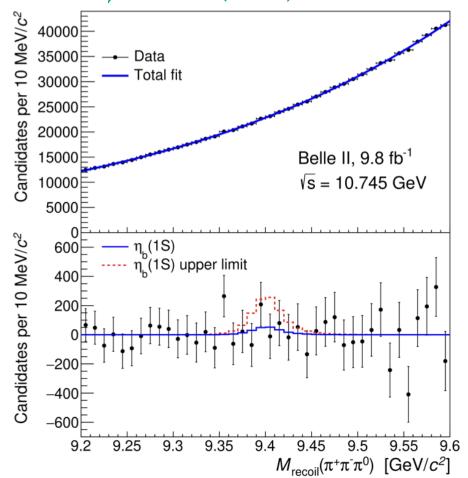
Υ(10753) mass	$(10756.1\pm4.3) \text{ MeV/c}^2$
Υ(10753) width	(32.2±18.7) MeV

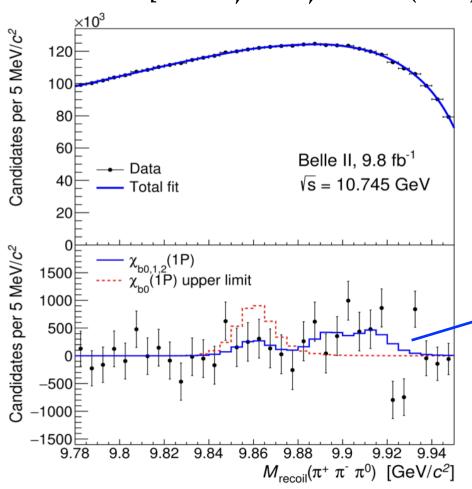
• The mass and width are consistent with those from $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$ measuremnt [JHEP 07, 116 (2024)].

$$\frac{\sigma(e^+e^- \to \chi_{bJ}(1P)\omega)}{\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)}$$

1.5 at $\sqrt{s} \sim 10.75 \text{ GeV}$

0.15 at $\sqrt{s} \sim 10.867$ GeV


This may indicate the difference in the internal structures of $\Upsilon(10753)$ and $\Upsilon(10860)$.


• The $(\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$ excess maybe due the cascade decay of $\Upsilon(10860,11020) \rightarrow Z_b\pi \rightarrow \chi_{bJ}\rho\pi$ [PRD 90, 014036 (2014)].

$e^+e^- \rightarrow \omega \eta_b(1S)$ and $\omega \chi_{b0}$

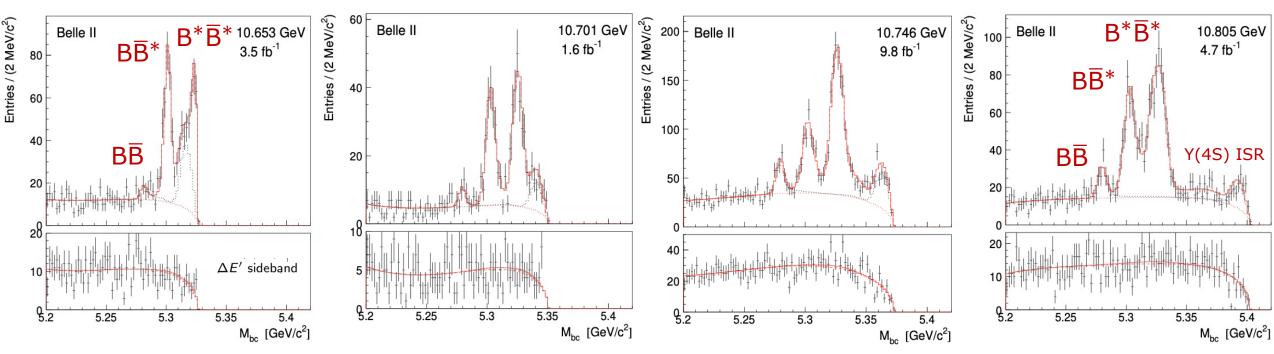
Tetraquark (diquark-antidiquark) interpretation of this state predicts enhancement of Y(10753) $\rightarrow \omega \eta_b(1S)$ transition [CPC 43, no.12, 123102 (2019)].

