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Molecules

Well understood
|

Nucleus

Mesons are made
of two quarks

baryon

O

Baryons are made
of three quarks

Tetraquarks are

made of four quarks

Shown here is a pion, made of an up and a
down quark.

Shown here is a proton, made of two ups and a  This is X(5568), which is made of an up, down,

down.

strange and bottom quark.
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Proton Y ="up"quark  +3€
D ="down" quark -lse

Neutron ﬁ% . :Ei:% .

pentaquark
five-quark "bag"
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"meson-baryon molecule”
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Strong force Electromagnetic
binds the nucleus force binds atoms

Weak force in ’ Gravitational force
radioactive decay binds the solar system

Strong

Interaction Current theory Mediators Relative strength Long-distance behavior | Range (m)
Weak Electroweak theory (EWT) | W and Z bosons 1023 % e mwz T 10-18
strong gca;um cromesyames gluons 103 Egor confinement) 1071
Electromagnetic :{C{l]uEagjtum electrodynamics photons 1036 Tl oD
Gravitation E:I;Tral relativity gravitons (hypothetical) | 1 fl o0
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The Electromagnetic Force in Forming Matter

protons repel Hydrogen
1 proton
0 'Y 1 electron

electrons repel

Oxygen

8 protons y
8 neutrons Carbon ]

opposite charges attract 8 electrons Monoxide

Coulomb's Law Electron Capture Atoms & Molecules

Like charges repel, unlike charges The electromagnetic force pulls The electromagnetic force holds atoms
attract. Protons repel each other, and electrons into orbit around positively and molecules together. Electrons

the same is true for electrons, but charged atomic nuclei. The larger occupy energy levels around atomic
the electromagnetic force attracts the nuclei, the more electrons are nuclei balancing out positive and
electrons to protons. pulled in. negative charges.
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Van der Waals force Nuclear force

The effective interaction between neutral Residual force of the

atoms: the residual force of QCD strong interaction
electromagnetic interaction outside atom. outside the nucleon
hort
V63 Inter-
mediate| Long range

Repulsion
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Weak Nuclear Force

c Proton
& Neutron

My

Electron Antineutrino

Converting protons into neutrons Releasing radiation

When two protons collide and fuse, a disruption in the weak nuclear force emits a Heavy atoms have an imbalance of
positron and neutrino, which converts one of the positively charged proton to a protons and nuetrons, so the weak
neutrally charged Nuetron. Without the weak nuclear force converting protons into nuclear force converts protons to
nuetrons, certain complex nuclei cannot form. nuetrons releasing radiation.
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SOLAR SYSTEM INTERSTELLAR NEIGHBORHOOD

LOCAL GALACTIC GROUP VIRGO SUPERCLUSTER LOCAL SUPERCLUSTERS OBSERVABLE UNIVERSE




Standard Model of Elementary Particles

three generations of matter interactions [ force carriers
(fermions) (bosons)

I Il I
0 =124.97 GeV/c?
0 0
. @ | H
gluon higgs

=173.1 GeV/c?

» @

top

mass =2.2 MeV/c2 =1.28 GeVv/cz
charge @ 34

spin || ¥ a

(7p) =96 MeVi/c2 =4.18 GeV/c? 0
! =14 =14 0
z »ﬁ ‘o || @
= S
- L strange L bottom photon
@ 4
:—';-1.05.66 MeV/c? =1.7768 GeV/c? :91.19 GeV/c2 2
« (B 1 . o
muon 2, pa
Qo
7)) Mo
Z <0.17 MeV/c2 =80.39 GeV/c2 O
(@) 0 Vv +1 . g 2
- 1% ‘ 1
o electron muon tau 3 g
LLl i ' :
1 neutrino l heutrino neutrino W boson oY 9
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STRONG VERTICES

R YRR A R EAER

WEAK VERTICES

f
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ELECTROMAGNETIC VERTEX ~ ELECTROWEAK VERTICES

w W WIZ/y
Zly w Wiz
Hs ’

i TEL hON
» m H- mg
Before electroweak breaking After electroweak breaking
SU(3)c ® SU(2),®U(1)y E=) SU3) ¢ ® U(L)gm N
2
Fi, = 8, A5 — 8, A + gf™ AL A W = — (Wi +iWy) My = %irﬂ

_ g g ; V2 -
Dy =0, =i ¥V By — 45T, Wi ( ¥ ) B ( cos By sinﬂ-‘w)( B ) Mz = v\ +¢°

