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1. Introduction

• perturbative calculation for the hard cross section Chen, HTL, Shao, Wang, 2019,2020

Chen, HTL, Sang, 2025

Frontiers: 

• N3LO QCD for 2to2 processes


• NNLO QCD for 2to3 or 2to4 processes


• EW correction for loop induced processes


• Mixed QCD-EW corrections to 2to2 processes
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Resummation is essential for many collider observables.
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1. Introduction
Resummation is essential for many collider observables.

Cao, HTL, Mi, PRD, 24
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The purpose of Monte Carlo event generators is to generate events in as much 
details as nature (generate average and fluctuation right) 

Hard process in high energy 

Transition from high energy to 
low energy 
—parton shower 

Low energy soft regime 
—fragmentation  

hard scale

hadronization 

stable particles

Fragmentation

Parton shower

Parton shower: a model for the evolution from high scale to hadronization scale 

𝒫event = 𝒫Hard ⊗ 𝒫Decay ⊗ 𝒫ISR ⊗ 𝒫FSR ⊗ 𝒫MPI ⊗ 𝒫Had⋯
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ATLAS, 2301.09351

1. Introduction
Uncertainties
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ATLAS, 2402.13052

1. Introduction
Uncertainties
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1. Introduction

Uncertainties arise from

Perturbative 

Non-perturbative

• Hard scattering matrix elements


• Parton shower

• Hadronization models


• Color reconnection


• MPI



Parton shower indispensable tools for particle physics phenomenology

Parton showers approximate higher-order real-emission corrections to 
the hard scattering process

Generate cascades of radiation automatically


Locally conserved four momentum


Locally conserved flavor 


Unitarity by construction

Parton showers 


sample infrared configurations 


simulate the evolution of parton (resummation)
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In the collinear or soft limit, the matrix element can be factorized as

|M(⋯, pi, pj, ⋯) |2 i||j g2
s 𝒞

P(z)
sij

|M(⋯, pi + pj, ⋯) |2

|M(⋯, pi, q, pj, ⋯) |2 q→0 g2
s 𝒞

pi ⋅ pj

pi ⋅ q pj ⋅ q
|M(⋯, pi + pj, ⋯) |2

n+1 external legs n external legs 

Together with phase space integration, the cross section is 

dσn+1 =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ⊗ dϕn→n+1 ×

|Mn+1 |2

|Mn |2

If we want to get the single unresolved limit correct,   can be written as universal functions.
|Mn+1 |2

|Mn |2

higher multiplicities can be obtained recursively 

2. Parton Showers
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dσn+1 =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ⊗ dϕn→n+1 ×

|Mn+1 |2

|Mn |2

In the exact single-unresolved limit


 or sij = 0 Eq = 0

dσn+m =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ×

1
m! (∫ dϕn→n+1

|Mn+1 |2

|Mn |2 )
m

dσn+2 =
1
2s ∫ dϕn+2 |Mn+2 |2 = dσn ×

1
2 (∫ dϕn→n+1 ×

|Mn+1 |2

|Mn |2 )
2

2. Parton Showers



14

dσn+1 =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ⊗ dϕn→n+1 ×

|Mn+1 |2

|Mn |2

In the exact single-unresolved limit


 or sij = 0 Eq = 0

dσn+m =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ×

1
m! (∫ dϕn→n+1

|Mn+1 |2

|Mn |2 )
m

dσn+2 =
1
2s ∫ dϕn+2 |Mn+2 |2 = dσn ×

1
2 (∫ dϕn→n+1 ×

|Mn+1 |2

|Mn |2 )
2

dσn × exp [∫ dϕn→n+1
|Mn+1 |2

|Mn |2 ]

∞

∑
m=0

σn+m

2. Parton Showers
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dσn+1 =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ⊗ dϕn→n+1 ×

|Mn+1 |2

|Mn |2

In the exact single-unresolved limit


 or sij = 0 Eq = 0

dσn+m =
1
2s ∫ dϕn+1 |Mn+1 |2 = dσn ×

1
m! (∫ dϕn→n+1

|Mn+1 |2

|Mn |2 )
m

dσn+2 =
1
2s ∫ dϕn+2 |Mn+2 |2 = dσn ×

1
2 (∫ dϕn→n+1 ×

|Mn+1 |2

|Mn |2 )
2

dσn × exp [∫ dϕn→n+1
|Mn+1 |2

|Mn |2 ]