PRD 109, 072013 (2024)

Orders of the polynomial functions are chosen to give the maximal p-value for the fit.

The yields for $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ are fixed [PRL 130, 091902 (2023)].

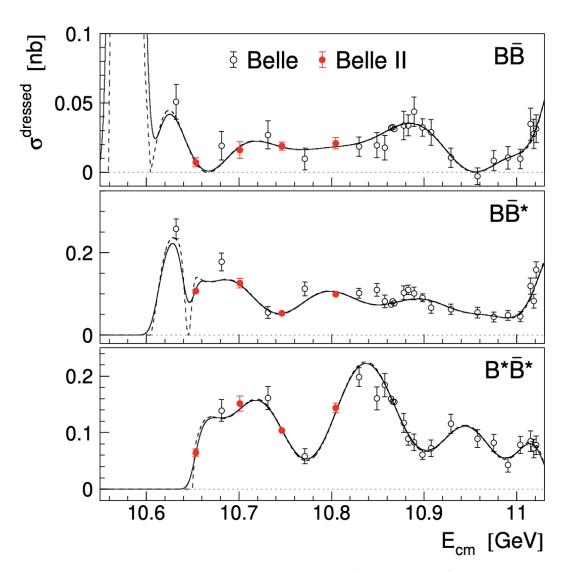
No clear $\eta_b(1S)$ and $\chi_{b0}(1P)$ signals were observed.


This measurement and JHEP 10, 220 (2019):

$$\sigma^{B}(\Upsilon(10753) \to \eta_b(1S)\omega) < 2.5 \text{ pb}$$

$$\sigma^{B}(\Upsilon(10753) \to \Upsilon(2S)\pi^+\pi^-) \approx (3 \pm 1) \text{ pb}$$

$$e^+e^- \rightarrow B\overline{B}$$
, $B\overline{B}^*$, and $B^*\overline{B}^*$


JHEP 10 (2024) 114

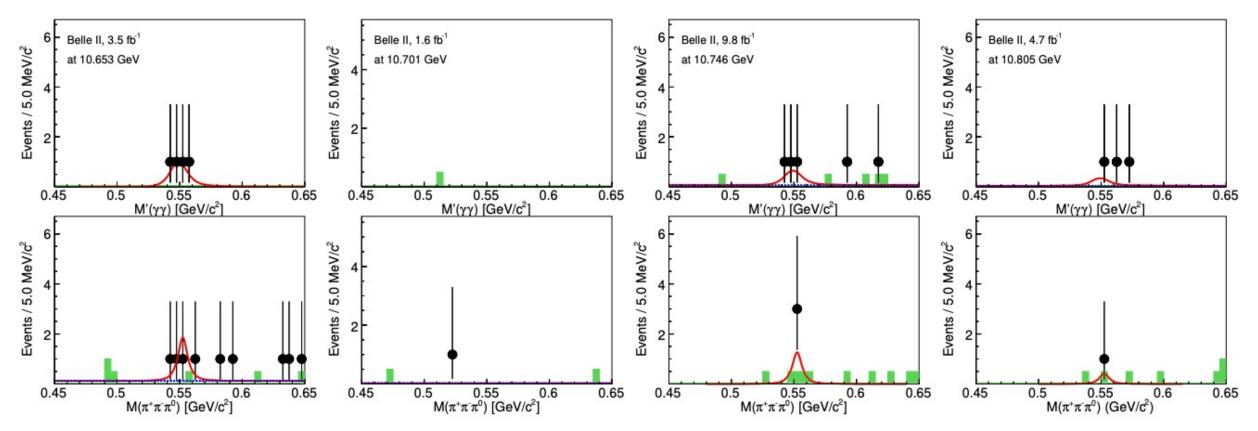
$$M_{bc} = \sqrt{(E_{cm}/2)^2 - P_B^2}$$

- $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$, and $B^*\overline{B}^*$ signals at $\sqrt{s} \sim 10.75$ GeV can be clearly observed
- Contribution of $\Upsilon(4S) \to B\overline{B}$ production via ISR is visible well (black dotted histograms)
- At \sqrt{s} =10.653 GeV, the sharp cut of the data at right edge is due to threshold effect