ZU —sinfy cosbw Wy
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Strong interaction v N
Gluon discovered Y
1979, at PETRA @ ®
. X
2004 Nobel Prize NyLe
to QCD theorists q‘
(c) {d)
Weak interaction ) .
Z & W discovered € e’ e
1983, at CERN
1984 Nqbel Prlz_e ‘ 70 W W Y
to experimentalists & e Ve e
Lor u A1 ' wl_¢ e; i LEP2 —_—— 80.3222'1; 99’9133
_— fiz EVENTS DO e 80.383+ 0.023
~, g;“EVENTS W :[.D.:rv sssss “ . ATLAS —_— 80.370+ 0.019
% i | il é LHCh —m—u—— 80.354+0.032
gl QCD - background ;* @ World Avg  —m— 80-3693509;2233
g 12 G % CDF 2022 ——80.4335+ 0.0094
g & 10 ATLAS 2024 —E— 80.3665+ 0.0159
a 4 ’_IJILL‘ B CMS 2025 —{— 80.3602+ 0.0099
N 1 c1 1 : 2 X 0 ! L L r I T SR T TR SR T R SR N A
30 50 70 9 10 0 2 4 60 80 100 120 80.3 80.35 80.4 80.45 80.5
2 M, (GeV/c?) mw [GeV]

INVARIANT MASS M (e'e”) (GeV/c”)
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El/ementary Particles

Matter Force Carriers
I |
| | | | | |
Quarks 2 Leptons Gluons W & Z bosons Photons Gravitons
OuarkJLeptcn ‘ ‘ ‘ | ?
comp | ementar ity
Hadrons Strong Weak Electromagnetism Gravity
M Barvons Quantum Quantum Quantum
esons y Chromodynamics Electrodynamics| Gravity
| ?
Nuclei Electroweak Theory
|
Atoms Grand Unified Theory?
]
Molecules Theory of Everything ?
Composite Particles Forces
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e Gauge symmetry:

SU(3)c®@SU(2) QU (1)y ——=

SU3)c®@UL) e

g:(81)o, Wizs:(1,3)0, B:(1,1)o

o Matter fields: Qp. Lp, uf, df, 5

Qr (3, 2)+1/6
Ly : (1,2) 4
uy, (3. 1)—2/3
T (3, 1)+1/3
(5 - (1,1) 41

o Higgs: (1,2)41/2
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LB BRTFREISU (5) KGE—1=EY

The minimal Simple Group including SM gauge groups:
SU(E)) D SU(3)C X SU(Q)L X U(l)y

Filling with the 24 gauge bosons

[ Gl — 2L Gl Gl X Yy \
G2 G2 _ 2B G2 X Y-
1 9 V30 13. _2 _2
v, = G a3 G — 25 X Ys
, w3 3B 1+
X, X5 X3 75+ 755 lf
17— - W 3B

Filling with the 15 fermion fields

/ d:. \ / 0 up  —uy  —u,  —d,
d 5 —uy 0 uy —ug, —dg
'?_;'TJ E = dE) \ '?_jl.a‘lg = U;, —Uu ;,' 0 —Up —d.b
4 Uy Uy Up 0 =
\ o \ 4. d, d = 0 )
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L1 _1/3 1/3 i
() = s e -
1/2

SOCOoOOoO

GUT scale EW scale

SU(5) s SU(3)e ® SU2), @ U(1)y » SU3)c @ U(1)

Dynamics terms of Higgs

Ly = (D"'®94)" (D, day). 5= (D" ®5) (D, ds)

Gauge bosons getting mass, 12 ~ Mqayr, 3 ~ Mpw

mx, my ~ 101 GeV, mw, my ~ 10? GeV, sin? F)W(IOQ GeV) ~ 0.2

Yukawa interaction:

[ — "Il rm "|1 , -'I|| I .;‘. i ]_ . f\k". ."‘l
LY — A'?#-"-ijLH“—JE?,i-"}Q + Bﬁgijklm?ﬁ"’[, C @ ?;.-*Lm + h.c.
Fermions getting mass, at Mqppr scale:

mqg=my=Av, my, =2Bv, m,, =0
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Cons of the minimal SU(5) GUT

e Gauge couplings unification

@ Neutrino mass

o (Q)

@ Proton life time

e Flavor unification

Solutions:

SUSY-GUT, SO(10), SO(18), ...

60 —
O
0
50 d
3
40 | '
30
20 r
10 ¢
O A B i - RN - N M, -
5 10 15
log,,(Q/GeV)
:E>£< a
P 8x 8x ¢,77:0
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BHFR (SUSY)

: s % |)‘f|2 2
7H ‘. J
___________ K ‘
. o Amig = 1275 [Aly —2mE In(Auy /ms) + ..

