Transformers for Peak Detection in Drift-Tube Waveforms

Asif Ali

Supervisors: Prof. Nicola De Filippis & Prof. Guang Zhao

Politecnico & INFN Bari & IHEP, Beijing, China

November 28, 2025

What is a Transformer?

Transformer

A self-attention based model for sequence learning.

Self-Attention

Each part of the sequence can look at all other parts and focus on what matters most.

What this means:

- ✓ Every time bin of the waveform can "see" the whole waveform.
- ✓ Learns to focus on relevant bins (near a peak) and ignore noise.
- ✓ Captures long-range dependencies across the waveform.
- ✓ Helps distinguish true signal peaks from background noise.

2 / 37

RNN/LSTM vs Transformer

- Accuracy on distant peaks: Transformer >> LSTM.
- Training speed: Transformer is much faster.
- Stability: Residual + normalization improve convergence.
- Scalability: Handles larger waveforms easily.

Aspect	LSTM	Transform
Parallelism	Low	High
Long-range capture	Weak	Strong
Training speed	Slow	Fast
Per-bin output	Limited	Excellent

3 / 37

Why Encoder-Only Transformer?

Our Choice

We use only the Encoder part of the Transformer.

Why not Decoder?

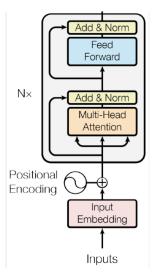
Decoder is designed for sequence generation (e.g., text translation).

Reason:

- ✓ Our task is **peak finding**, not sequence generation.
- ✓ Encoder is sufficient for per-bin classification (peak / no peak).
- ✓ Simpler, faster, and fewer parameters.
- ✓ Better suited for waveform analysis.

Why Transformers ● 4 / 37

Transformer Encoder Architecture



Source:Vaswani et al., *Attention Is All You Need* (2017)

- Input Embedding: Converts input waveform amplitudes (or tokens) into dense feature vectors.
- Positional Encoding: Adds information about time/bin order since attention alone is position-invariant.
- Multi-Head Attention: Each head learns to focus on different relationships across the waveform.
- Add & Norm (1): Residual connection
 + Layer Normalization ensures gradient stability.
- Feed Forward: Two fully connected layers applied to each time step independently.
- Add & Norm (2): Another residual + normalization block improving training stability.

Input Representation

Pipeline: Embedding+PE \rightarrow Q/K/V \rightarrow Scaled Attn (scores \rightarrow weights \rightarrow sum) \rightarrow MHA \rightarrow FFN \rightarrow Residual+LayerNorm \rightarrow Stack N

For bin i with amplitude x_i :

$$z_i = Amplitude_Embedding + PE(i)$$

- Embedding: Projects scalar amplitude to d_{model} .
- Positional Encoding: Injects bin order / timing.

Why Transformers ● 6 / 37

Embedding Formula

Pipeline: Embedding+PE \rightarrow Q/K/V \rightarrow Scaled Attn (scores \rightarrow weights \rightarrow sum) \rightarrow MHA \rightarrow FFN \rightarrow Residual+LayerNorm \rightarrow Stack N

Each amplitude $x_i \rightarrow d_{model}$ vector:

$$\mathrm{Embed}(x_i) = W_e x_i + b_e$$

Interpretation

- Linear projection layer: converts amplitudes into learnable features.
- Combined with PE for sequential context.

Why Transformers

7 / 37

Positional Encoding Formula

Pipeline: Embedding+PE \rightarrow Q/K/V \rightarrow Scaled Attn (scores \rightarrow weights \rightarrow sum) \rightarrow MHA \rightarrow FFN \rightarrow Residual+LayerNorm \rightarrow Stack N

For position pos and channel i:

$$\mathrm{PE}(\textit{pos},2j) = \sin\!\left(\frac{\textit{pos}}{10000^{2j/d_{\mathrm{model}}}}\right), \quad \mathrm{PE}(\textit{pos},2j+1) = \cos\!\left(\frac{\textit{pos}}{10000^{2j/d_{\mathrm{model}}}}\right)$$

Key Point

Encodes both absolute and relative position information.