JHEP 10 (2024) 114

Rapid increase of $\sigma_{R^*\bar{R}^*}$ above the threshold

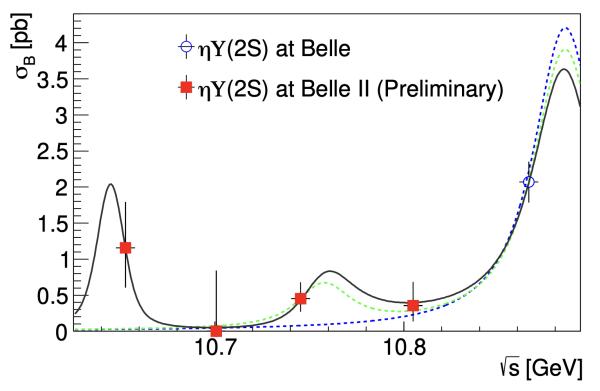
- Similar behaviour was seen for $D^*\overline{D}^*$ cross section (PRD 97, 012002 (2018))
- Possible interpretation: resonance or bound state ($B^*\overline{B}^*$ or $b\overline{b}$) near threshold (MPL A 21, 2779 (2006))
- Also explains a narrow dip in $\sigma(e^+e^- \to B\overline{B}^*)$ near $B^*\overline{B}^*$ threshold by destructive interference between $e^+e^- \to B\overline{B}^*$ and $e^+e^- \to B^*\overline{B}^* \to B\overline{B}^*$
- Channels $[\pi^+\pi^-\Upsilon(nS)]$ and $h_b(1P)\eta$ could also be enhanced (PRD 87, 094033 (2013))


Solid curve – combined Belle + Belle II data fit Dashed curve – Belle data fit only

$$e^+e^- \rightarrow \eta \Upsilon(1S, 2S)$$

$$\begin{array}{l} \eta \rightarrow \gamma\gamma, \Upsilon(2S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S), \Upsilon(1S) \rightarrow \boldsymbol{\ell}^{+}\boldsymbol{\ell}^{-} \\ \eta \rightarrow \pi^{+}\pi^{-}\pi^{0}, \Upsilon(2S) \rightarrow \boldsymbol{\ell}^{+}\boldsymbol{\ell}^{-} \end{array}$$

arXiv: 2509.01917


After requiring $\Upsilon(2S)$ signal region, simultaneous fit to $M(\gamma\gamma)$ and $M(\pi^+\pi^-\pi^0)$ for each energy point.

- Combining all of the energy points, the signal yields for $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$ are 6. $0^{+1.7}_{-1.5}$ and 11. $5^{+3.3}_{-2.8}$.
- The statistical significance is 6.4 σ for $e^+e^- \rightarrow \eta \Upsilon(2S)$ at $\sqrt{s} \sim 10.75$ GeV.
- No clear signals were observed for $e^+e^- \rightarrow \eta \Upsilon(1S)$ at $\sqrt{s} \sim 10.75$ GeV.

arXiv: 2509.01917

$$e^+e^-\to\eta\Upsilon(2S)$$

Fit the with 3 different hypotheses:

 H_1 : only $\Upsilon(5S)$ [blue curve]

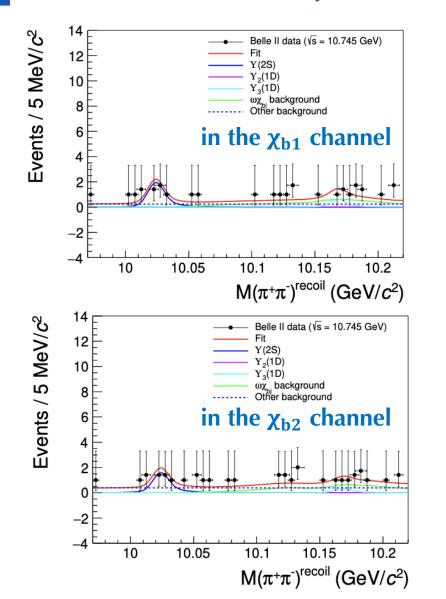
 H_2 : $\Upsilon(10753) + \Upsilon(5S)$ [Green curve]

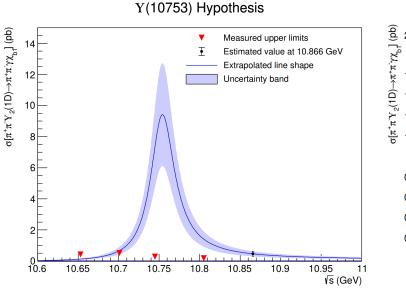
 H_3 : $B^*\overline{B}^*$ bound state + $\Upsilon(10753)$ + $\Upsilon(5S)$ [Black curve], the default fit.