Martin, arXiv:9709356

SUPERSYMMETRY

. Quarks @ Levions @ rorce particies Squarks ) steptons P SUSY force 05 T T S T T T T
s 2 4 6 8 10 12 14 16 18
" " Log,,(Q/GeV)
Standard particles SUSY particles

17



VEUSY = Vi + Vp

VF _ F*an F*é —

G

2
Vp = (\Hdwz — |H,|*)* +

MSSM

+ Voot . Viote = — %( M2G5 + MEWW + M2BB + hc)
i oW
d T T 5d, (ﬁ AuOH, — dAqQH, — & A, LHd+hc)
W:MHHHd—l—YuQHuU—YdQHdD—YELHdE, —QTmEQ—ETm%L—uméﬁ 5 j 5 251'
(Iﬂd\ 1, [° — [, - Hal?), —m3 H'H, —m2 H}H, — (B,H Hd+h ).
Names Spin | Pr | Gauge Eigenstates | Mass Eigenstates
Higgs bosons | 0 | +1 | HY H) H H; Y HY AY H*
’EIL ER dL dR (same)
squarks 0 —1 SL SR CL CR (same)
tr tr by bg t1 to by by
€], €ER Ve (same)
sleptons 0 —1 AL IR Uy (same)
TL TR U+ T T2 Usr
neutralinos 1/2 | =1 | B W° HY? HY N1 Na N3 Ny
charginos 1/2 | —1 W* Hf H; CE CF
gluino 1/2 | —1 g (same)
oldstino 1/2 ~
(zravitino) (3/2) —1 G (Same)
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Sign(p), tanf = 2=,
At Mgur scale: Moz = My, M.; =My, Age= Ao

4 \E arXiv: 1001.3651

600

400

200

Running Mass {GeV)

200
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o 125 GeV SM-like Higgs mass

e High mass bound of the gluino

e Dark matter relic density and
direct detection

e Muon g-2

PLB 2017, Han, Hikasa, Wu, Yang, Zhang

12000 — T

PLB 2012 Cao Heng, L| Yang

1500 -
=
o
S o |
i
=
ao0 -
200 |=
; o8
=]
—
‘E oS - -
T
=
T o4 a
a CMSSM CMSSM
© a2} *  Satisfy B,— u'y 1 Batisty R < 2.3
+  Excluded by B,—'y Excludad by R
[ BRI B PR R R RS RV SRR R R
110 115 120 125 130 115 120 125 130 138
M, (GeV) M, (GeV)

JI.HH.'
- — 10000
sin0( Mz)(MS) S
R(B =71 1) 3 8000
BR(B—X.) " 9
BR(BY-+u* ™) g =0
@
T "‘_i 4000
Aa, -—= t
(2, h? - o I
o 1 Z 3 4 3 & T B

—2nLn)

wwwwwwww
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value [GeV]

Ranges for original CMSSM parameters

Correlation of SUSY scale @ and Higgs mass my,

Predicted values for m 4

Legend: Ay, < (0.10, 0.05)
Bounds:

(o3 «) MCMC points
— ATLAS (2020) | (@, MCMC 2-0 HPD
— CMS (2022) (—y—) grid (full extent)

150[][]_.:_ AU _j_ _I T | T T T T | T T T T | T T T T | T T T T I ] 60 [
My [ [Legend: Ay, < (0.10, 0.05) ] L
r 128 T (e N ) MCOMC points __ :
10000 TG ~ - '}r] —+4—
I L (M, MCMC 2-0 HPD 1 20T
L — 1277 (—,—) grid (full extent) - i
5000 T Z I 1~ [
i (@] - 4 o 5p=
: = f {1 § %1
i E"“ 126 T -1 - L
[] I - L i -
m MCMC Ay, < 0.10, 2-0 HPD Z __________________________________________ ] 45 I
[ _ 125+ — s
5000 | ® MOMC Ay, <005, 2-0 HPD ’ - 1 [
— grid Ay, < 0.10 r ] L
L A 124 1t= 1 |l 1 1 L 1 ! 1 1 1 1 ! L 1 1 1 ]I 1 1 1 L ! 1 40 T 1
L vid / 0.05
-10000— — 8HESar < 5000 10000 15000 20000 25000 2000
Q [GeV]
SUSY spectrum
arXiv:2509.13437, - )
. - 9 i d; -
Antusch, Saad, Susic : i
| ~0 ot
X?ﬁ X‘é I l I l
% 10000
<3 B 10
o C
2 L 1 H. A H +
= I i
_ _
1000 T -

1000

2500

3000
ma [GeV]

3500 4000

m MCMC A, < 0.10, 2-0 HPD
m MCMC Ay, < 0.05, 2-0 HPD

— orid Ay. < 0.10
erid Ay < 0.05
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3. gSUGRA ﬂﬁ%kﬁ_ﬁﬂ JHEP 2018, Wang, Wang, Yang, JZ

In most general case, gaugino masses can be given by the following
non-renomalizable superpotential terms

fﬁ a a I a a 1 a I a b
W2 T WO 4 ay WO by WD WP 4 ey WDy W),

with A upon GUT scale, chiral superfield 1" as a GUT group singlet.
After ®,, or 1" acquiring an F-term VEVs, soft SUSY breaking
caugino masses will be predicted.