Why Transformers ● 8 / 37

Q, K, V: Learnable Projections

Pipeline: Embedding+PE → Q/K/V → Scaled Attn (scores→weights→sum) → MHA → FFN → Residual+LayerNorm → Stack N

$$Q = ZW^Q$$
, $K = ZW^K$, $V = ZW^V$

• Query: what I seek; Key: what I can answer; Value: content to pass on.

Why Transformers

9 / 37

Scaled Dot-Product Attention & Why $\sqrt{d_k}$

Embedding+PE \rightarrow Q/K/V \rightarrow Scaled Attn (scores \rightarrow weights \rightarrow sum) \rightarrow MHA \rightarrow $\mathsf{FFN} \to \mathsf{Residual} + \mathsf{LayerNorm} \to \mathsf{Stack}\ N$

$$S = QK^{\top}$$
 $\alpha = \operatorname{softmax}\left(\frac{S}{\sqrt{d_k}}\right), \quad \operatorname{Attn}(Q, K, V) = \alpha V$

Why scaling?

Large $d_k \Rightarrow$ large dot products \Rightarrow softmax too sharp \Rightarrow unstable gradients. Dividing by $\sqrt{d_k}$ stabilizes logits and gradients.

Why Transformers • 10 / 37

Attention Mechanism

Pipeline: Embedding+PE \rightarrow Q/K/V \rightarrow Scaled Attn (scores \rightarrow weights \rightarrow sum) \rightarrow MHA \rightarrow $FFN \rightarrow Residual + LayerNorm \rightarrow Stack N$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^{ op}}{\sqrt{d_k}}
ight)V$$

Intuition: each bin compares itself with all others and gathers useful context.

Why Transformers • 11 / 37

Multi-Head Attention

Pipeline: Embedding+PE \rightarrow Q/K/V \rightarrow Scaled Attn \rightarrow MHA \rightarrow FFN \rightarrow Residual+LayerNorm \rightarrow Stack N

Mathematical Definition

$$\mathsf{head}_i = \mathsf{Attn}(QW_i^Q, \ KW_i^K, \ VW_i^V)$$
 $\mathsf{MHA}(Q, K, V) = \mathsf{Concat}(\mathsf{head}_1, \dots, \mathsf{head}_h) \ W^O$

Typical dimensions:

$$d_{\text{model}} = 64, \quad h = 4, \quad d_k = d_v = 16$$

Parallelism:

- Each head works independently on its own subspace.
- All heads are computed in parallel \rightarrow high GPU efficiency.

Specialization of Heads:

- Head $1 \rightarrow$ local peaks (short-range features)
- ullet Head 2 o global baseline trend
- $\bullet \ \mbox{Head} \ 3 \rightarrow \mbox{long tails} \ / \ \mbox{after-pulses}$
- Head 4 \rightarrow noise suppression / refinement

Interpretation: Concatenation of all heads combines diverse waveform features into one rich representation before final projection.

Why Transformers ● 12 / 37

Position-wise Feed-Forward Network (FFN)

Pipeline: Embedding+PE \rightarrow Q/K/V \rightarrow Scaled Attn \rightarrow MHA \rightarrow **FFN** \rightarrow Residual+LayerNorm \rightarrow Stack N

Applied independently to each timestep (shared weights):

$$FFN(x) = \sigma(xW_1 + b_1) W_2 + b_2, \quad \sigma = GeLU$$

• Adds nonlinearity and capacity to transform attention-mixed features.

Why Transformers ● 13 / 37

Residual Connections + Layer Normalization

 $\mathsf{Embedding} + \mathsf{PE} \to \mathsf{Q}/\mathsf{K}/\mathsf{V} \to \mathsf{Scaled} \ \mathsf{Attn} \to \mathsf{MHA} \to \mathsf{FFN} \to \mathsf{Residual} + \mathsf{LayerNorm}$ \rightarrow Stack N

$$Output = LayerNorm(x + Sublayer(x))$$

- **Residual:** preserve original info, improve gradient flow, enable deeper stacks.
- **LayerNorm:** per-position normalization with learnable $\gamma, \beta \Rightarrow$ stable training.