∞

∑
m=0

σn+m

no additional radiation observed with the probability function  exp [∫ dϕn→n+1
|Mn+1 |2

|Mn |2 ]

2. Parton Showers



Sudakov form factor: Non-branching probability     exp [∫ dϕn→n+1
|Mn+1 |2

|Mn |2 ]

Δ (Q2, q2) = exp {∫
q2

Q2

dϕn→n+1
|Mn+1 |2

|Mn |2 }

Probability that there is no branching from Q to q is  Δi (Q2, q2)

Probability for one observed branching         1 − Δ (Q2, q2)
Probability one branching between the scale  to  q2 q2 + dq2

d
dq2

Δ (Q2, q2) = Δ (Q2, q2) × dϕn→n+1
|Mn+1 |2

|Mn |2

choose kinematic variable as 
the evolution scale

Additional radiations can be added according to the function  Δ (Q2, q2)

2. Parton Showers
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Infrared structure for single unresolved limit is well known

antenna function obtained directly from 
matrix element square 

applied widely used CS dipole subtraction terms 

DGLAP splitting functions used 

many choices for the evolution variables 

dθ2

θ2
=

dq2

q2
=

dk2
⊥

k2
⊥Phase space mapping  ∫ dϕn→n+1

|Mn+1 |2

|Mn |2 = ∫
Q2

q2

dk2

k2

αs

2π ∫
1−Q2

0 /k2

Q2
0 /k2

dzPji(z)

2. Parton Showers



Monte-Carlo Technique and resummation 

Phase space mapping  ∫ dϕn→n+1
|Mn+1 |2

|Mn |2 = ∫
Q2

q2

dk2

k2

αs

2π ∫
1−Q2

0 /k2

Q2
0 /k2

dzPji(z)
many choices for the evolution variables 

dθ2

θ2
=

dq2

q2
=

dk2
⊥

k2
⊥

50000 points

new phase space point generated  
according to the new scales

d
dq2

Δ (Q2, q2) = Δ (Q2, q2) × dϕn→n+1
|Mn+1 |2

|Mn |2

 distribution generated byQ2/Q1

Analytical

MC Simulations

0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.10

1

10

x=Q2/Q1

dΔ
/d
x

Generate 
random number 
R ∈ (0,1)

Solve  for Q1/Q2R = Δ

test function

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Q2/Q1

Δ

ln(Δ)=-11
20

Log[Q1
Q2

]2 + 1
20
Log[Q1

Q2
]

Δ (Q2
1 , Q2

2)Sudakov factor

2. Parton Showers
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For multi-scale problem 

For observables that involve scale hierarchies 
resummation is required 

NLL:  PanScales, Alaric, Herwig et al 

with higher order effects: Vincia, DIRE et al

2. Parton Showers
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PanScales: 

arXiv:2002.11114
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2. Parton Showers

Gao, HTL, Moult, Zhu, JHEP 2024
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2. Parton Showers

NLL is not enough 

Gao, HTL, Moult, Zhu, JHEP 2024
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2. Parton Showers

NNLL would include the full NNLO pole structures

NLL is not enough 

Gao, HTL, Moult, Zhu, JHEP 2024



2. Parton Showers

21Resummation from Showers Hard emissions From fixed orders+

From parton shower

σPS
NLO = σ0Πi (Δi(Q2, Q2

0) + ∫
Q2

Q2
0

dq2

q2
Δi(Q2, q2)∫ dzPji(z))

LO parton shower

0-radiation 1-radiation (Sudakov suppressed)

𝒫(unresolved) + 𝒫(resolved) = 1

From the definition of Sudakov factor, we have

probability conservation from the definition of Δ

1 − Δi(Q2, Q2
0) subtracted real

σNLO = σ0 + (∫ dΦnV + ∫ dΦn+1S) 𝒪n + ∫ dΦn+1(R𝒪n+1 − S𝒪n)

virtual integrated 
subtraction 

LO parton showers reproduce the NLO singular behavior 
of the underlying hard process with unitarity assumption 

.V + ∫ R = 0

From NLO calculations

σNLO = σn
0 + ∫

tn

0
dσn

(1) + ∫tn

dσn+1
(1)

  as the resolution scale for 1-radiationtn



To which order can Parton Showers do?