In SU(5) GUT, chiral superfield ¢, can lie in any representations of
(24 ® 24)syym = 1024 S 75  200.

We can consider the most general combination involving the 24,75
and 200 representations of Higgs fields of SU(5) GUT group and the
gauge singlet 1

1

L= fd2 (—I’[ “W ) A [CUT5ab + c1(Haa)ap + c2(Hrs)ab + 03(Hzno)ab]

22



The VEVs of the Higgs field ®54 can be expressed as a 5 x 5 matrix

3 I 1 111
D = vyl zdiag | —=, —=, —=, =, = ;

while the VEVs of the Higgs field ®75 can be expressed as a 10 x 10 matrix

Y diag| 1., 1.1, . —1.3

] b 1 1 ]
2 3 - . I . >
i
.

Similarly, the VEVs of the Higgs field ®99¢ can be expressed as a 15 x 15 matrix

(Pr5) =

Vu .
) = ——diag [ 1,---.,1,—-2,---,=2, 2,---, 2
< 200) 5 \/ﬁ g 6 S ﬁ _ 3
As Ty is a GUT group singlet, the VEV T, can be of order A without spoiling GUT. The

kinetic term after substituting the lowest (10111[)011&1113 VEV will take the form

fa

W D W” Wb (1 +f11 ab—l—Z(f{’ M)

Asvy < A and T ~ A, the term proportional to baa will be the leading normalization factor.

23



Gaugino mass ratios My : My : M3 in different SU(5) representations:

Representations | GU'T scale EW scale
1 1:1:1 1:2:6
1.1 92.0.
24 l:3:—3 3:2:-9
1.1 .- 10 -
75 —z:3:1 | =3:10:90
1.1 .- 10 - A
200 TRERR. 1:10:60

arbitrary gaugino ratio at the GU'1 scale can be obtained with

1 Hco 5::?3] [ 3¢ 3¢, cg] [ @) Co C3
- 1€ : 1

M, : M, : M; = |¢ | | | co 1 |
LT T4V 43 2v3 W15 4V3 23 2/15  4/3 43

NUGM : |[tan 3, Ag, My, My, Ms, Ms;
GSUGRA: M, > M,, M,




PS5 b = Ao, Mo, My, My, M
For the linear-correlation parameters

SUS SUS A 7SUSY SUSY
BT = M A s BTSN NIV i REY

we calculate the coefficients by
SUSY

Ap;
_GUT

Ap ;

Ui =

For the quadratic-correlation parameters
pPoY = p My M, Mg, Mg,. Mi,. Mg, M7,. Mg,

we calculate the coefficients by

o n.Ap,‘?USY
“iik(k>=7 — . 1
ijk(k=7) APJC-'UTAP;JUT

(n=21for k=3 n=1tfor k> j)
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gSUGRA: parameters and constraints

JHEP 2025, Dong, Wang, Yuan, JZ, Zhu

The NUGM scenario

6 free parameters

My, M,, M3, My, Ay,

tang, sign(u)

Predict heavy gluino
and squark to escape
constraints

~

sign(u) = +1

Give light wino bino |Aol, IM3] <10 TeV | @

cbserved resuls S
0< My, <1TeV
T \lMll,lMZ|<1TeV/ °
M3 > M, M,
GSUGRA Parameter select

Constraints

The constraints of SM-like Higss mass: my = 125 + 2 GeV .
The constraints on the squark, gluino, slepton, and chargino
masses:
mg, ,, Mg > 2TeV, mg> 0.7 TeV,

msz > 93.2 GeV, Myt > 103.5 GeV.
The constraints from direct searches for Higgs and signal
compatibility of SM-like Higgs.
The constraints from dark matter relic density and direct search
results for dark matter: 0 < 2h? < 0.12.
The constraints from B physics:

Br(B - sy) = (3.49 + 0.38) x 1074,
Br(B* - ttv) = (1.09 + 0.48) x 1074,
Br(B; » utu™) = (3.01 £ 0.87) x 107°,