14 / 37 Why Transformers •

Input Data to the Transformer

```
Shift.
                               Time, Time9, Time1, Time2, Time3, Time4, Time5, Time6, Time7, Time8, Time9, Time10, Time11, Time12, Time13, Time14
0,
     0, -0.0136,
                                 5, -0.03623, -0.03183, -0.00252, 0.03567, 0.0156, 0.03481, -0.03922, -1.171e-05, -0.007266, 0.03652, 0.03184, -0.01925, 0.006953, 0.009978, -0.03505
     0, -0.008607,
                                  7, -0.007513, 0.03068, 0.0106, 0.02982, -0.04421, -0.005005, -0.01226, 0.03153, 0.02685, -0.02424, 0.00196, 0.004986, -0.04004, -0.002116, -0.001036
                        1.
                                 9, 0.007377, 0.02659, -0.04744, -0.008231, -0.01549, 0.0283, 0.02362, -0.02747, -0.001266, 0.001759, -0.04327, -0.005342, -0.004262, 0.02919, 0.03592
     0. -0.00538.
     0. -0.007173.
                                  10. 0.92838. -0.04564. -0.006439. -0.01369. 0.0301. 0.02542. -0.02568. 0.000526. 0.003551. -0.04148. -0.00355. -0.00247. 0.03098. 0.03771. -0.01771
     0, -0.009874,
                                 12, -0.003737, -0.01099, 0.0328, 0.02812, -0.02297, 0.003228, 0.006253, -0.03878, -0.0008481, 0.0002319, 0.03368, 0.04041, -0.01501, 0.01624, -0.0686
     0, -0.01241,
                                 13, -0.008454, 0.03534, 0.03066, -0.02044, 0.005765, 0.00879, -0.03624, 0.001689, 0.002769, 0.03622, 0.04295, -0.01247, 0.01878, -0.06609, -0.03926
                                 15, 0.02875, -0.02234, 0.003862, 0.006887, -0.03814, -0.0002137, 0.0008663, 0.03432, 0.04105, -0.01438, 0.01688, -0.06799, -0.04116, 0.03147, 0.02015
     0. -0.01289.
                                 17, 0.006241, 0.009266, -0.03576, 0.002165, 0.003245, 0.0367, 0.04343, -0.012, 0.01925, -0.06562, -0.03878, 0.03385, 0.02253, -0.002177, -0.02233
     0, -0.01334,
                                 18, 0.009715, -0.03531, 0.002614, 0.003694, 0.03714, 0.04388, -0.01155, 0.0197, -0.06517, -0.03834, 0.0343, 0.02298, -0.001728, -0.02188, -4.504e-05
     0, -0.01098,
                                20, 0.0002558, 0.001336, 0.03479, 0.04152, -0.01391, 0.01734, -0.06752, -0.04069, 0.03194, 0.02062, -0.004086, -0.02424, -0.002403, -0.0002204, 0.005272
     0, -0.01097.
                                23, 0.04151, -0.01391, 0.01734, -0.06753, -0.0407, 0.03193, 0.02062, -0.004091, -0.02424, -0.002408, -0.0002257, 0.005266, 0.02393, 0.03228, -0.01976
                                24, -0.01066, 0.02059, -0.06428, -0.03745, 0.03519, 0.02387, -0.0008378, -0.02099, 0.0008449, 0.003027, 0.0008519, 0.02718, 0.03553, -0.01651, -0.00403
     0. -0.01423.
     0. -0.01038.
                                27. -0.9413. 0.93134. 0.92902. -0.904688. -0.92484. -0.903905. -0.9098231. 0.904669. 0.92333. 0.93168. -0.92936. -0.90788. -0.91144. 0.92617. -0.92287
     0, -0.01258,
