

Recent developments of Parton Showers

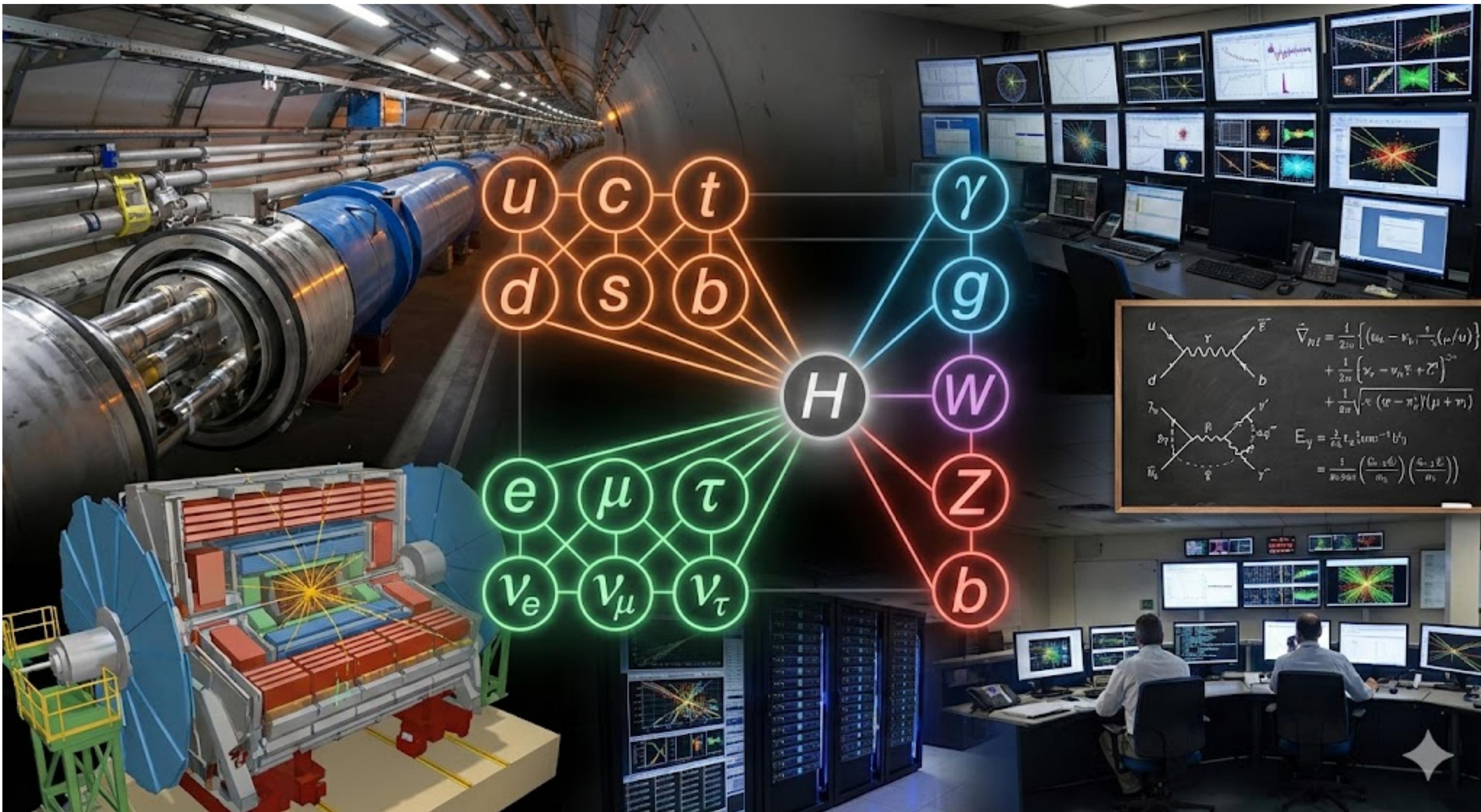
Haitao Li,
Shandong University

2025年12月11日

Outline

1. Introduction
2. Parton Showers
3. hadronization
4. Summary

1. Introduction

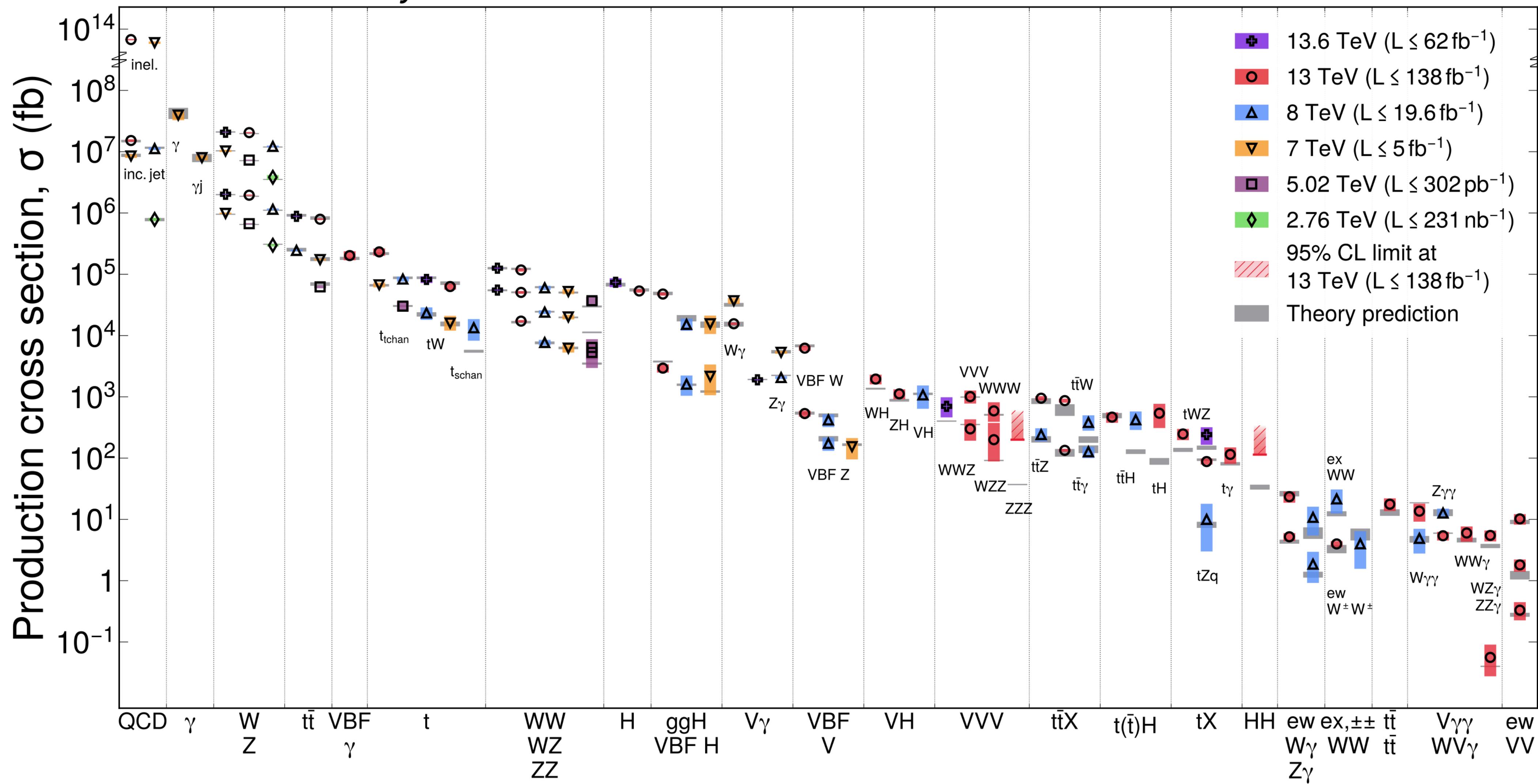


generated using gemini

Particles and parameters in and beyond SM

1. Introduction

CMS *Preliminary*

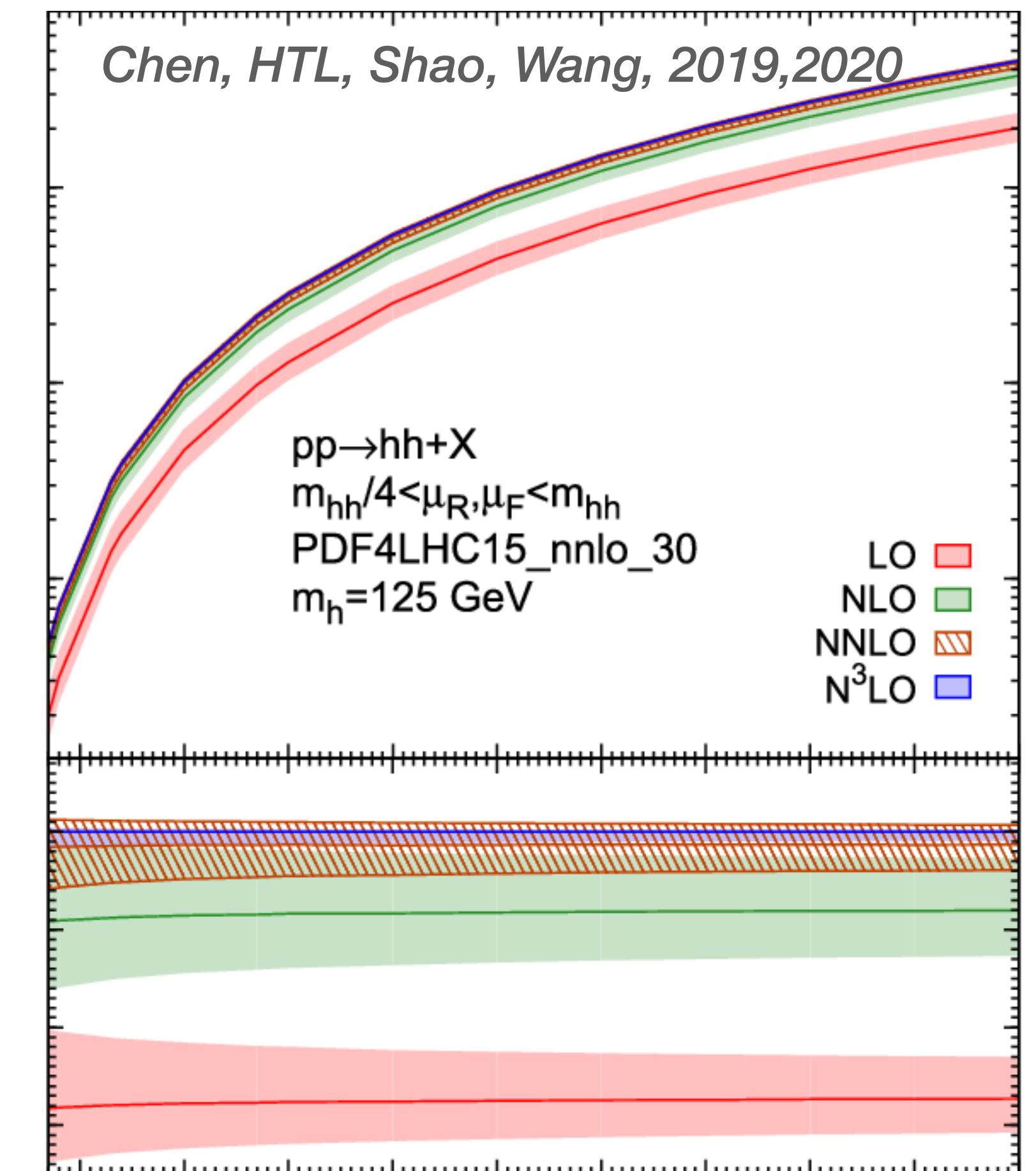


1. Introduction

- perturbative calculation for the hard cross section

$$d\hat{\sigma} = d\hat{\sigma}^{(0,0)} + \alpha_s d\hat{\sigma}^{(1,0)} + \alpha_s^2 d\hat{\sigma}^{(2,0)} + \alpha_s^3 d\hat{\sigma}^{(3,0)} + \alpha d\hat{\sigma}^{(0,1)} + \alpha\alpha_s d\hat{\sigma}^{(1,1)} + \dots$$

Leading Order (LO)	NLO QCD	NNLO QCD	N3LO QCD	NLO EW	Mixed QCD-EW
	$\sim 10\%$	$\sim 1\%$		$\sim 1\%$	