Results and discussion

Sample surviving conditions

my, [GeV] my, [GeV] my, [GeV]
123 124 125 126 127 123 124 125 126 127 123 124 125 126 127
[ eeeee——
10 P TR : T 5 1000 5
‘-":}:?:r\ ! 25 2 o .";o:- g
s 8 ‘, A .‘.‘ P 'V_: 800 ':,':.-‘;’; :, e
5 : % 600 s
B 0 O,
< = 400
—5 | ——= M, =15M,
200 | —-= My = 1.5 My + 200 [GeV]
----- M, = 150 [GeV)]
o R | e 0 () A
—10 200 400 600 800 1000 0 200 400 600 800 1000
A[() [GCV] ]\[2 [GCV]
M3YSY [GeV] M?PYSY [GeV]
100 300 500 700 900 100 200 300 400 500
| eeee—— [ ee——
1000 1000 § g R 1000 ¢ =T R
800 § 800 § 800 Lo
= 600 600 = 600
O O
< 400 400 < 400
= O =
——- M; =15 M ——- M, = 15M,
200 = 1.5 M, + 200 [GeV] 200 | —_ Ml=1.5M:+200 [GeV] 200 —-= My = 1.5 My + 200 [GeV]
B M, = 150 [GeV] ; e My =150 [GeV] 3 “es My =150 [GeV]
( e ( e () e
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
M, [GeV] M, [GeV] M, [GeV]

Surviving samples in the A, versus M5 plane (upper left), the tanf
versus M, plane (upper middle), and the M; versus M, plane (upper
right and lower three).

Exclued by Higgs mass data
® Exclued by direct search Higgs data

@® Exclued by dark matter relic density

Negative M; tend to give lighter Higgs, positive
tend to heavier one.

Higgs data require tanf = 5 and M, = 20 tanf
GeV.

Dark matter relic density has strong constraint
on the samples with M; < 1.5M,.

Negative M5 can only survive when M; >

1.5 M,+ 200 GeV.

Negative M5 can give additional contribution to
M, or M, at SUSY scale.



Results and discussion

The discussion on muon anomalous magnetic moment
.

Hij2 7 fi1 /2
/ \\
/ \

jz > H
X7
had
I
The Feynman diagrams of SM contrubiton to a,,. The Feynman diagrams of SUSY contribution to a,,.
my, [GeV] Aay,
200 400 600 800 1000 0.1 0.6 1.1 1.6 2.1 ) - 2100p . 2
aﬁ _q, 1+6 <tan2,8 (2100 GeV) >< it )
1+4, \ mgms /(M) )\1/6
= The contrubiton of smuon to a,,
B,
< Aa,
b . MONZSO GeV
é()()l l40()l l6()()l .8()()I 1I()(’)0 0 200 | 400 6(’)()I | 800 1000 | A | < 1 TeV
My [GeV] M, [GeV] Mz [TeV] ol =
M;~4 TeV

Surviving samples in the tang versus M, plane (left and middle) and
the A, versus M5 plane (right) .
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PDG
2024

IIII|IIII|IIII|IIIIIIIIII;IIIIIIII|III|IIII|II
WP 2020 (DD) . FNAL '21-'23
—249+43 (520) ‘ ] + BNL '02-'06

0+22
DHMZ 2019 (DD) ——
-240 +43 (5.00) :

é KNT 2019 (DD) %h._,é -g

=  —253+30 (6.80) ‘ E&(

% | ] L
WP 2020 (LQ)

-64 + 185 (0.30)
BMW 2021 (LQ) e et
-105+58 (1.76)
IIII|IIII|IIII|IIIII‘IIII§|IIII|IIIiIII|IIII|II
600 -500 400 -300 -200 -100 0 100 200
a, -a’® [x107""]
LI I | I I LI I I I I Ll I I I LI I 1 I I I | Ll I I I I LI | I I
BNL 99 n 1450 ppb
BNL 00 & 830 ppb
BNLOL = a—— 760 ppb.
FNAL 21 —a— 463 ppb
FNAL 23 -0 217 ppb
FNAL25 =2 A 139 ppb.
World Average 25 -4 124 ppb

18 19 20 21

22 23
2,%10° — 1165900

24

PDG

SNDO06 | * I - i
2025 cvmp2 | | |
—a— :
BABAR | [ —— E
KLOE | "= i
BESIL  — e~
SND20 | T A 5