                                 30, -0.002488, -0.02264, -0.000805, 0.001377, 0.006869, 0.02553, 0.03388, -0.01816, -0.00568, -0.009241, 0.02837, -0.02067, 0.01316, -0.00301, -0.02649
     0. -0.01255.
                                 31, -0.02267, -0.0008324, 0.00135, 0.006842, 0.0255, 0.03385, -0.01819, -0.005707, -0.009268, 0.02835, -0.0207, 0.01313, -0.003038, -0.02652, -0.002105
                                 33. -0.004257, 0.001234, 0.0199, 0.02824, -0.02379, -0.01131, -0.01488, 0.02274, -0.02631, 0.007523, -0.008645, -0.03213, -0.007713, 0.008407, 0.04099
     0, -0.005692,
                                 35, 0.01865, 0.027, -0.02504, -0.01256, -0.01613, 0.02149, -0.02756, 0.006273, -0.009895, -0.03338, -0.008962, 0.007158, 0.03974, -0.008357, 0.02157
     0, -0.01019,
                                37, -0.02054, -0.008062, -0.01162, 0.02599, -0.02305, 0.01078, -0.005392, -0.02888, -0.00446, 0.01166, 0.04424, -0.003855, 0.02608, -0.01161, -0.001273
     0, -0.01223.
                                 38, -0.006029, -0.009591, 0.02802, -0.02102, 0.01281, -0.00336, -0.02684, -0.002427, 0.01369, 0.04628, -0.001823, 0.02811, -0.009581, 0.0007594, -0.04899
     0. 0.01724.
                                48, -0.00144, -0.05048, -0.01666, -0.03282, -0.05631, -0.03189, -0.01577, 0.01681, -0.03129, -0.001356, -0.03905, -0.0287, -0.07846, -0.03374, 0.4012
         0.06891.
                                42. -0.06833. -0.0845.
                                                        -0.108, -0.08357, -0.06745, -0.03486, -0.08296, -0.05303, -0.09072, -0.08038, -0.1301, -0.08541, 0.3495, 0.3189,
          0.113,
                                44, -0.1521, -0.1276, -0.1115, -0.07894, -0.127, -0.09711, -0.1348, -0.1245, -0.1742, -0.1295, 0.3054, 0.2748,
                                                                                                                                                       0.2569,
         0.2349.
                                46, -0.2334, -0.2008, -0.2489, -0.219, -0.2567, -0.2463, -0.2961, -0.2514, 0.1835, 0.1529, 0.135, 0.09439, 0.08203, 0.6141,
                                     -0.361, -0.3987, -0.3884, -0.4381, -0.3934, 0.04147, 0.01085, -0.007046, -0.04769, -0.06004, 0.472, 0.5484, 0.4536, 0.3698, 0.1984
         0.3769.
          0.4437.
                                51, -0.4552, -0.5049, -0.4602, -0.0253, -0.05592, -0.07382, -0.1145, -0.1268, 0.4052, 0.4817, 0.3868, 0.303, 0.1316, 0.09003, 0.01822
          0.5528,
                                54, -0.1344, -0.165, -0.1829, -0.2236, -0.2359, 0.2961, 0.3726, 0.2777, 0.1939, 0.02255, -0.01907, -0.09088, 0.03585, -0.04684, -0.1001
                                55, -0.1678, -0.1857, -0.2263, -0.2387, 0.2934, 0.3698, 0.275, 0.1911, 0.01979, -0.02182, -0.09363, 0.03309, -0.04959, -0.1029, -0.09588
          0.5555.
```