NLO corrections to resummation kernel

2. Parton Showers
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NLO parton shower

d
dQ2 (1 − Δ (Q2

0 , Q2))
branching probability 

= − ∫
dΦ3

dΦ2
δ (Q2 − Q2 (Φ3)) (a0

3 + a1
3)

born and virtual correction 

Δ (Q2
0 , Q2)

− ∫
dΦ4

dΦ2
δ (Q2 − Q2 (Φ4)) a0

4

real correction 

Δ (Q2
0 , Q2)

What we expect for NLO showers

HTL, Skands, arXiv:1611.00013
include correct logs and cover the full space 
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2. Parton Showers
ΔNLO

2 (t0, t) = exp {−∫
t0

t
dΦ+1 A(0)

2↦3 (Φ+1) wNLO
2↦3 (Φ2, Φ+1)} × exp {−∫

t0

t
dΦ>

+2A
(0)
2↦4 (Φ+2) wLO

2↦4 (Φ2, Φ+2)}
Expanding the Sudakov factor to NNLO and compare it with full NNLO corrections First fully differentially matching 

Matching using NLO antenna shower

Campbella, Hoech, HTL, Preuss, Skands, 2108.07133 



Sunshine

Using generalized parton 
shower to generate fixed 

order corrections  

 Sudakov Nesting of Hard Integrals
Usually showers will give (  )0 → n

Fixed order should look like 

(0 → 1) × (1 → 2) × ⋯ × (n − 1 → n)matrix element ratio

Sudakov factor from showers Δ0 × Δ1 × ⋯ × Δ(n−1)

Altmann, HTL, Scyboz, Skands, arXiv:2507.00111

2. Parton Showers
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keep the parent events after branching, and ask the event branches  
times at stage  , then shower them afterwards

m
0 → 1

keep all the intermediate states and shower them   times 
from  partons to  partons

mk
k − 1 k

sum  to infinitymkUsing generalized parton 
shower to generate fixed 

order corrections  

 Sudakov Nesting of Hard Integrals

Altmann, HTL, Scyboz, Skands, arXiv:2507.00111

Sunshine

2. Parton Showers
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Sunshine

Using generalized parton 
shower to generate fixed 
order corrections  

 Sudakov Nesting of Hard Integrals
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2. Parton Showers
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Altmann, HTL, Scyboz, Skands, arXiv:2507.00111
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Beekveld et al arXiv:2406.02661Ravasio et al arXiv:2307.11142

2. Parton Showers



QCD radiation in this approximation is always simulated as the radiation from a 
single color dipole, rather than a coherent sum from a color multipole. 

Leading Color Approximation: Dipole Shower
2. Parton Showers

28

CVolver, arXiv:2502.12133simulates parton showers at the amplitude level with full color information 
a color density operator Deductor, arXiv:1902.02105
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hadronization effects

3. Hadronization
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hadronization effects

hadronization parton level hadron+UE 

Banfi, Salam and Zanderighi arXiv:1001.4082
Cao, HTL, Mi, arXiv:2312.07655

3. Hadronization
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ATL-PHYS-PUB-2022-021

differences between 

different models and tunes  

3. Hadronization



From PYTHIA 

Physics should be independent on the transition scales

Matching the evolution of the perturbative evolution with hadronization arXiv:2404.09856
31
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• MCEGs are essential computational tools for 
experimentalists and theorists


• Starting from hard processes to generate the perturbative 
and nonperturbative QCD radiations 


• Recently, a lot progresses on improving the logarithmic 
resummation order of Parton Showers 


• Also, subleading color effects are discussed 


• Hadronization model, multiple parton interactions (MPI), 
and underlying event descriptions introduce uncertainties 

4. Summary

Altmann, Skands, 2404.12040
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Thank you!