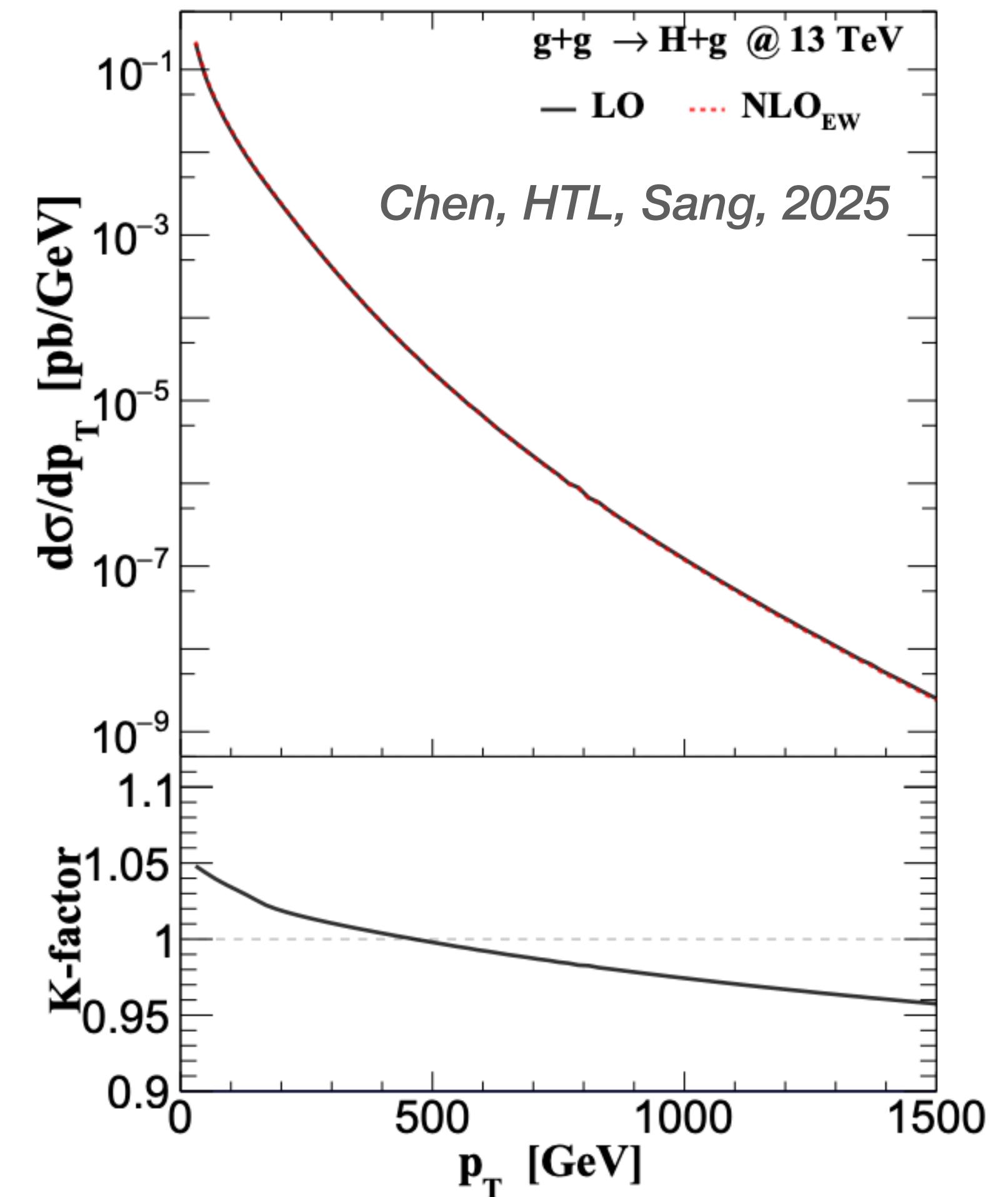


1. Introduction

- perturbative calculation for the hard cross section

$$d\hat{\sigma} = d\hat{\sigma}^{(0,0)} + \alpha_s d\hat{\sigma}^{(1,0)} + \alpha_s^2 d\hat{\sigma}^{(2,0)} + \alpha_s^3 d\hat{\sigma}^{(3,0)} + \alpha d\hat{\sigma}^{(0,1)} + \alpha\alpha_s d\hat{\sigma}^{(1,1)} +$$

Leading Order (LO)	NLO QCD	NNLO QCD	N3LO QCD	NLO EW	Mixed QCD-EW
	$\sim 10\%$	$\sim 1\%$		$\sim 1\%$	



1. Introduction

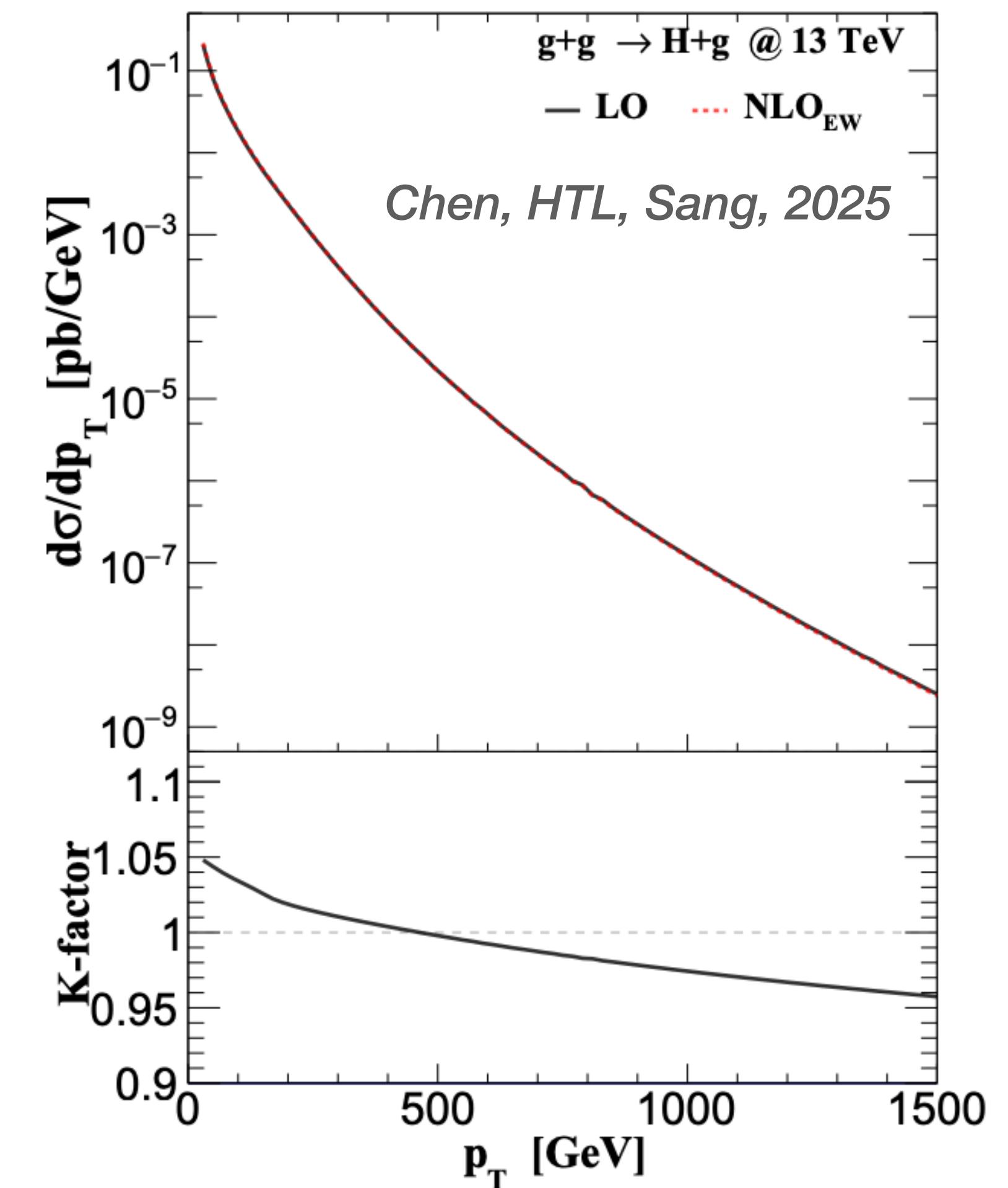
- perturbative calculation for the hard cross section

$$d\hat{\sigma} = d\hat{\sigma}^{(0,0)} + \alpha_s d\hat{\sigma}^{(1,0)} + \alpha_s^2 d\hat{\sigma}^{(2,0)} + \alpha_s^3 d\hat{\sigma}^{(3,0)} + \alpha d\hat{\sigma}^{(0,1)} + \alpha\alpha_s d\hat{\sigma}^{(1,1)} +$$

Leading Order (LO)	NLO QCD	NNLO QCD	N3LO QCD	NLO EW	Mixed QCD-EW
	$\sim 10\%$	$\sim 1\%$		$\sim 1\%$	

Frontiers:

- N3LO QCD for 2to2 processes
- NNLO QCD for 2to3 or 2to4 processes
- EW correction for loop induced processes
- Mixed QCD-EW corrections to 2to2 processes



1. Introduction

Resummation is essential for many collider observables.

固定阶计算

$$z \frac{1}{\sigma_0} \frac{d\sigma}{dz} \propto z + \frac{\alpha_s}{4\pi} a_{1,2} \ln z + \frac{[\alpha_s]^2}{4\pi} a_{2,4} \ln^3 z + \frac{[\alpha_s]^3}{4\pi} a_{3,6} \ln^5 z + \dots \text{ LL}$$

$$+ \frac{\alpha_s}{4\pi} a_{1,1} + \frac{[\alpha_s]^2}{4\pi} a_{2,3} \ln^2 z + \frac{[\alpha_s]^3}{4\pi} a_{3,5} \ln^4 z + \dots \text{ NLL}$$

$$+ \frac{\alpha_s}{4\pi} a_{1,0} z + \frac{[\alpha_s]^2}{4\pi} a_{2,2} \ln z + \frac{[\alpha_s]^3}{4\pi} a_{3,4} \ln^3 z + \dots \text{ NNLL}$$

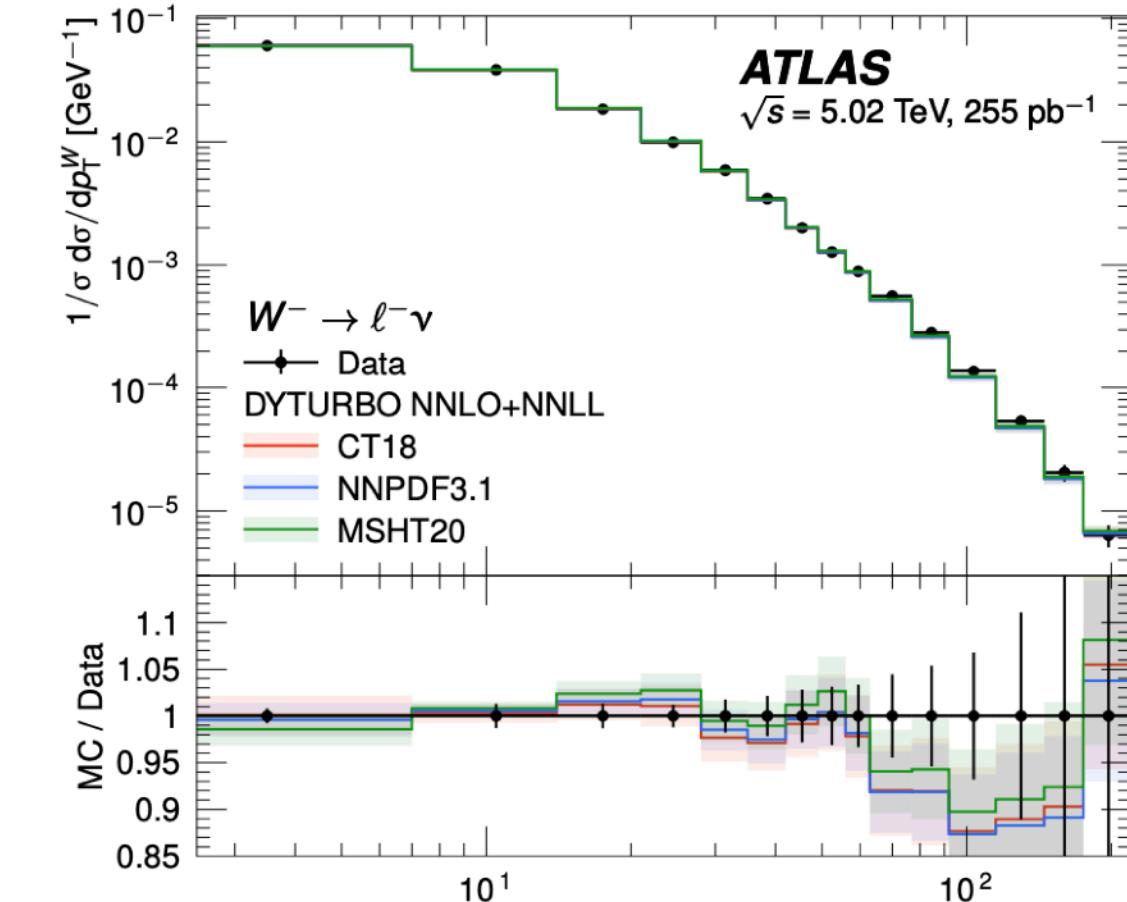
$$+ \frac{[\alpha_s]^2}{4\pi} a_{2,1} + \frac{[\alpha_s]^3}{4\pi} a_{3,3} \ln^2 z + \dots \text{ NNNLL}$$

$$+ \frac{[\alpha_s]^2}{4\pi} a_{2,0} z + \frac{[\alpha_s]^3}{4\pi} a_{3,2} \ln z + \dots \text{ NNNNLL}$$