CMD-3 | &

- L ——e—

BMW /DMZ-24

RBC/UKQCD-24+18 |

Mainz/CLS-24
BMW-20

Avg. 1 |
Avg. 2A |

Avg. 2B

Avg. 3 |
Avg. 4 |

WP25

= ] e s e

30 20 -10

(GEM _ aexp) % 1010

i

29



Results and discussion
The discussion on dark matter

mi? [GCV] |N11|2 |1V12|2
100 190 280 370 460 0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
[ ee— ]
1000 3 7 1000 1000 T ., Y o :
‘.;";; ,/,’ t P e :
800 LA 800 800 <
- 2 . . ' ; ¢
2 600 | - EPoERe S > 600 | > 600 k
<] \ 4 ¥ .: o % ¥y q’«‘\:’wﬁ.,:, () \ > :
S ittty S 3
< 400 § TE S eE Al o 400 | “e < 400 §
=~ 4 e A, e M = i s Sted =
——= M, =15M, ; ——— M, =15M,
200 —-= M, = 1.5 M, + 200 [GeV] 200 ¢ —-= M, = 1.5 M, + 200 [GeV] 200 ¢ —-= M, = 1.5 M, + 200 [GeV]
: My =150 [GeV] p My =150 [GeV] : M, =150 [GeV]
0||XI|||||:|| R 01|I||||l|||l o s 01|X||||l||ll|||l||«
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
17\[2 [GCV] 17\[2 [GCV] ]\[2 [GCV]
Oh? Qh? Oh?
0.00 0.03 0.06 0.09 0.12 0.00 0.03 0.06 0.09 0.12 0.00 0.03 0.06 0.09 0.12
[ e— | [ — ]
1000 P W T 600 7 600 7
o 1 W ”I\ﬂ; = I”;—x [ == I"\dlr = I?I{If ,,
sto) 450 +
= 600 | &
o, 9. 300 -
< 400 § =
= £
150
200 —-= M, = 1.5 M, + 200 [GeV] 7
: - My = 150 [GeV] _,/ ¥
()lelllllllllllllllt 0111111111111111]111 Olllllllllllllllltll
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
M, [GeV] msz [GeV] myz+ [GeV]
Surviving samples in the M; versus M, planes (upper and lower left), the M0

versus ms plane (lower middle), and the M0 VErsUS M.+ plane (lower right).
1

Samples can be divided into

\Y

 ClassA: M; > 0,M; = 1.5M,
« ClassB: M; > 0,M; < 1.5M,
« ClassC: M3 < 0,M; = 1.5M, + 200 GeV

IA

1. Samples are wion-like in Class A and
Class C, bion-like in Class B, and wino-
bino mixing when M, /M, = 1.5.

2. Only bion-like and bino-wino mixing
samples can give sizeable dark matter relic
density.

3. The mass of ¥ and %, are degenerate for
the samples in Class B.
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Results and discussion
The discussion on dark matter

Main Feynman diagrams illustrating 7;
2 hybrid annihilation (lower).

~ o~ oy s . ms <\\\\\ q
/ ##? coannihilation: — < 1.1 o —
m~0 |
X1 R
m i o
#9%% coannihilation: >1.1, 1<—="L<1.05 .
=0 m_o X7 1
X1 X1
+ Tyt
Z1 72 coannihilation: >11, 1.05<—*<1.1 hWE /2
~0 m~0 ~ h/w’i/w _---+___
Xl Xl AN T
_ m)~(+ 7+
~ . . . T 1 ’\_ ______ F
7Y annihilation: — > 1.1, Lx~1.1 h
\ m%o m)?o / 7 hIWT iy N
1 1 7 h/WTF[Z]~
Main annihilation mechanism
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Abstract: Research achievements in frontier scientific fields such as high-energy physics are often difficult for
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problem in science communication. Taking the production of the popular science video cn “photon—axion-like
particle (ALP) propagation modes” as a case, this paper explores the transformation path and practical
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“Distinet photon-ALP propagation modes ™ and combined with PPT amimation technology, this study analyzes
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design, and narrative logic construction. It demonstrates the role of popular sclence videos in lowernng the
cognitive thresheld of science and enhancing public interest in science. Furthermore, it summarizes key issues
such as balancing scientific rigor with accessibility and adapting technical tools, providing practical references
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The puzzles of SM

Dark matter

Dark Matter

Dark Energy

The composition of the universe

other problems

Asymmetry between matter and antimatter,
the origin of neutrino mass, Great Unification

Hierarchy problem

Mp=24x108GeV Mgy ~ 102 GeV

—125 GeV Higgs
— 2 2 4
V=malHI" + AH"«— 16 Gev VEV
m% = —(92.9 GeV)? A =0.126
O
2
A
Am% = — |8];_[|2 Ay Ayy~Mp,

Muon g-2

SM predict:

a;M = 116591810(43) x 1071

Experimental measurement:

a,’ =116592059(22) x 107

Deviation:;

Aay=a, "’ —ap™ = (249 + 4.8) x 10710




The SM and SUSY

The supersymmetry
supersymmetry transformation

Qlfy =1v) Q|vy = If)