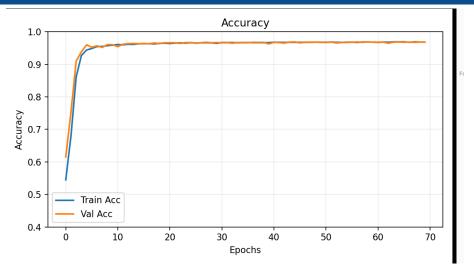
Waveform inputs

Input Structure

- Each row corresponds to one event (waveform).
- First column: Target.
- Remaining columns: Waveform samples (Time0, Time1, Time2, ...).
- Data is normalized and reshaped to (samples, time, 1).
- The sequence is fed into the Transformer for Classification.

Why Transformers ● 16 / 37

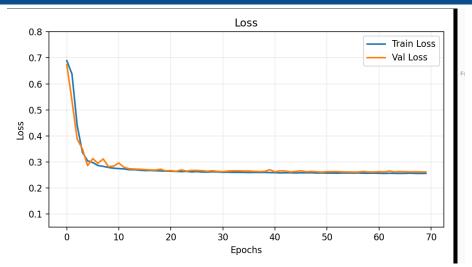
Training and Validation Accuracy(FCC)



Observation: Accuracy quickly rises above 0.95 within 10 epochs and remains stable — shows excellent generalization and almost no overfitting.

Why Transformers ● 17 / 37

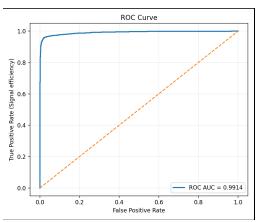
Training and Validation Loss(FCC)



Observation: Loss drops sharply in the first few epochs and plateaus near 0.26. Training and validation curves overlap closely \rightarrow stable learning with good

Why Transformers ◆ 18 / 37

ROC Curve (FCC)



ROC AUC = 0.9914

• Interpretation:

- The Transformer achieves near-perfect signal/background separation.
- Very high True Positive Rate with extremely low False Positive Rate.
- Model demonstrates excellent classification capability and generalization.
- Indicates robust detection of signal peaks even in noisy environments.

Why Transformers ● 19 / 37

Transformer Hyperparameter Configuration

Training Dataset

• Train / Test split: 60% / 40%

Random state: 42

Model Architecture

Attention heads: 4Key dimension: 16

Number of Transformer blocks: 2

• Hidden neurons (dense): 96

Activations: GELU (hidden), Sigmoid (output)

• Dropout: Attention = 0.10, FFN = 0.15

Training Setup

Optimizer: AdamW

• Learning rate: 3×10^{-5}

• Weight decay: 0.0005

• Batch size: 256

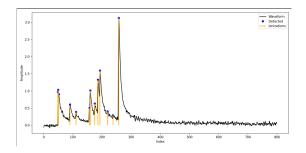
• Epochs: 80, Patience: 12

• AUC minimum keep threshold: 0.95

Fixed decision threshold: 0.5

Why Transformers ● 20 / 37

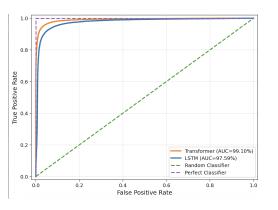
Waveform Evaluation with Transformer Model(FCC)



- Black curve: Drift chamber waveform.
- Orange lines: MC Truth .
- Dots: Detected peaks(Model).

Why Transformers ● 21 / 37

ROC Curve Comparison (Transformer vs LSTM)



- The ROC curves illustrate classification performance for both models.
- Transformer achieves an AUC of 99.10%, outperforming LSTM's 97.59%.
- True Positive Rate remains high even at very low False Positive Rates.
- Dashed green line shows a random classifier; purple line marks an ideal classifier.
- Transformer demonstrates excellent discriminative capability.

Why Transformers

22 / 37

Transformer-based Regression Model

- The goal was to train a Transformer-based regression model to predict the number of primary ionization clusters from detected peaks.
- Various parameters were explored such as number of heads, key dimension, number of blocks, dropout, and learning rate.
- Early stopping, patience, and batch size were also optimized to achieve stable convergence.

Why Transformers ● 23 / 37

Transformer Regression – Training Performance



- ullet Fast convergence in the first ~ 10 epochs.
- ullet Training and validation curves overlap \Rightarrow no overfitting.
- Stable MSE and MAE values indicate strong generalisation.