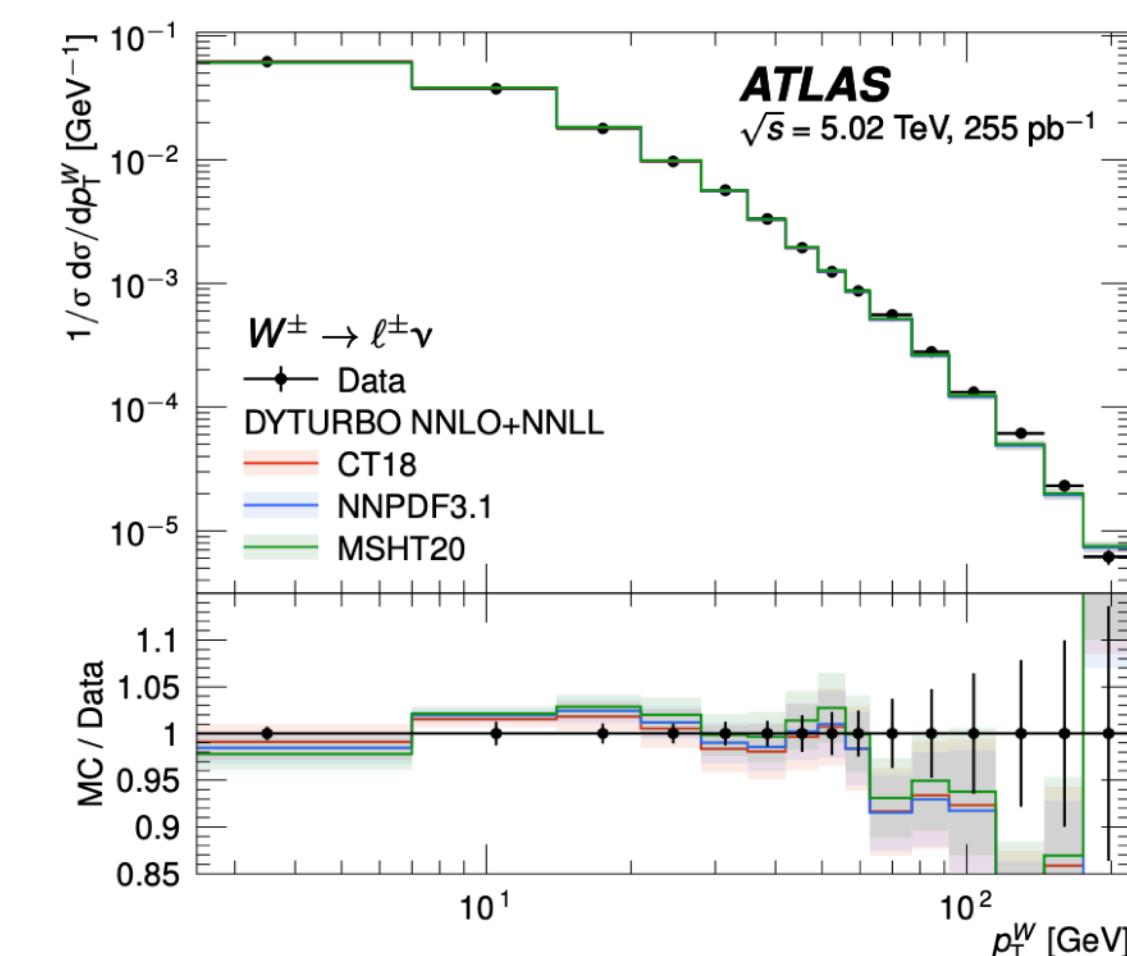
$$+ \frac{[\alpha_s]^3}{4\pi} a_{3,2} + \dots$$

$$+ \frac{[\alpha_s]^3}{4\pi} a_{3,2} z + \dots$$

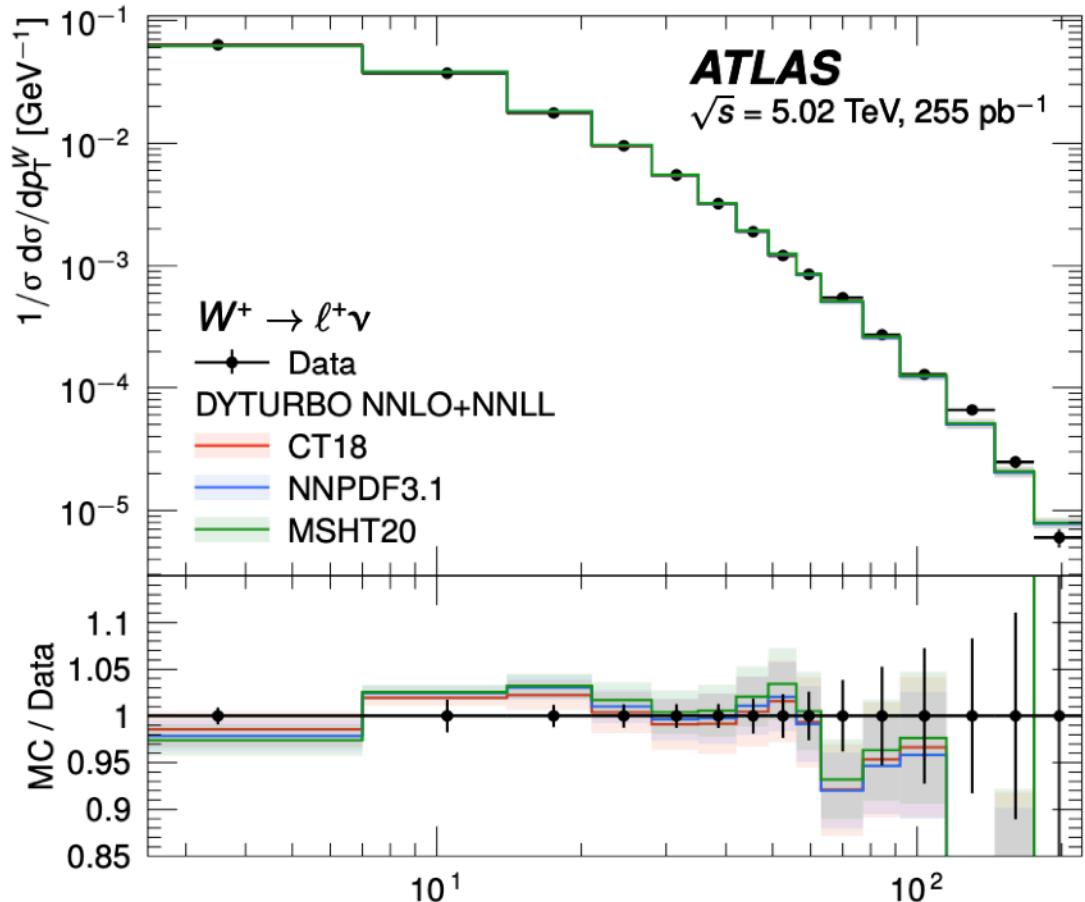
重
求
和



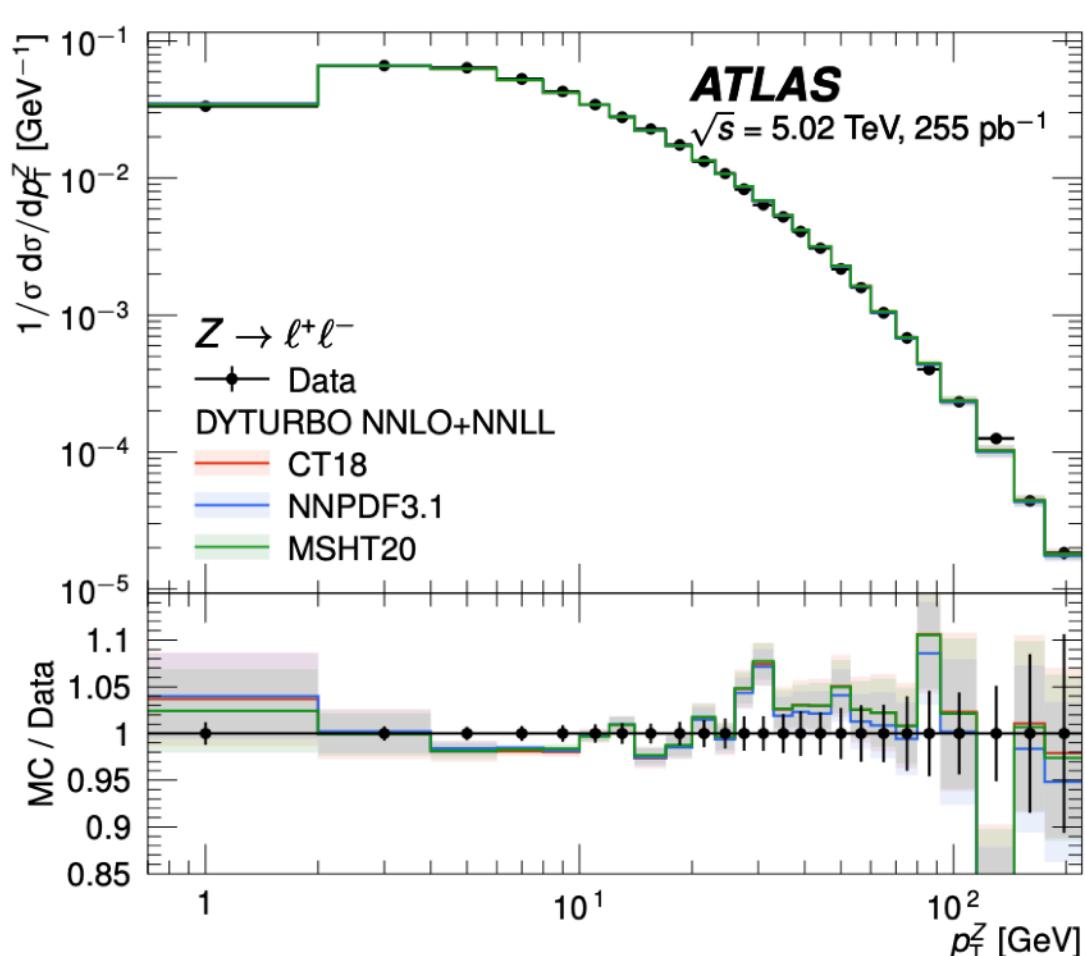
(a)



(c)



(b)



(d)

1. Introduction

Resummation is essential for many collider observables.