~

2

v R

~ ~
Ve V :
\..Ji @
LT )
quarks squarks
® leptons ® sleptons

® force carriers ® susY force carriers

The particles in MSSM

Chiral supermultiples in MSSM

Names spin0 spin 1/2 SM
Q (ﬁL &L) (u, dp)
quark _ ~ % t .
squarks | R Ur N s
d d; dl H N/
epton | L | Bé) | we) SUSY )
I = ~ % S 2
slepton 5 & e;r =3 A2y
higgs | Hu | (Hi HY | (A AY) . ,
higgsinos H, | (HQHY) | (HY Hy) Amy = ﬁ(ﬂs — |/1f| )AUV+




The SM and SUSY

The supersymmetry Additional contribution to g-2

R Parity arXiv: 9709356
60: ! I | I | | | | | E
SM P, =1 Y U(‘I)‘h\\\\"'\ /
R 50F SM L
SUSY P, =—1 Hijz o~ Hi/2 40¢ DT
K \ F SUQR) -7 T
\ 1 : == .- ;
30 - E
/ > \ o 2 = ]
(% # -0 g ; 5
X 20F S
® SUsy
umg . (tanﬁ - (100 Gev)?\ 105y E

a,, = :

u 0 2 2 - .
@ m= M= /(M ,Ll) A S T R R S R B B
AR N %4 6 8 10 12 14 16 18

Logm(Q/GeV)

@ @ | DM candidate

Three coupling versus energy scale



The SM and SUSY

MSSM and pMSSM
The Lagrangian of MSSM

The parameter of pMSSM
. . more than 100
Lsusy = — - F% F* 4 i\1"G"V A, + =D D"
7 ' 2 / tanf \

o aqu*z’ ;u‘?bi + iwﬁﬁﬂaﬂwi Trilil\r?:;rs(i[lrgfings mlz—lu’ mlz-ld
1 (%] 1 * *1 '
—5Y T pipiby, — 5’93-3-;305 Pt M1, My, M5
1 .. 1 oL meg, My, Mg,, M, Mg
— SMiyapy — MG —V(e,0t)  New parameters ©TUR AR R
2 2 mea, Mgy, My, M, My
— V2g(¢* T PIN" — V29N (YT T¢) + g(¢*T¢) D*. A, Ay A,
Lan = — 3 (Mg + MWW + MBB + ce. ) The assuming of pMSSM K A¢, Ap, Ag /
B (aau@ H, — dagOH, — sa,LH, + cc. ) 1. All the sqft SUSY—breakin_g parameters are real_. |
o 2. The matrices for the sfermion masses and the trilinear
— Q'M3Q — L'M{L — aM2u' — dMzd — éMZe! couplings are all diagonal.
S I 3. First and second sfermion generation universality at low
— mHuHuHu — deHde — (bHqu + cC.c. ) : energy



The mMSUGRA/CMSSM and its extension

CMSSM and its extension
= 08 |- —
: © x % The extension
The assuming of CMSSM T o6 |- v 11124301
1 AAWN. L2 Non-universal gaugino masses
My =M, =Mz =my, ™7 |
e N o S | | M, # M, # M, #
bino wino gluino € ozl X Satisfy B p'w i 1 2 3 F My
+ Excluded by B,—p'u
?Qi = mgi = m,%= M, T I Non-universal slepton masses
iggsi M Y
squark slepton  Higgsino . (GeV) [ S J
I I N I B L T Ty l
= Ad = Al = Ay 5 0455 CMSSM = _
\ 8 o04f l SUSY Cloyfs 3 Non-universal squark masses
0.35F 20
trilinear coupllngs D3 TEE "2@5;213-2{ E [ My, *mg, # M, J
= + 8.8 x10 = l i
0.255— - 3.5 x10"° _:
0.2 =
_ 0.15F arXiv: 1508.5951 1 Non-universal Higgsino masses
ml/Zl my, AO) tanIBl Slgn(ﬂ) 0_1%— —;
0.05;— —; [ mHu * de == MO J
o) T B Lottt 3x10°
The five free parameters in CMSSM Lot s :;xp_asﬁ



Conclusions

® Higgs data restricts the parameter space by requiring tanf8 = 5 and M, = 20tanfS GeV. Moreover, negative
M typically favors a lighter Higgs boson, whereas positive M5 tends to yield a heavier one.

® Small values of |Ay|, M3, and M, tend to provide a larger contribution to Aa,, In particular, a sample with M, ~
250 GeV, |4y = 1 TeV, M3 ~ 4 TeV, and tang ~10 yields a sizable contribution to Aa, (~2.1x107).

® The lightest neutralino #? is predominantly wino-like when M, /M, > 1.5, bino-like when M, /M, < 1.5, and
wino-bino mixing when M, /M, =~ 1.5.