Regression Metrics

$$MAE = \frac{1}{N} \sum |y_i - \hat{y}_i|, \qquad MSE = \frac{1}{N} \sum (y_i - \hat{y}_i)^2$$

Notation: N = number of samples, $y_i =$ true value, $\hat{y}_i =$ predicted value

Why Transformers ● 24 / 37

Transformer Regression – Final Results

Final metrics (validation set)

MAE: 1.64 clusters

MSE: 4.61

ullet Training time: 985 s

Comparison to baseline model

• Baseline MAE: 2.80 clusters

Baseline MSE: 12.71

• MAE improvement: $\approx 41.3\%$

• MSE improvement: $\approx 63.7\%$

Improvement Formula:

$$Improvement = \frac{\mathsf{Baseline} - \mathsf{Model}}{\mathsf{Baseline}} \times 100\%$$

Baseline definition: Constant-mean predictor ($\hat{y} = \text{mean}(y_{\text{train}})$), i.e. it always predicts the average cluster count of the training set.

Takeaway: The Transformer regression model reduces the cluster-count prediction error by $\mathcal{O}(41\%)$ with respect to the baseline.

Why Transformers ● 25 / 37

Transformer Regression – Hyperparameter Configuration

• Random state: 42

• Test size: 0.4

• Attention heads: 2

• Key dimension: 16

• Transformer blocks: 1

• FFN multiplier: 2

• Hidden neurons (Dense): 128

Optimizer: Adam
Learning rate: 10⁻³

Batch size: 128

• Epochs: 100

• Patience: 20

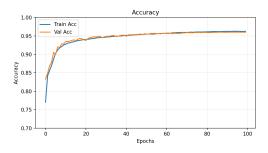
• Minimum learning rate: 10^{-6}

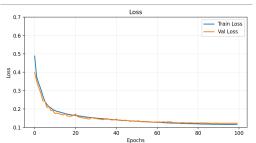
Why Transformers ● 26 / 37

Thank You!

Backup

Training and Validation Performance(CEPC)

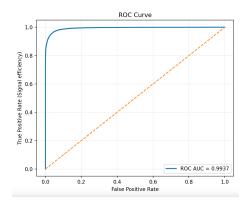




- Accuracy: Training and validation curves converge around 96%.
- Loss: Both losses decrease smoothly to ~0.12.
- **Overall:** Stable performance after ∼40 epochs.

Why Transformers ● 29 / 37

ROC Curve Performance(CEPC)



- ROC curve shows excellent separation between classes.
- AUC score 0.9937 ⇒ near perfect classifier.
- True Positive Rate is close to 1 even at very low False Positive Rate.
- Model demonstrates outstanding discriminative power.

Why Transformers ● 30 / 37

Why Transformer Uses Sin and Cos in Positional Encoding

Goal: Transformers process all tokens in parallel — they have no built-in notion of order. To help the model understand *sequence position and distance*, the paper introduced a fixed **positional encoding** based on sine and cosine functions.

Mathematical form:

$$\mathsf{PE}(\mathsf{pos},\,2\mathsf{j}) = \mathsf{sin}\Big(\frac{\mathsf{pos}}{10000^{2\mathsf{j}/d_{\mathsf{model}}}}\Big), \quad \mathsf{PE}(\mathsf{pos},\,2\mathsf{j}+1) = \mathsf{cos}\Big(\frac{\mathsf{pos}}{10000^{2\mathsf{j}/d_{\mathsf{model}}}}\Big)$$

Why specifically Sin and Cos?

- They are periodic and continuous, creating smooth, repeating patterns over positions.
- ullet They are **bounded between [-1, +1]** o training remains numerically stable.
- Their phase difference (90°) gives orthogonal components \rightarrow unique position fingerprints.
- Relative distances between tokens are preserved:
- No trainable parameters are needed purely deterministic and differentiable.

Why Transformers

31 / 37

Why Not Other Trigonometric or Nonlinear Functions?

Alternative ideas and why they fail:

Function	Why not suitable for Positional Encoding
tan(x)	Unbounded; goes to $\pm\infty$ near $\frac{\pi}{2}$, causes exploding gradients.
$\cot(x)$	Undefined at $x=0$, discontinuous; model becomes numerically unstable.
sec(x), $csc(x)$	Very large near 90° , periodic but unbounded — unstable.
sinh(x), $cosh(x)$	${\sf Smooth\ but\ not\ periodic\ \ cannot\ represent\ repeating\ distances}.$
arctan(x)	Bounded but non-periodic; loses relative position pattern.
exp(x), log(x)	Non-periodic and asymmetric; no relative phase information.