固定阶计

$$z \frac{1}{\sigma_0} \frac{d\sigma}{dz} \propto z + \frac{\alpha_s}{4\pi} a_{1,2} \ln z + \frac{[\alpha_s]^2}{4\pi} a_{2,4} \ln^3 z$$

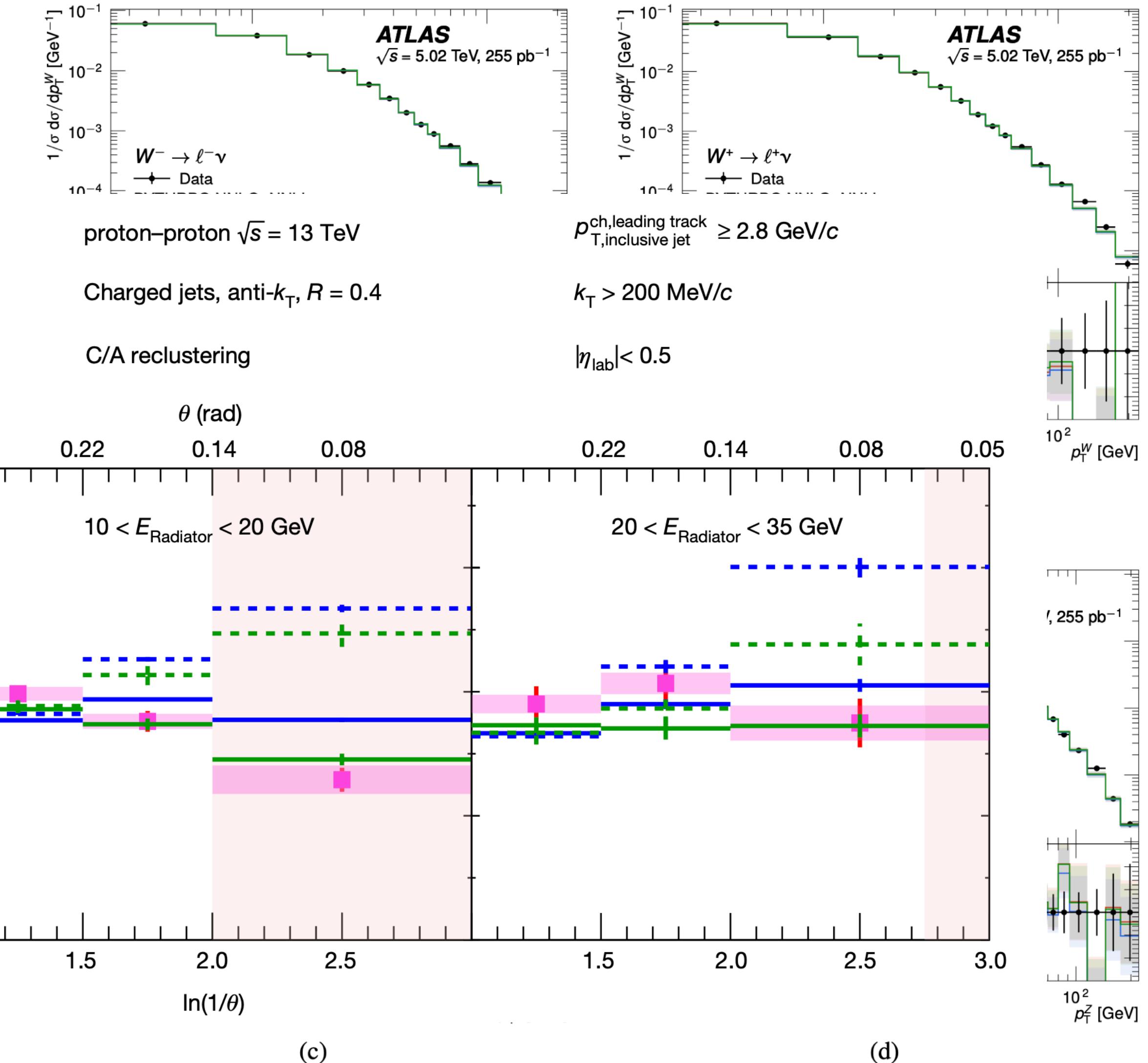
$$+ \frac{\alpha_s}{4\pi} a_{1,1} + \frac{[\alpha_s]^2}{4\pi} a_{2,3} \ln^2 z$$

$$+ \frac{\alpha_s}{4\pi} a_{1,0} z + \frac{[\alpha_s]^2}{4\pi} a_{2,2} \ln z$$

$$+ \frac{[\alpha_s]^2}{4\pi} a_{2,1}$$

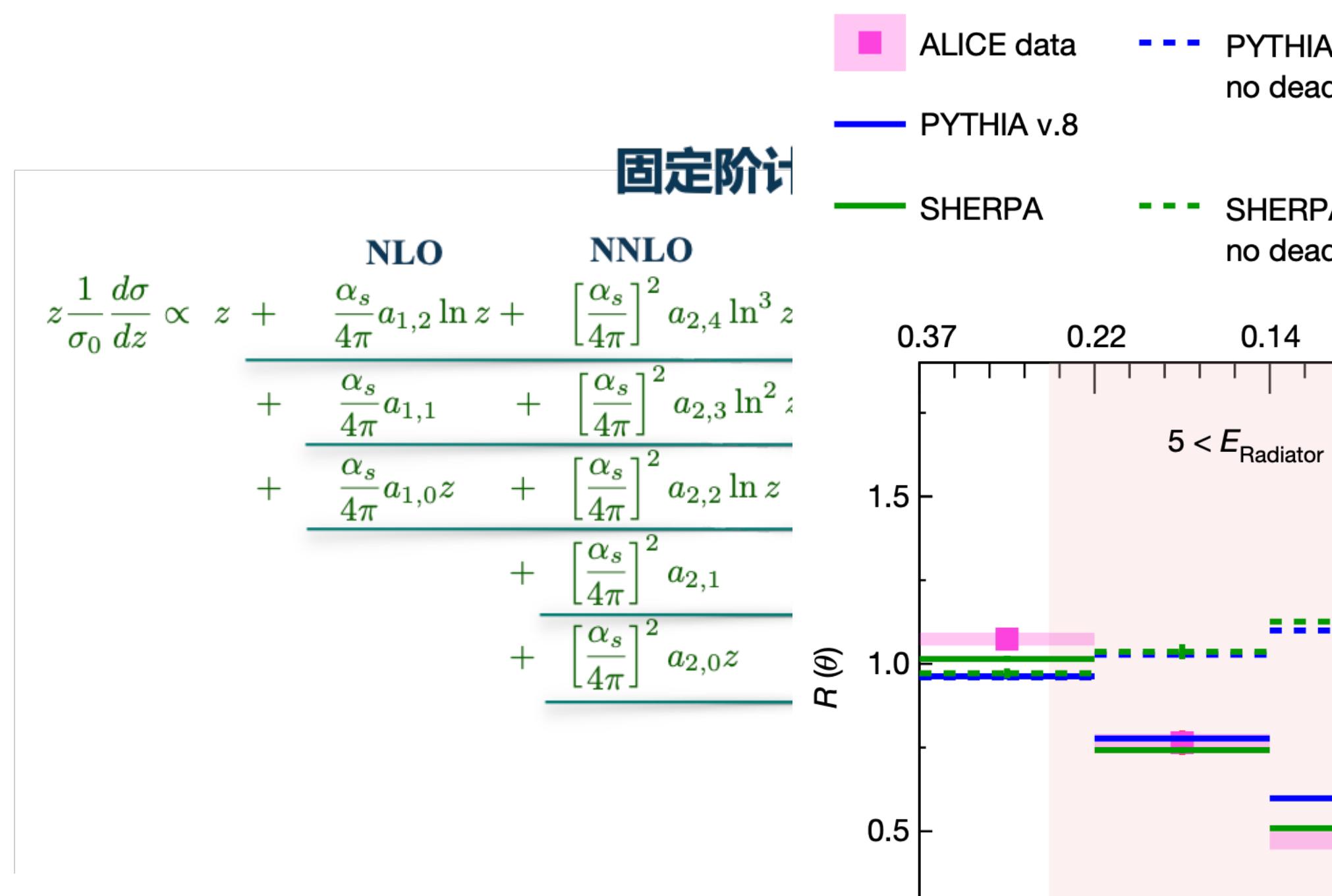
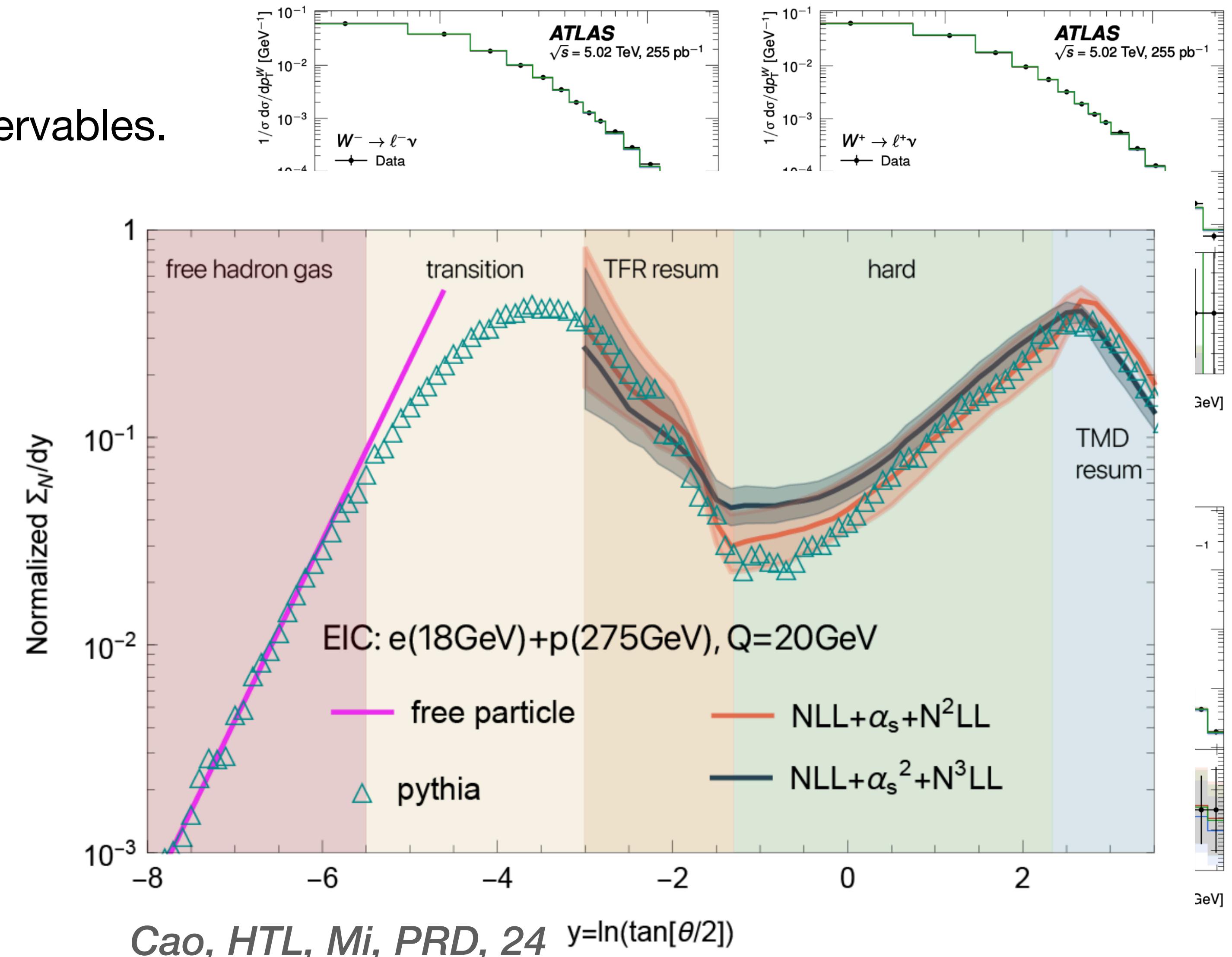
$$+ \frac{[\alpha_s]^2}{4\pi} a_{2,0} z$$

- ALICE data
- PYTHIA v.8 LQ/inclusive no dead-cone limit
- PYTHIA v.8
- SHERPA
- SHERPA LQ/inclusive no dead-cone limit