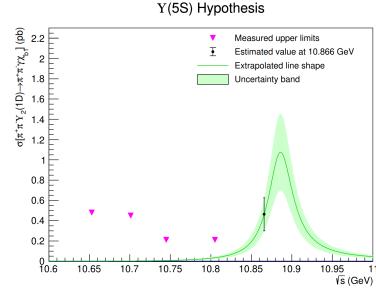
The masses and widths of $B^*\overline{B}^*$ bound state, $\Upsilon(10753)$, and $\Upsilon(5S)$ are fixed.

The significance of $B^*\overline{B}^*$ bound state is larger than 3.2σ

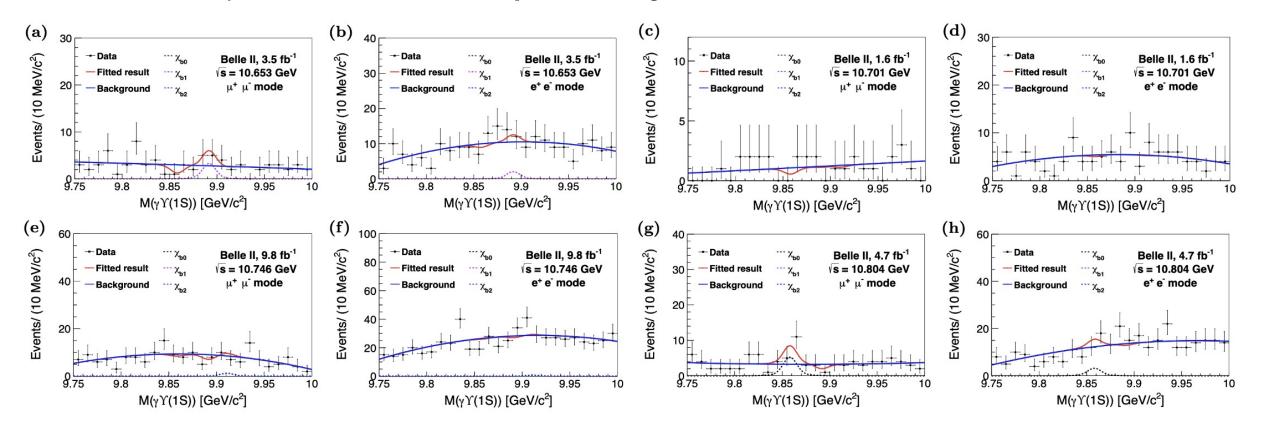
1.The Born cross section of $e^+e^- \to \eta \Upsilon(2S)$ around $B^*\overline{B}^*$ mass is relatively large. 2. A rapid increase of $\sigma_{R^*\overline{R}^*}$ just above the threshold.


A new bottomonium-like state around $B^*\overline{B}^*$ threshold? The $Y_b(10650)$ is predicted in Refs. [arXiv:2505.02742, arXiv:2508.11127, arXiv:2505.03647].


$$e^+e^- \to \pi^+\pi^- Y_J(1D) \; (J=2,3)$$



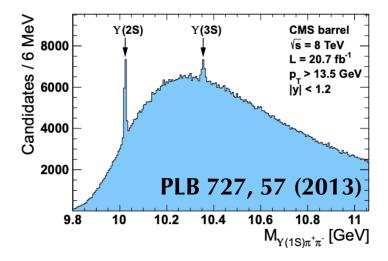
Inverted triangles: the 90% C.L. upper limits on the product $\sigma(e^+e^- \to \pi^+\pi^-\Upsilon_2(1D))\mathcal{B}(\Upsilon_2(1D) \to \gamma\chi_{b1}))$ as a function of C.M. energy.