Conclusion: Only sin and cos together satisfy:

- Smooth + periodic + bounded \rightarrow stable training
- ullet Orthogonal components o unique positional signatures
- ullet Relative distance preserved o model learns order naturally

Hence, the original Transformer paper used Sin and Cos exclusively.

Why Transformers ● 32 / 37

Accuracy in Binary Classification

Purpose: Accuracy measures how many predictions are correct out of all predictions. It is one of the simplest and most widely used evaluation metrics.

Formula:

$$\mathsf{Accuracy} = \frac{\mathsf{Number\ of\ Correct\ Predictions}}{\mathsf{Total\ Number\ of\ Predictions}} = \frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

Where:

- TP True Positives
- TN True Negatives
- FP False Positives
- FN False Negatives

Why Transformers ● 33 / 37

Binary Cross-Entropy (BCE) Loss

Purpose: Used for **binary classification** (2 classes: 0 or 1). Measures the difference between predicted probability \hat{y} and actual label y.

Mathematical Formula:

$$L = -rac{1}{N} \sum_{i=1}^{N} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)
ight]$$

Where:

- N number of samples
- *y_i* true label (0 or 1)
- $\hat{y_i}$ model prediction (probability between 0 and 1)

Intuition:

- Penalizes incorrect high-confidence predictions strongly.
- Smaller loss = closer prediction to true label.
- Logarithm makes the loss grow sharply for wrong predictions.

Why Transformers

34 / 37

Understanding BCE: Intuition and Examples

Case A: When y = 1

$$L = -\log(\hat{y})$$

$$\hat{y}=0.9\Rightarrow L=0.105$$
 (small loss) $\hat{y}=0.1\Rightarrow L=2.30$ (large loss)

Case B: When y = 0

$$L = -\log(1-\hat{y})$$

 $\hat{y}=0.1\Rightarrow L=0.105$ (small loss) $\hat{y}=0.9\Rightarrow L=2.30$ (large loss)

Connection to Sigmoid:

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}, \quad z = w^T x + b$$

Sigmoid output lies in $[0, 1] \rightarrow$ suitable for BCE.

Summary:

- Correct predictions \rightarrow low loss.
- Wrong confident predictions → high loss.
- BCE + Sigmoid = standard choice for binary tasks.

Why Transformers • 35 / 37

Categorical Cross-Entropy (Multi-Class Classification)

Purpose: Used for **multi-class classification** where more than two categories exist. In our case: Primary Ionization, Secondary Ionization, and Background.

Formula:

$$L = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c})$$

Where:

- N number of samples
- C number of classes (here C = 3)
- $y_{i,c} 1$ if sample i belongs to class c, else 0 (one-hot encoded)
- $\hat{y}_{i,c}$ model-predicted probability for class c

Softmax activation:

$$\hat{y}_{i,c} = \frac{e^{z_{i,c}}}{\sum_{k=1}^{C} e^{z_{i,k}}}$$

Softmax ensures that all class probabilities sum to 1.

Why Transformers

36 / 37

Softmax Activation Function

Purpose: Softmax is used in the **output layer** of a **multi-class classification** model. It converts raw network outputs (*logits*) into normalized probabilities that sum to 1 across all classes.

Formula:

$$\hat{y}_{i,c} = \frac{e^{z_{i,c}}}{\sum_{k=1}^{C} e^{z_{i,k}}}$$

Where:

- $z_{i,c}$ raw output (logit) for class c of sample i
- C total number of classes
- $\hat{y}_{i,c}$ probability of sample *i* belonging to class *c*

Key properties:

- All outputs are in range [0, 1].
- Sum of all class probabilities = 1.
- Highest value corresponds to the predicted class.

Example:

$$z = [2.1, 1.0, 0.1] \Rightarrow \hat{y} = Softmax(z) = [0.68, 0.25, 0.07]$$

The model predicts Class 1 with highest confidence (68%).

Why Transformers ● 37 / 37