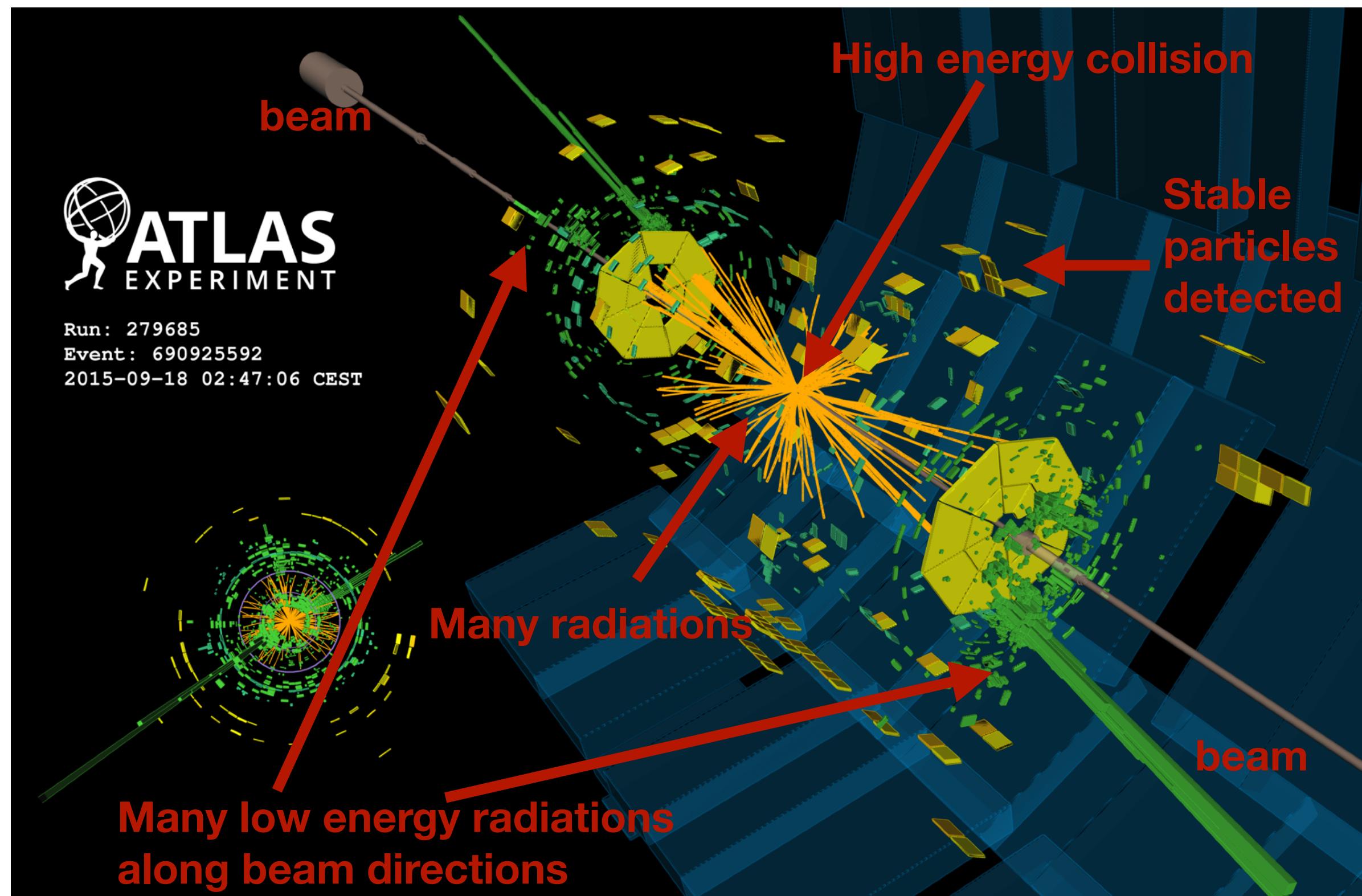


1. Introduction

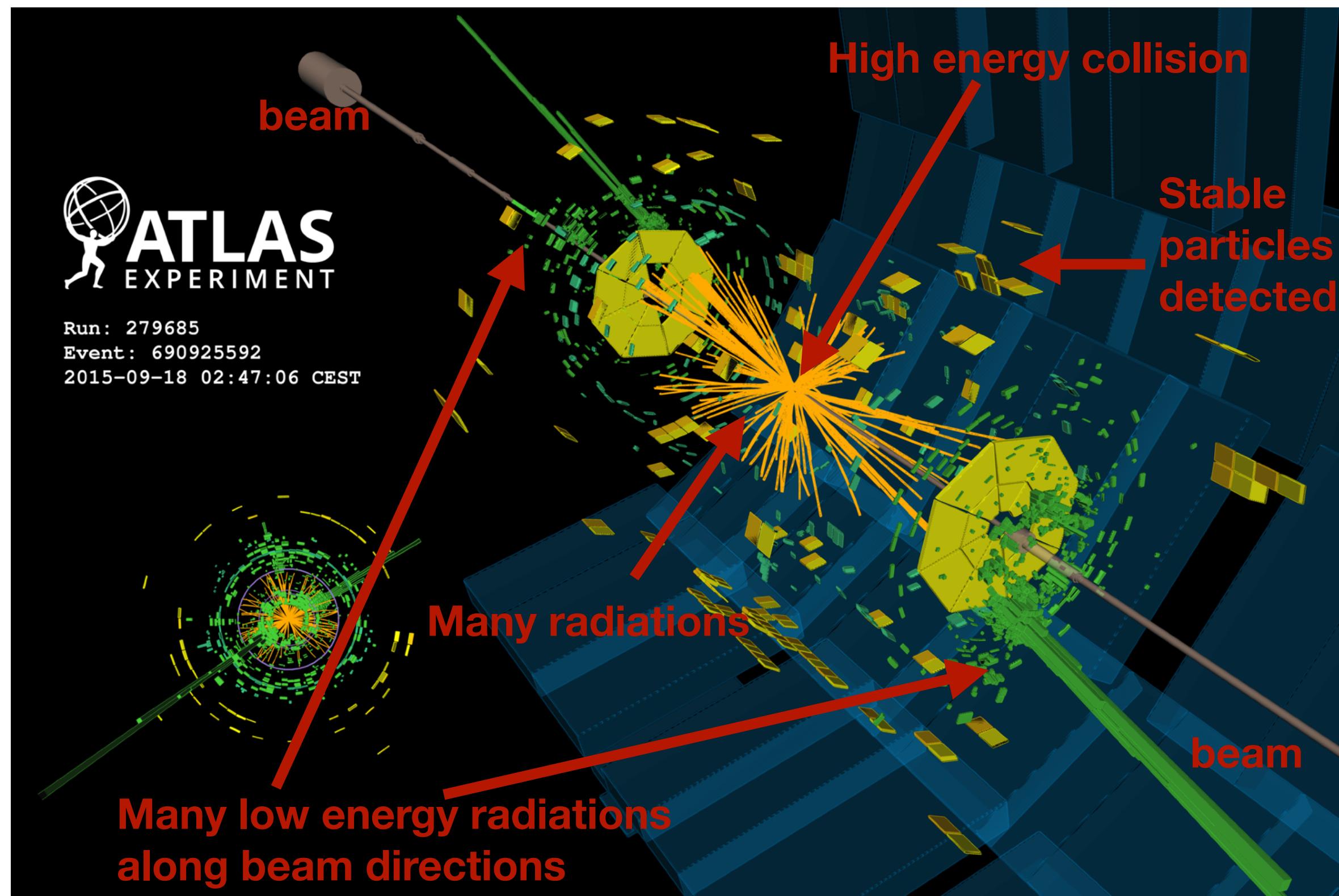
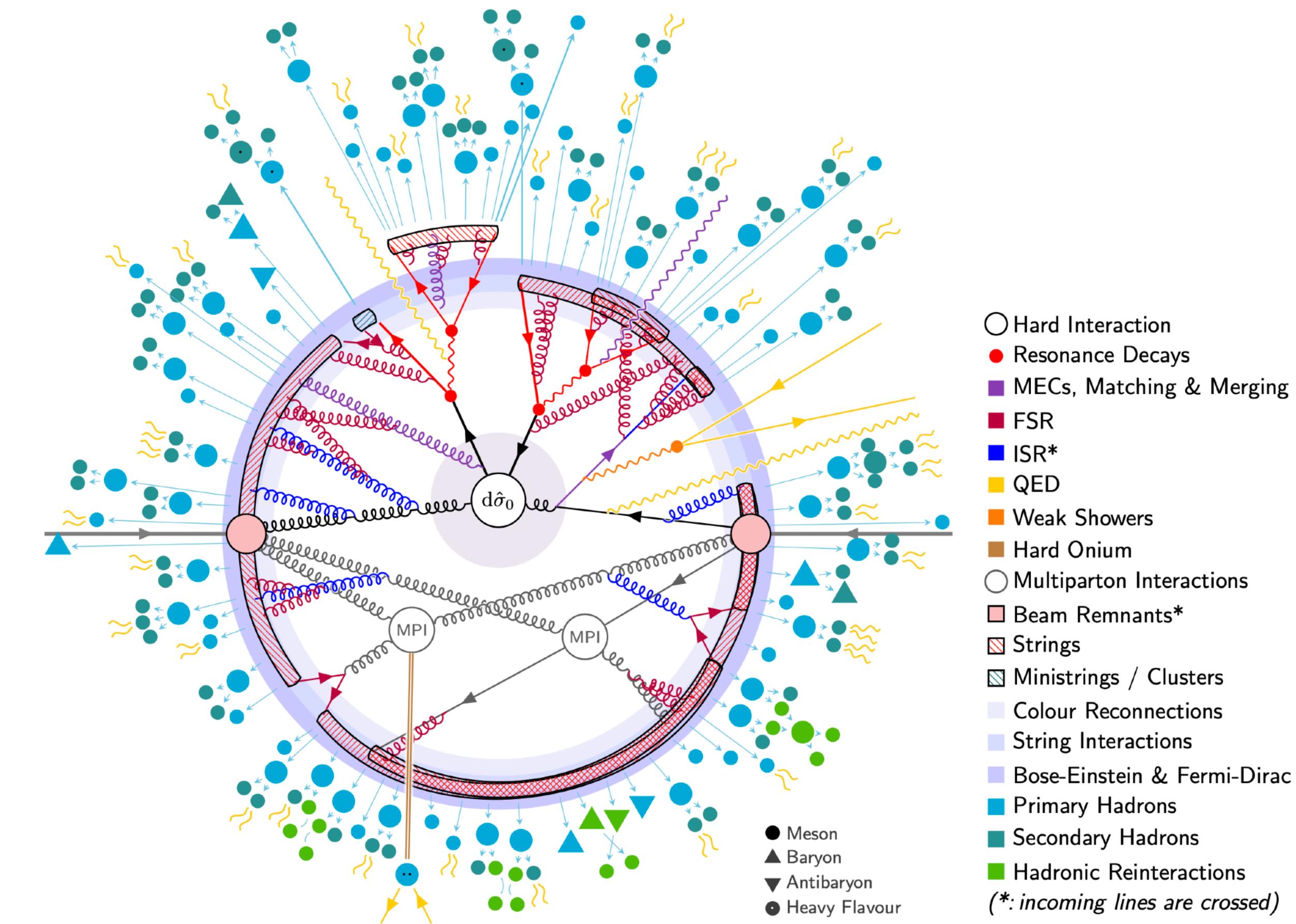
Resummation is essential for many collider observables.



1. Introduction



1. Introduction

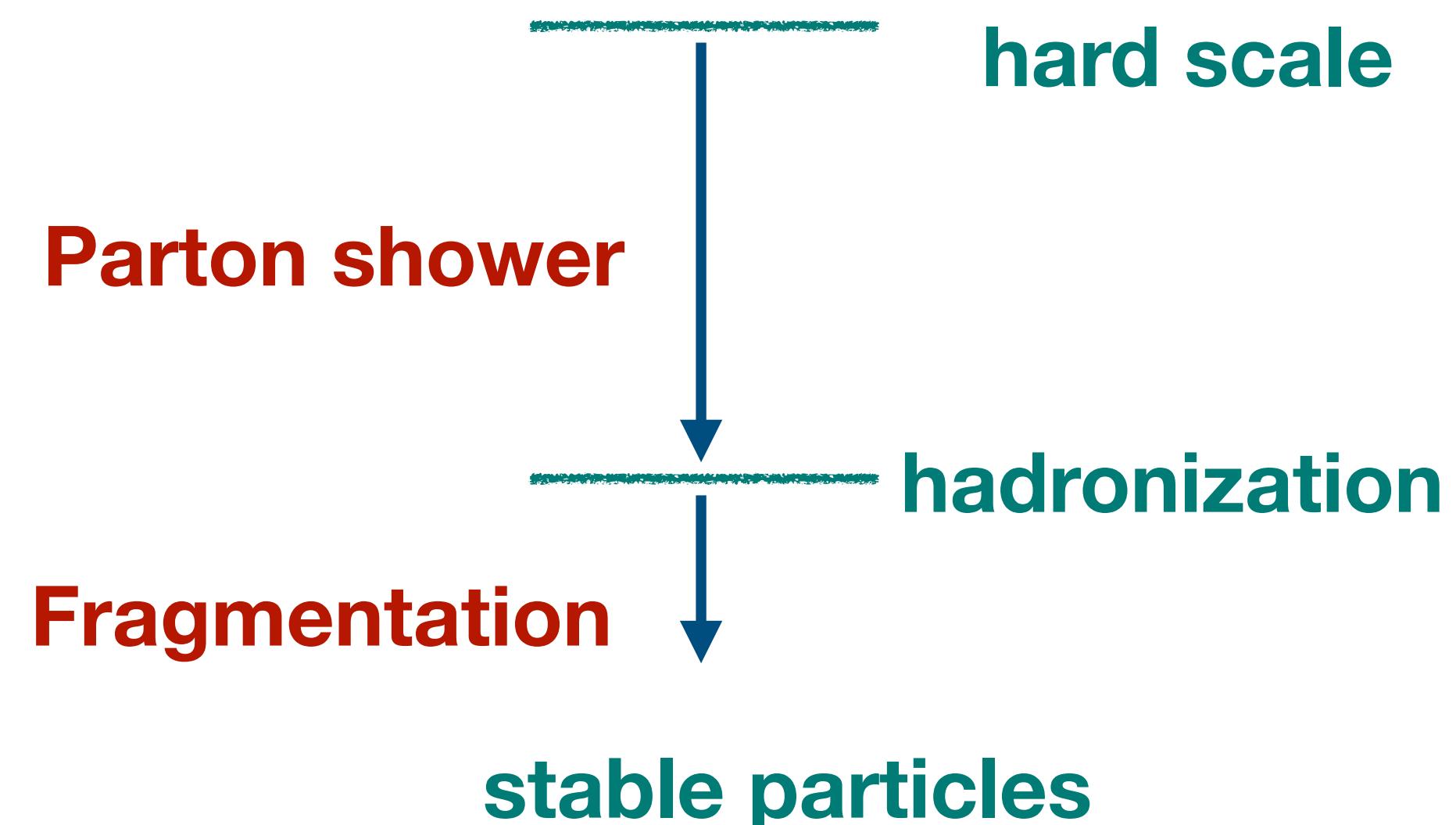


1. Introduction

The purpose of Monte Carlo event generators is to generate events in as much details as nature (generate average and fluctuation right)

$$\mathcal{P}_{\text{event}} = \mathcal{P}_{\text{Hard}} \otimes \mathcal{P}_{\text{Decay}} \otimes \mathcal{P}_{\text{ISR}} \otimes \mathcal{P}_{\text{FSR}} \otimes \mathcal{P}_{\text{MPI}} \otimes \mathcal{P}_{\text{Had}} \cdots$$