® The main dominant annihilation mechanisms are £¢2, 707, 770, #° annihilation. 79 7 coannihilation can
hardly to generate a large dark matter relic density.

® Direct searches for SUSY particles impose strong constraints on wino-like samples. When the integral
luminosity of the HL-LHC reaches 3 ab™* and CLIC,¢,, achieves 2.5 ab™, all samples can be fully covered by

collider experiments.
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Conclusions

Trilinear couplings Slepton masses
dm? 1 42 i 2 2 2302
dA 1 [ k = = — —|2(Y}) P;+ngr(Ym)—4g1Ml]
L= — 6AL(Y2)? + 245(Y) + hZA dt 1bw?[
£ 2
” o dm% 1 i [ 2 2302 a. 2152
26 32 - = - |oieR ——ngl(Ym] (43M +3g2M3)]
oM+ 69, M+ g3 Ms d‘ﬁ -~ L6m
L A
e R {zm)zpﬁ ATy m?) = (atMp + 43083
= g 04U + 24,(V))7 + 2D (AR + 345(Y)°) o y .
y . k TUR = mw? 2(Yi)* P — Engl (Ym?) — (ﬁgfmf T zuf,,)]
(lrgl My + f)gg M, + Jgglwg)] dmg}:' 1 in2pi L2 2
_ T = 1672 (Y2)* P + (Yy) P;+ EQLTT(Ym )
dA: 1 . , ,
= = @3 [ﬁﬂ:m‘)ﬁ +2) {AF() + 3A5(YF)’} = 6(gi M + g3 My)
k

1 16
(lrgl Uz+5g2 U? 3 grf’bfrf)]

arXiv: 9308335
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Conclusions

e Stau annihilation : 77 — hh, WTW ~ tt, 777 — 7777,
e Neutralino-stau coannihilation : Y07 — 75h/A.

e Neutralino annihilation : Y{x{, = W W,

e Neutralino-chargino coannihilation : )2‘1]?2%? — ud, c5, tb.

e Chargino annihilation : Y7 y; — WTW~.

e 7Y| coannihilation: the primary channels are stau annihilation and neutralino-stau
coannihilation.
° )E?)?li coannihilation: the major channels are neutralino-chargino coannihilation and

neutralino annihilation.

e \iY! coannihilation: the main channels are chargino annihilation and neutralino-

chargino coannihilation.

e Y annihilation: the dominant channel is neutralino annihilation.

13



The SM and SUSY
MSSM and CMSSM

; - arXiv: 9709356
The particles in MSSM It S -
P o= : The assuming of CMSSM
‘ EU(T) S~ E
@ “ 50 v SM -
. : T M, = I‘/S =M, =m
~ : ST ] 1 2 1/2
@ Higgsino 402_ D _—""/::4\‘ E . / 3\ .
W Vo W Esu(zl _,/—”‘/ > < \\\\g bino wino gIUInO
W@ e - —:
AL A A ~ ol méi = mzi = m~i = MO
CASESl S o SR
: SUSY 1§ squark slepton Higgsino
quarks squarks 10k :
® leptons ® sleptons SU@)
® force carriers ® susy force carriers Oé 4 6 8 10 12 14 16 18 : A?j = A?j = A%j = AO

8
Logw(QlGeV)

Three coupling strength versus energy scale

4 Soft breaking parameters )
Over 100
Mass terms The five free parameters in CMSSM

Trilinear couplings
Phase angle

K / ml/Zr mOr AOI tanlgr Slgn(:u)

New parameters




fractions

The CMSSM and Its extension

CMSSM and its extension

The puzzle of CMSSM

0.45
0.4

0.35F
0.3F

0.25
0.2
0.15
0.1

0.05F

arXiv: 1508.5951

R B e o o e T o e ot o
= cMSSM -
= [toy fits E
S SUSY o ;
— 20 =
F -edata - - bestfitpoint o
-10 .
C (2.87 £0.83) x10° 3.86 x10 E
= +8.8 x10™" E
= -35x10™
- e ]

L 1 | L L 1 L I L L L L I L L L L I L L L L | L L L I:x’lc)-g
2 1 0 1 2 3 4
exp _ . SM

- ay

Muon anomalous magnetic moment

Non-universal gaugino masses

{ M1=/=M2¢M3=/:m1/2

|

Non-universal slepton masses

[ mg, # Mig, * M,

J

Non-universal squark masses

[ Mag, +* Mg, * M,

J

Non-universal Higgs masses

{ mHu#—'de#—'MO

|

free parameters

M,, My, My, My, Ay,
tanp, sign(u)

5-SUGRA

Ms > My, M,

Predict heavy gluino
and squark to escape
constraints

Give light wino bino
to satisfy other
observed results