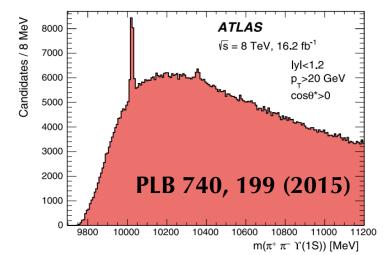


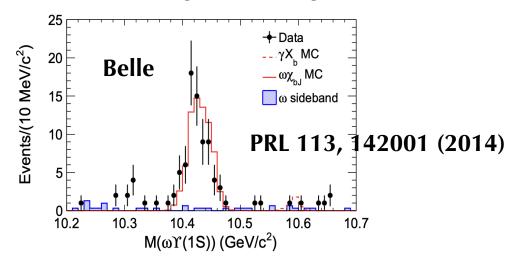
- A pronounced suppression in the coupling of the $\Upsilon(10753)$ resonance to $\Upsilon_{J}(1D)$ states via dipion transitions.
- The upper limits do not conflict with the $\Upsilon(10860)$ line shape.

$e^+e^- \rightarrow \gamma \chi_{bJ} (J=0,1,2)$

The radiative decay is enhanced if the D component is large [PRD 92, 054034 (2015), EPJC 78, 915 (2018)].

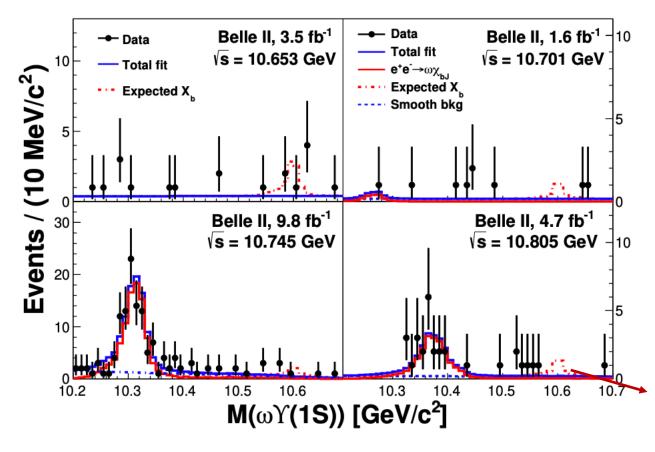

- No clear signal of $e^+e^- \rightarrow \gamma \chi_{bJ}$ can be seen.
- $\sigma^{UL}_{Born}(e^+e^- \to \gamma \chi_{b1})$ at $\sqrt{s} = 10.746$ GeV is 0.26 pb $(\mathcal{B}^{UL}_{Born}(e^+e^- \to \gamma \chi_{b1}) \sim 10^{-4})$, which is much smaller than the Born cross sections for $e^+e^- \to \omega \chi_{bJ}$ and $e^+e^- \to \pi^+\pi^-\Upsilon(nS)$.

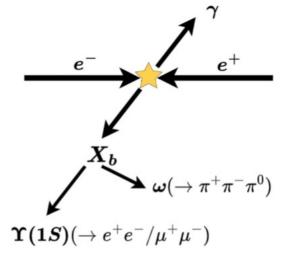

Summary for Y(10753)


Channel	Results
$e^+e^-{ ightarrow}\pi^+\pi^-\Upsilon(nS)$	Update the mass and width of Y(10753); More events are accumulated in the higher side of $M(\pi^+\pi^-)$
a+a-	Large discrepancy of $\sigma(e^+e^-\to \chi_{bJ}(1P)\omega)/\sigma(e^+e^-\to \Upsilon(nS)\pi^+\pi^-)$ at $\sqrt{s}=10.750$ and 10.867 GeV
$e^+e^- ightarrow \omega \chi_{b1,b2}$	$\frac{\sigma(e^+e^-\to\chi_{b1}^{}(1P)\omega)}{\sigma(e^+e^-\to\chi_{b2}^{}(1P)\omega)} = 1.1\pm0.5$
$e^+e^-{\rightarrow}(\pi^+\pi^-\pi^0)_{non-\omega}\chi_{b1,b2}$	The excess maybe due the $\Upsilon(10860,11020) \to Z_b \pi \to \chi_{bJ} \rho \pi$
$e^+e^-\rightarrow \omega\eta_b(1S)$	$\sigma(\Upsilon(10753) \rightarrow \omega \eta_b(1S)) \sim \sigma(\Upsilon(10753) \rightarrow \Upsilon(nS) \pi^+ \pi^-)$
$e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$	Rapid increase of $\sigma_{B^*\bar{B}^*}$ above the threshold
$e^+e^- \rightarrow \eta \Upsilon(2S)$	$\sigma(e^+e^- \to \eta \Upsilon(2S))$ around $B^*\overline{B}^*$ mass is relatively large
$\pi^{+}\pi^{-}Y_{J}(1D) (J = 2, 3)$	A pronounced suppression
$e^+e^- \to \gamma \chi_{bJ}$	$\sigma(e^+e^-\to\gamma\chi_{bJ}) \text{ is much smaller than } \sigma(e^+e^-\to\omega\chi_{bJ}) \text{ and }$ $\sigma(e^+e^-\to\pi^+\pi^-\Upsilon(nS))$