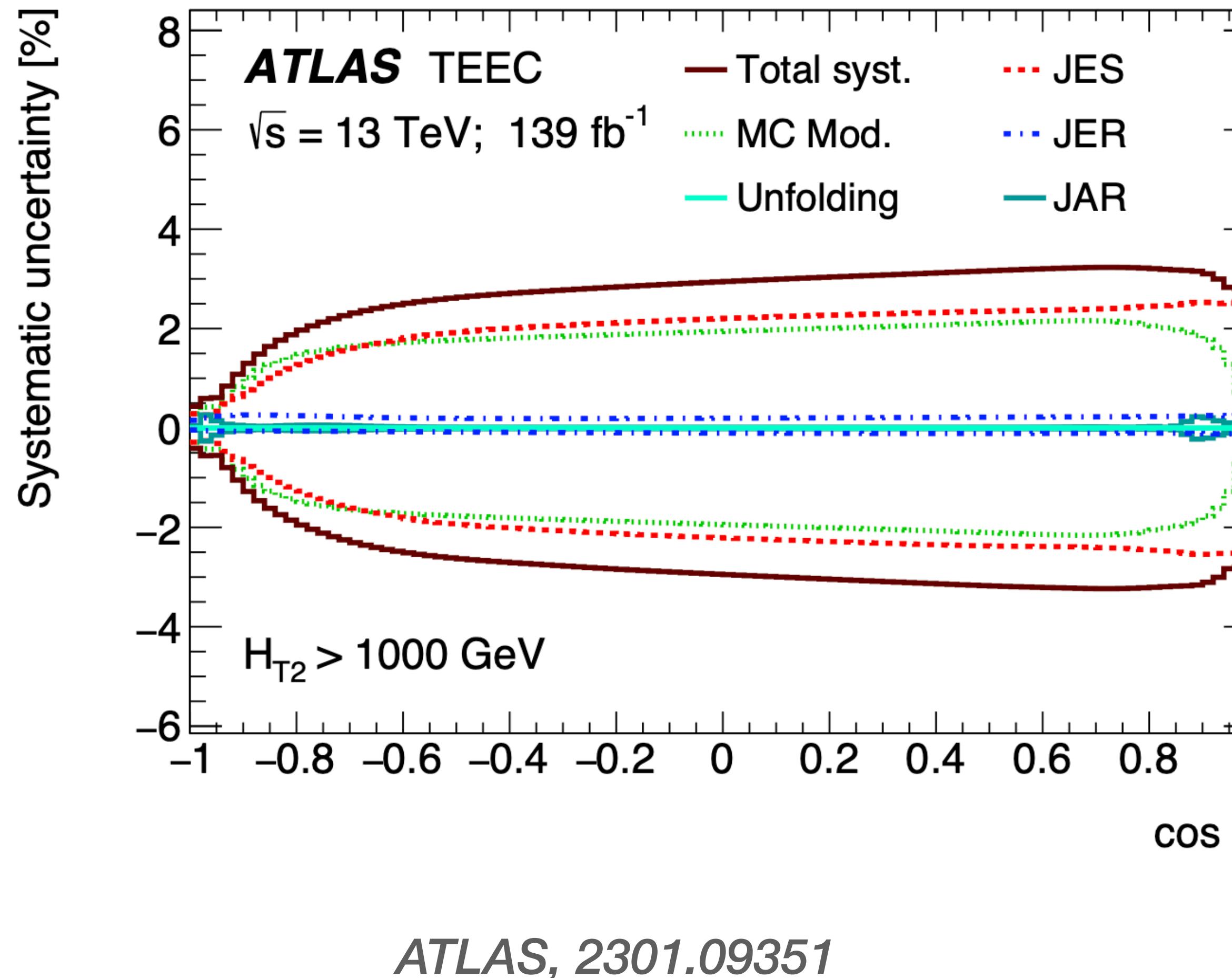
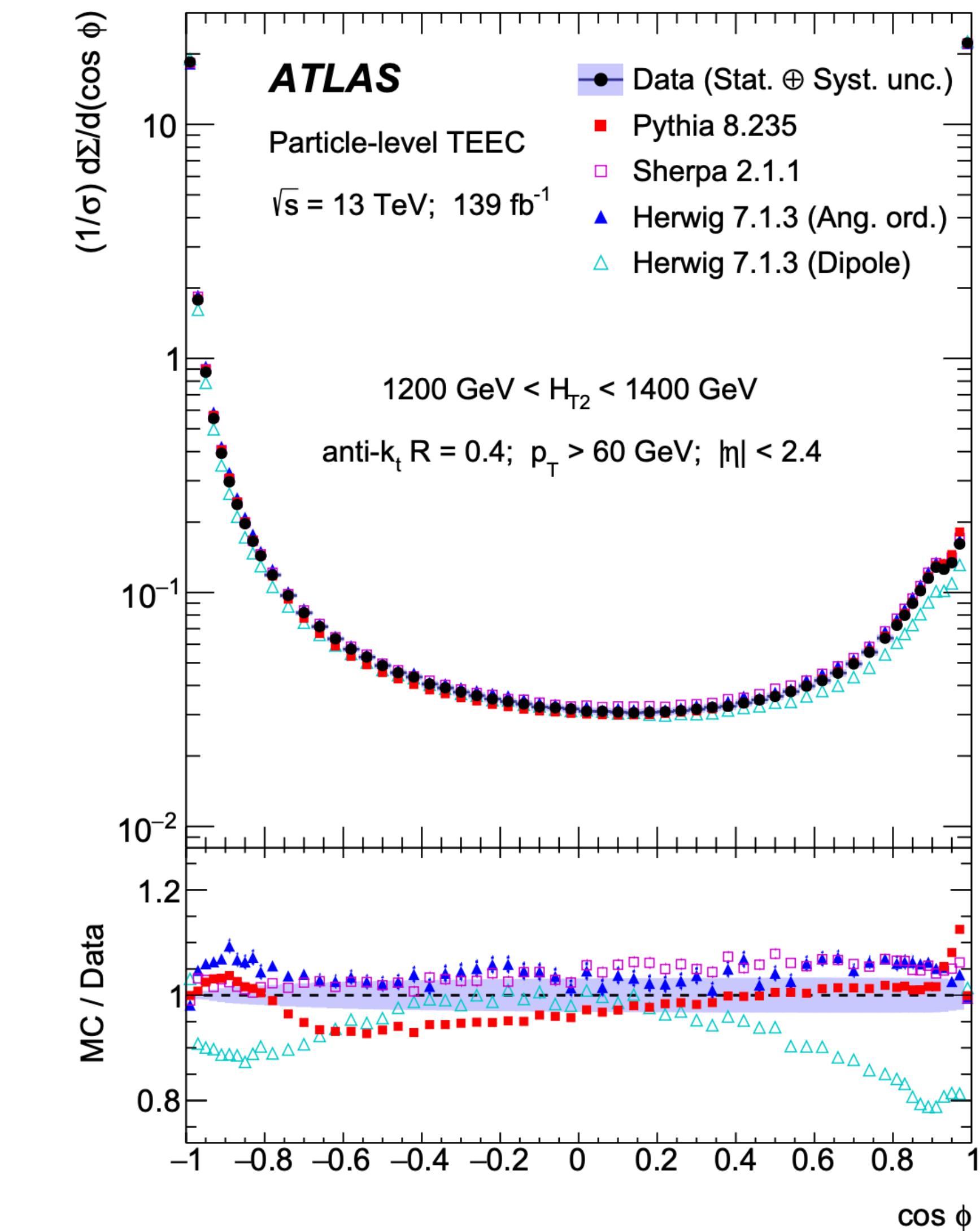
- ❑ Hard process in high energy
- ❑ Transition from high energy to low energy
 - parton shower
- ❑ Low energy soft regime
 - fragmentation



Parton shower: a model for the evolution from high scale to hadronization scale

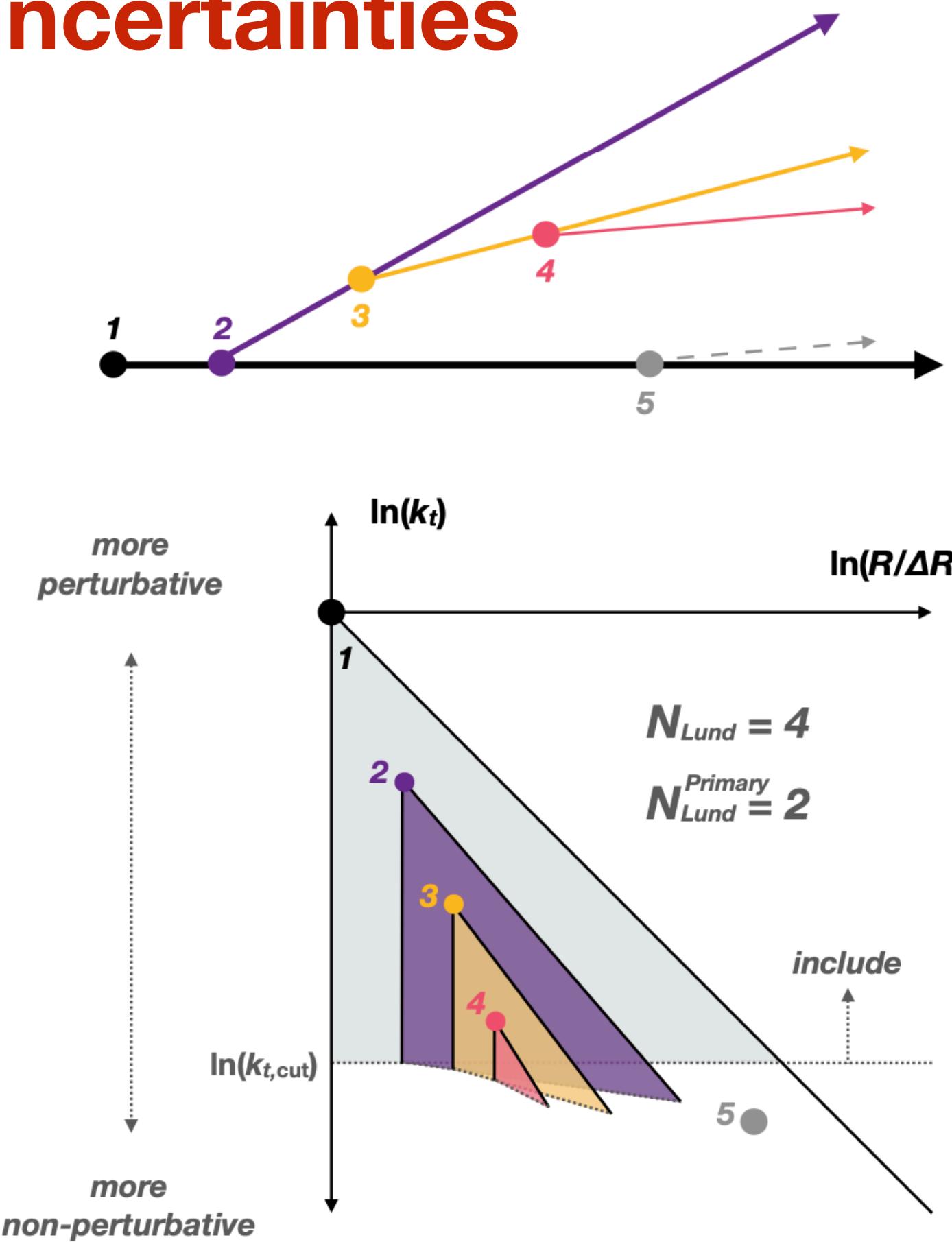
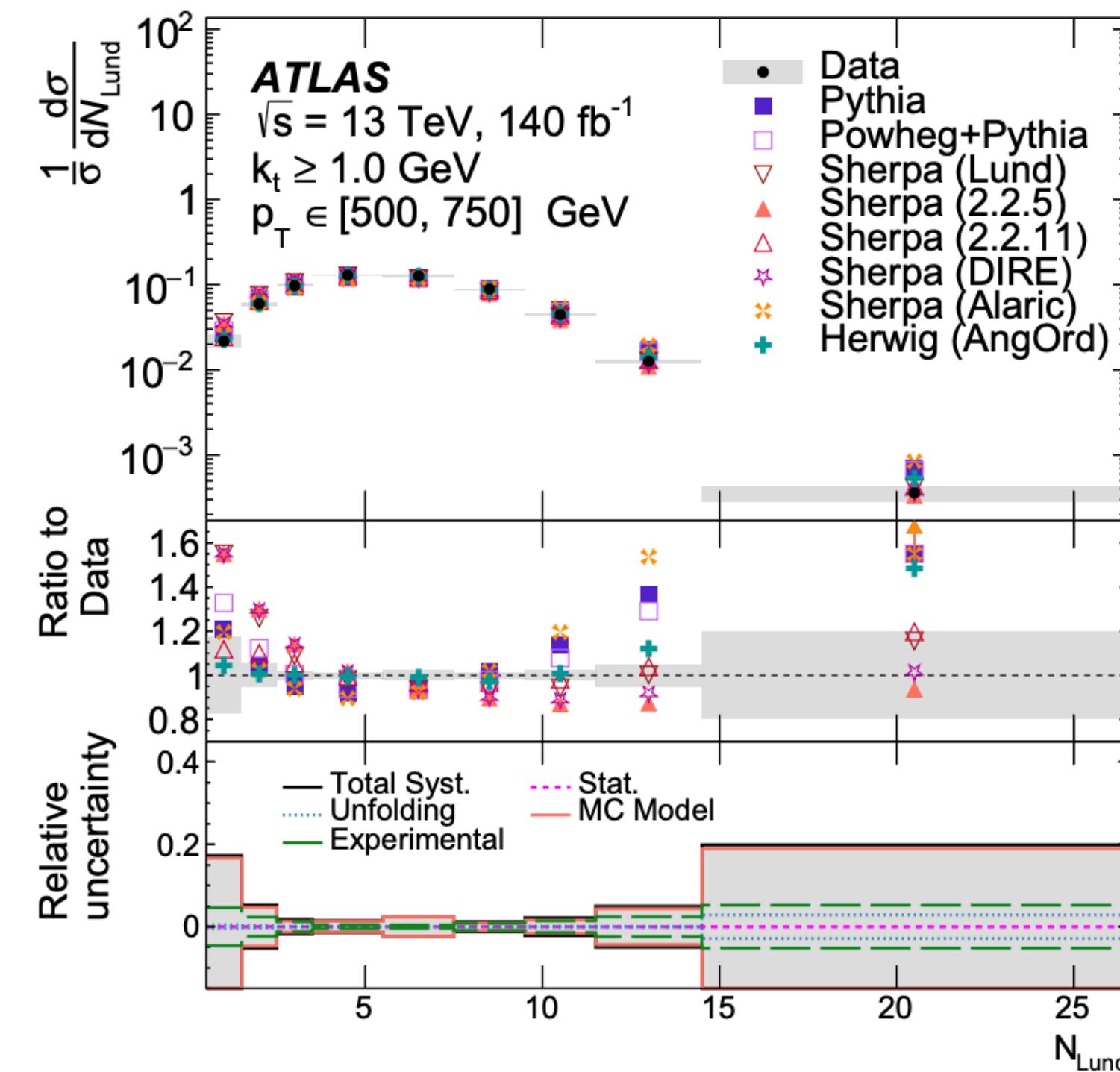
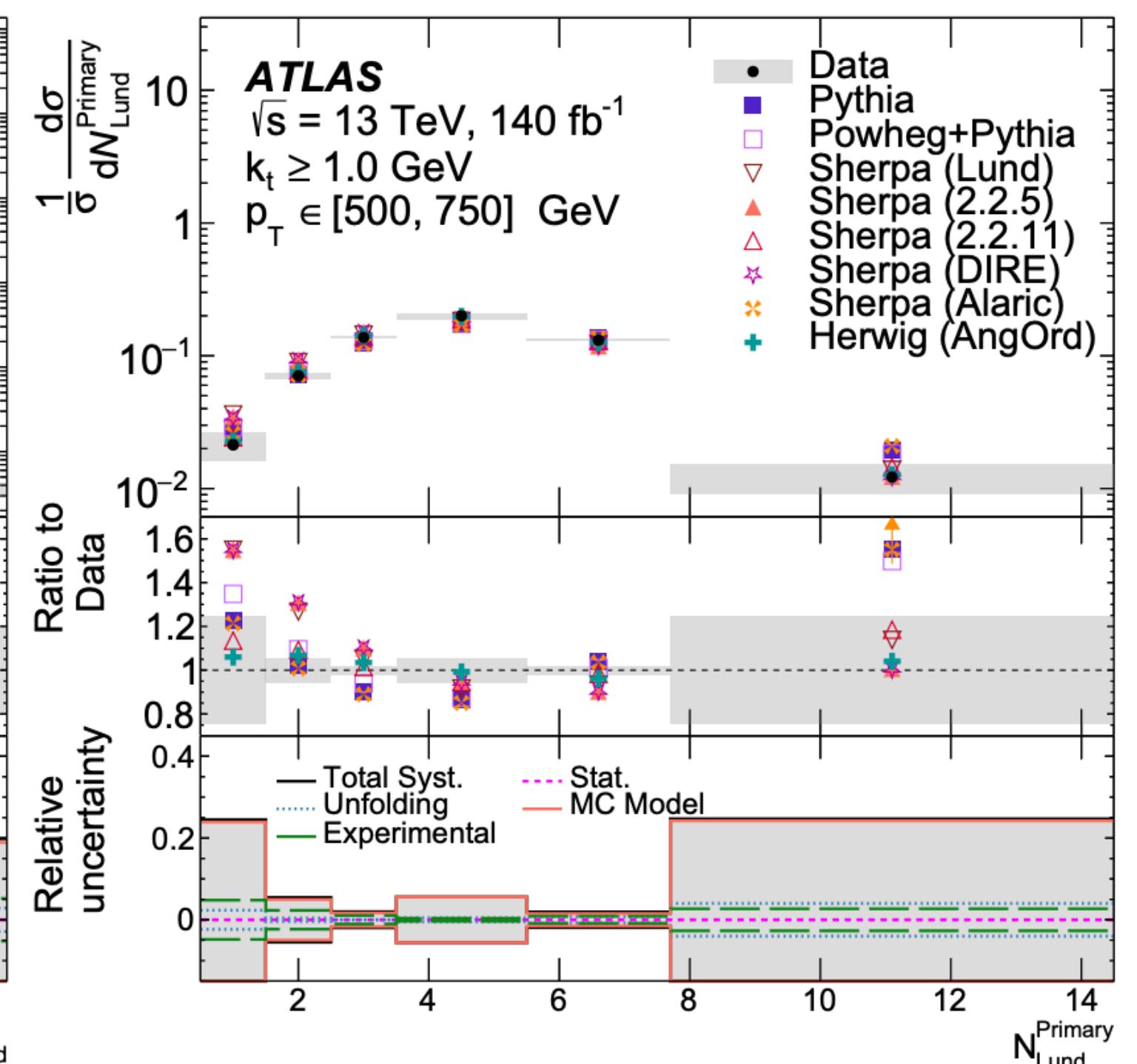
1. Introduction

Uncertainties



1. Introduction

Uncertainties



1. Introduction

Perturbative

- Hard scattering matrix elements
- Parton shower

Uncertainties arise from

Non-perturbative

- Hadronization models
- Color reconnection
- MPI

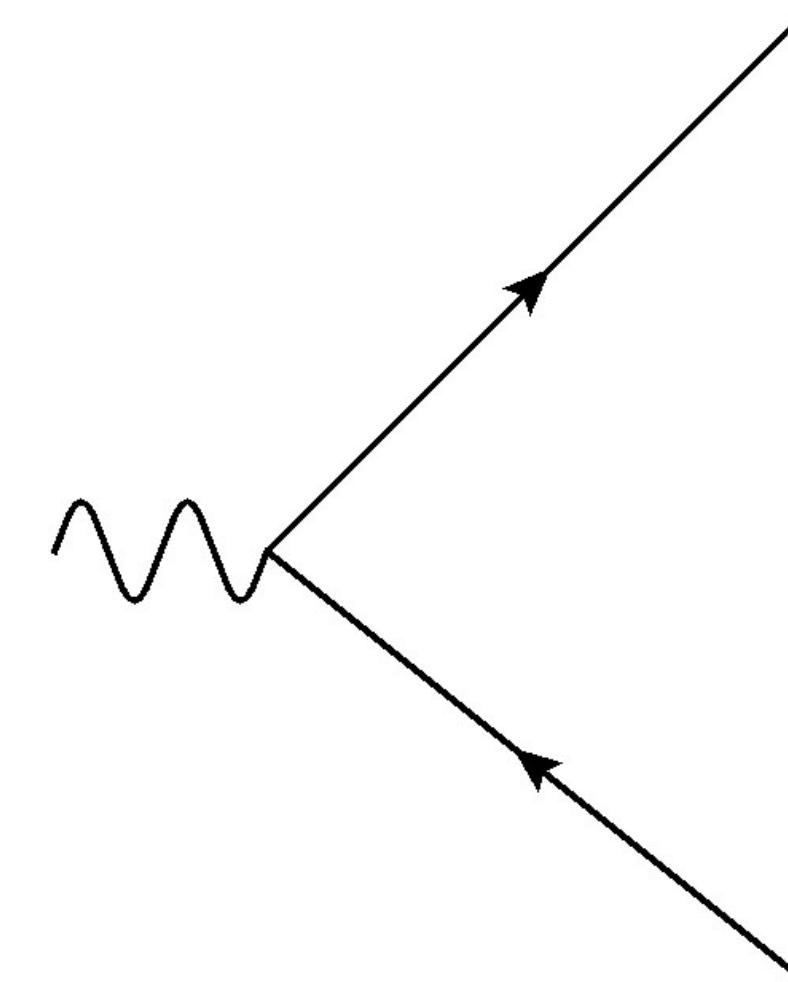
2. Parton Showers

Parton showers approximate higher-order real-emission corrections to the hard scattering process

- Generate cascades of radiation automatically
- Locally conserved four momentum
- Locally conserved flavor
- Unitarity by construction

Parton showers

- sample infrared configurations
- simulate the evolution of parton (resummation)