About X_b

- The X(3872) state was first observed by Belle in 2003 in B decays [PRL 91, 262001 (2003)].
- It is natural to search for a similar state with $J^{PC} = 1^{++} (X_b)$ in the bottomonium system.
- CMS, ATLAS, and Belle searched for X_b states, but found no significant signals.

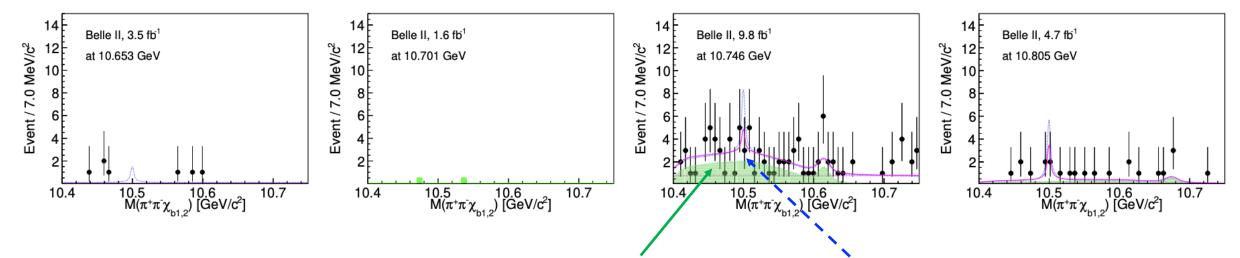




CMS	UL on $BR(X_b)/BR(Y(2S)) < 0.9-5.4\%$ (10 < $m(X_b)$ < 11 GeV/c ²)
ATLAS	UL on $BR(X_b)/BR(Y(2S)) < 0.8-4.0\%$ (10.05-10.31 GeV/c² and 10.40-11.00 GeV/c²)
Belle	$Br(\Upsilon(10860) \rightarrow \gamma X_b)Br(X_b \rightarrow \omega \Upsilon(1S)) < 2.9 \times 10^{-5}$

$X_b \rightarrow \omega \Upsilon(1S)$ at Belle II

PRL 130, 091902 (2023)

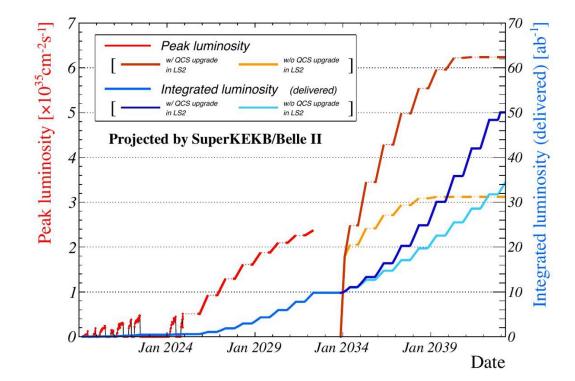

- No significant X_b signal is observed.
- The peaks are the reflections of $e^+e^- \rightarrow \omega \chi_{bl}$.

From simulated events with $m(X_b) = 10.6 \text{ GeV/}c^2$ The yield is fixed at the upper limit at 90% C.L.

Upper limits at	√s (GeV)	10.653	10.701	10.745	10.805
90% C.L. on	$m(X_b) = 10.6 \text{ GeV/}c^2$	0.46	0.33	0.10	0.14
$\begin{array}{c} \sigma_B(e^+e^- \rightarrow \gamma X_b) \cdot \\ \mathcal{B}(X_b \rightarrow \omega \Upsilon(1S)) \\ \text{(pb)} \end{array}$	$m(X_b) = (10.45, 10.65) \text{ GeV/c}^2$	(0.14, 0.55)	(0.25, 0.84)	(0.06, 0.14)	(0.08, 0.37)

$X_b \rightarrow \pi^+ \pi^- \chi_{bJ}$ at Belle II

No significant X_b signal is observed.



The shaded histograms: the background from $\omega \chi_{bJ}$ and $\pi^+\pi^-\Upsilon(2S)(\to\gamma\chi_{bJ})$. The blue dashed lines: the fit results with the contribution of X_b set to the maximum upper limits at 90% C.L.

Upper limits at 90% C.L. on	√s (GeV)	10.653	10.701	10.746	10.805
$\begin{array}{c} \sigma_B(e^+e^- \rightarrow \gamma X_b) \cdot \\ \mathcal{B}(X_b \rightarrow \pi^+\pi^-\chi_{bJ}) \; (pb) \end{array}$	$m(X_b) = 10.5 \text{ GeV/c}^2$	0.14	0.09	0.17	0.32

Future prospects

From https://www.belle2.org/research/luminosity/

- Until 2026, about 1 ab⁻¹ data, comparable to Belle
- Until 2029, about 4 ab^{-1} data.

Charmonium-like states:

ightharpoonup B decay (B ightharpoonup KX_{c \bar{c}})

 $B \rightarrow KX(3872)$

> Initial-state radiation (ISR)

$$e^+e^- \rightarrow Y(4260) \rightarrow \pi^+\pi^- J/\psi$$
 via ISR

> Two-photon process

$$\gamma\gamma \rightarrow X(3915) \rightarrow \omega J/\psi$$

> Double charmonium

$$e^+e^- \to J/\psi X(3940)$$

Need more data

Bottomonium-like states:

Direct production via operation at center-of-mass energy

$$e^+e^- \to \Upsilon(10753) \to \pi^+\pi^-\Upsilon(nS)$$

> Decays of higher mass states

$$\Upsilon(5S) \to \pi Z_b \to \pi \pi \Upsilon(nS)$$

New collision energy points

Summary

- Measure the ratio of radiative decay to hadronic decay of charmed strange mesons to distinguish their internal structure.
- Start to measure ISR processes with larger combined Belle and Belle II datasets.
- Provide more decay modes for Y(10753).
- Only 1% of target luminosity collected so far. Until 2026, about 1 ab^{-1} data at Belle II. Stay tuned for more exciting results from Belle II.

Thanks for your attention!

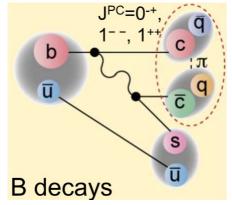
Backup slides

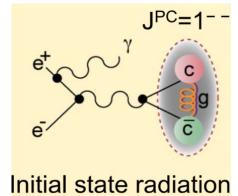
Production of Charmonium(-like) states at B-factory

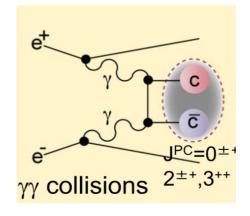
- - ✓ CKM favored process, large branching fractions $10^{-3} \sim 10^{-4}$

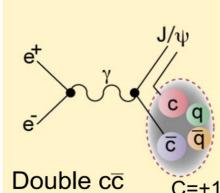
$$\checkmark J^{PC} = 0^{-+}, 1^{--}, 1^{++}, \dots$$

◆ Initial-state radiation (ISR)


$$\checkmark J^{PC} = 1^{--}$$


◆ Two-photon process


$$\checkmark J^{PC} = 0^{-+}, 0^{++}, 2^{++}, 2^{-+}, \dots$$


♦ Double charmonium

✓ e.g. $e^+e^- \rightarrow J/\psi X(3940)$ [PRL 98,082001(2007)]