Parton shower indispensable tools for particle physics phenomenology

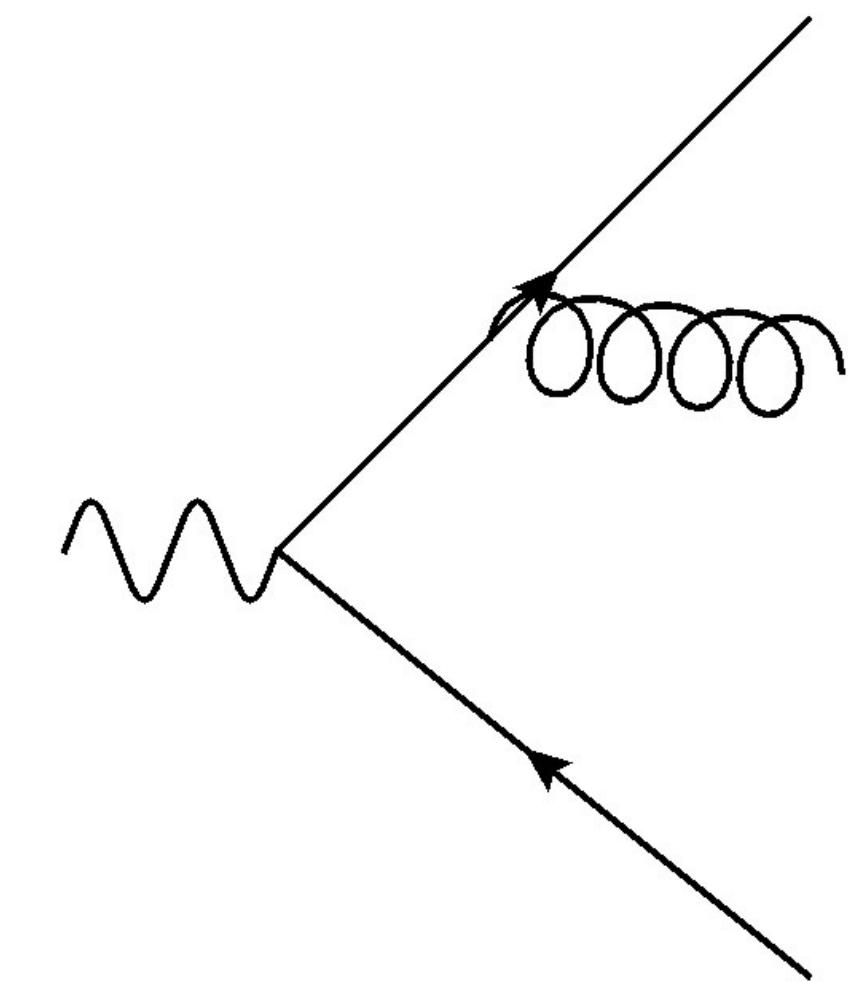
2. Parton Showers

Parton showers approximate higher-order real-emission corrections to the hard scattering process

- Generate cascades of radiation automatically
- Locally conserved four momentum
- Locally conserved flavor
- Unitarity by construction

Parton showers

- sample infrared configurations
- simulate the evolution of parton (resummation)



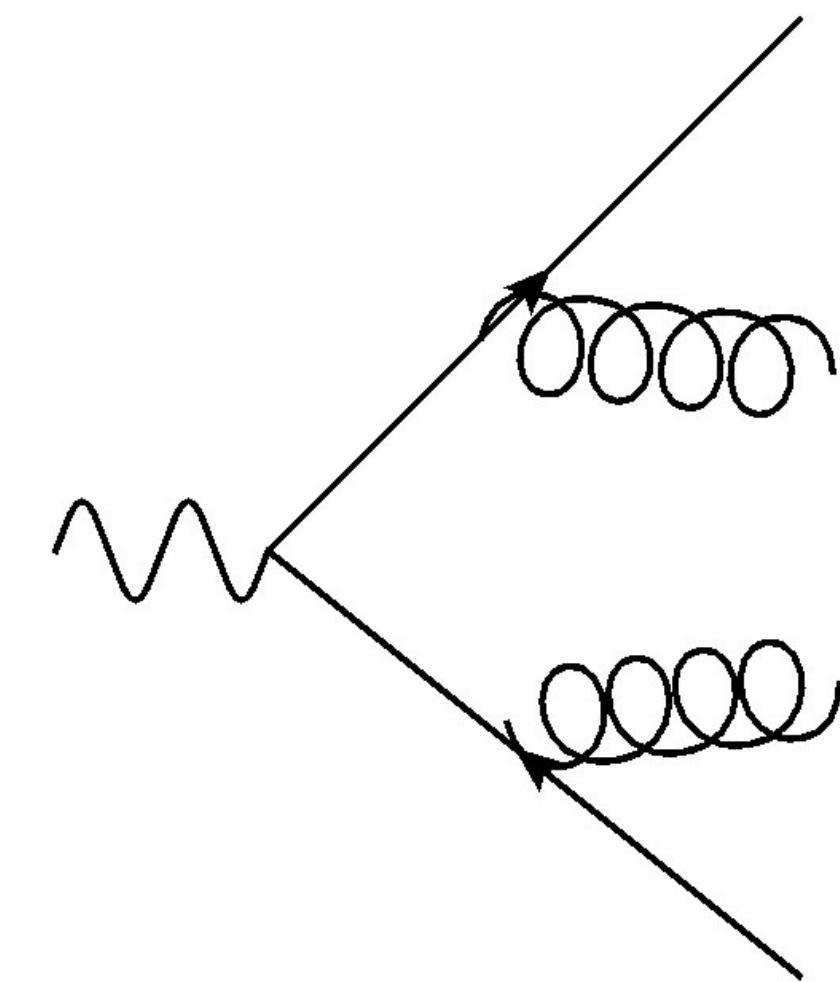
Parton shower indispensable tools for particle physics phenomenology

2. Parton Showers

Parton showers approximate higher-order real-emission corrections to the hard scattering process

- Generate cascades of radiation automatically
- Locally conserved four momentum
- Locally conserved flavor
- Unitarity by construction

Parton showers



- sample infrared configurations
- simulate the evolution of parton (resummation)

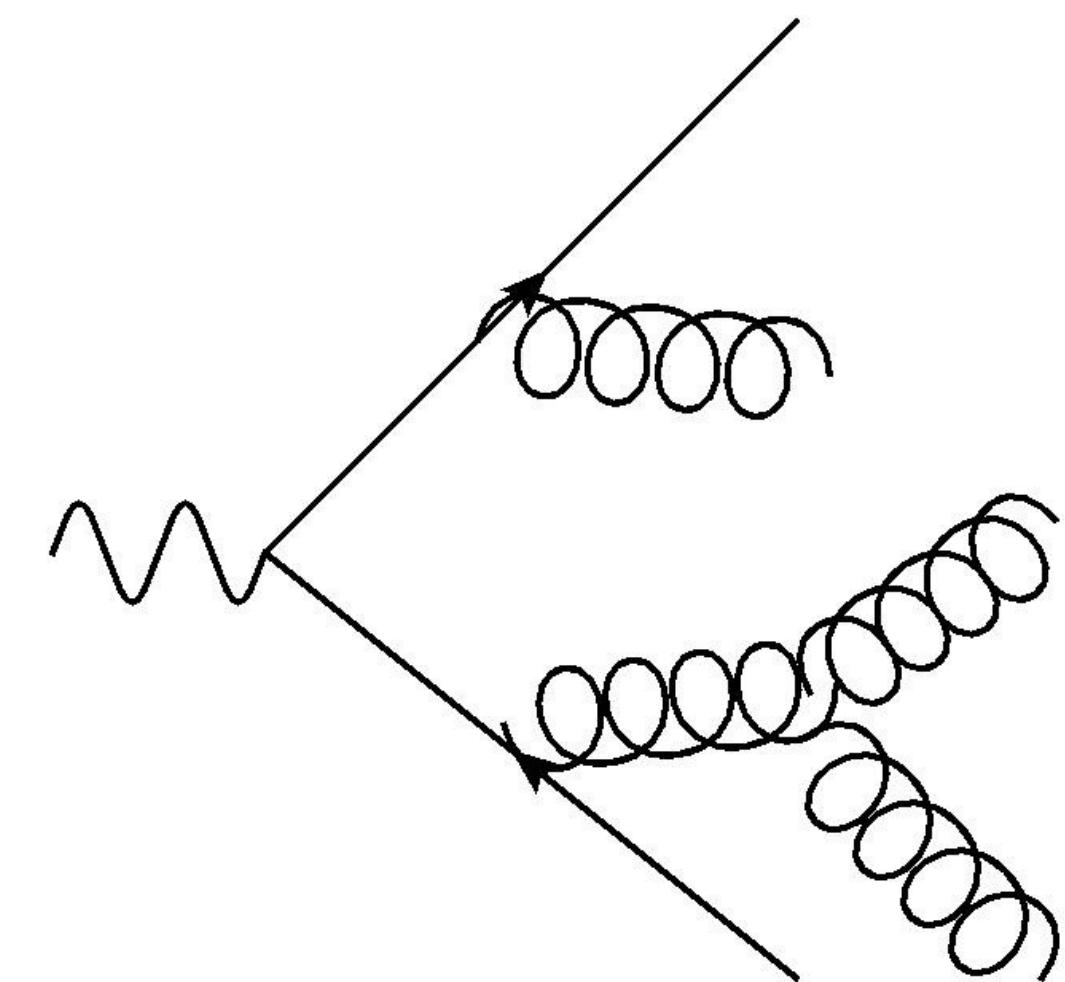
Parton shower indispensable tools for particle physics phenomenology

2. Parton Showers

Parton showers approximate higher-order real-emission corrections to the hard scattering process

- Generate cascades of radiation automatically
- Locally conserved four momentum
- Locally conserved flavor
- Unitarity by construction

Parton showers



- sample infrared configurations
- simulate the evolution of parton (resummation)

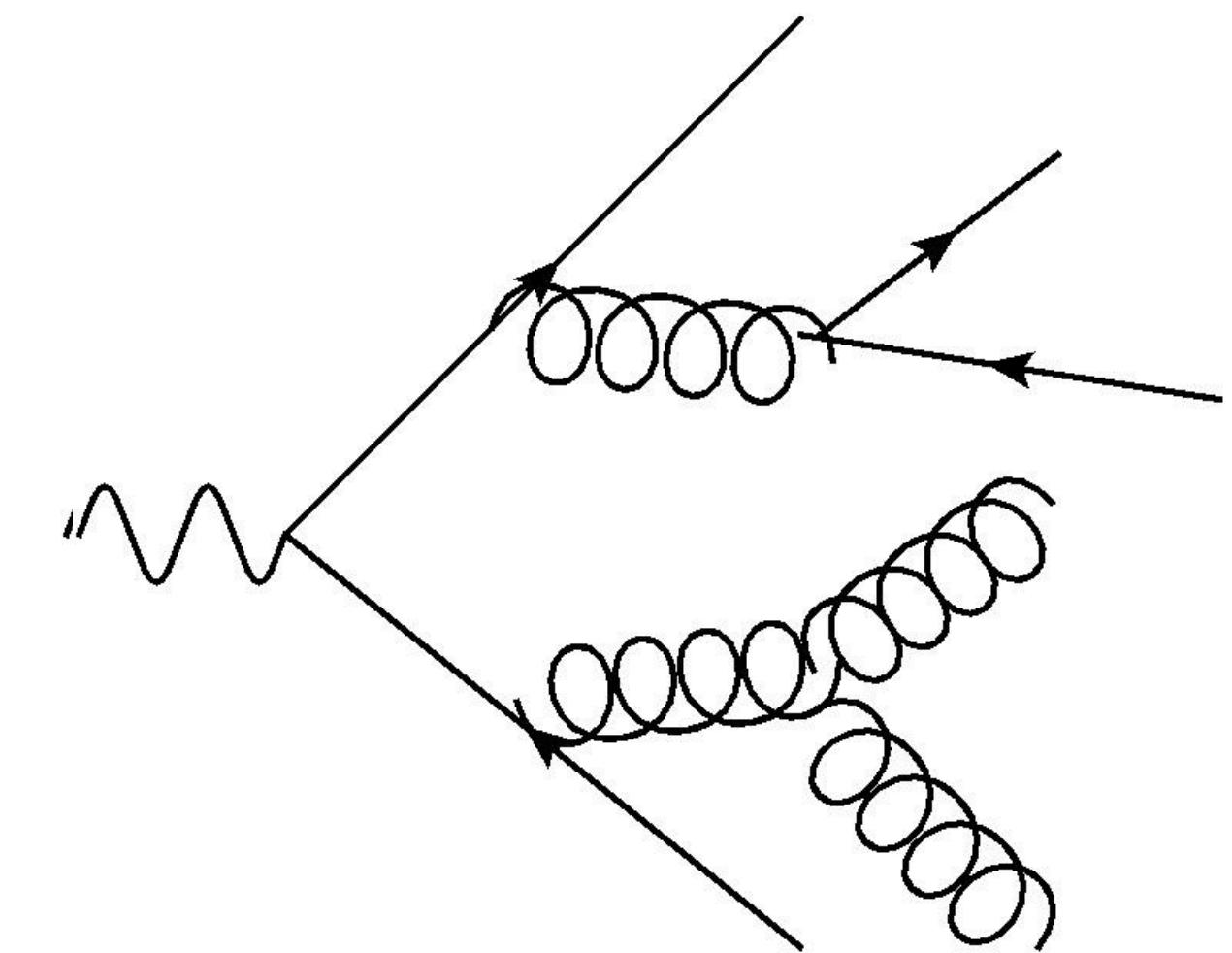
Parton shower indispensable tools for particle physics phenomenology

2. Parton Showers

Parton showers approximate higher-order real-emission corrections to the hard scattering process

- Generate cascades of radiation automatically
- Locally conserved four momentum
- Locally conserved flavor
- Unitarity by construction

Parton showers



- sample infrared configurations
- simulate the evolution of parton (resummation)

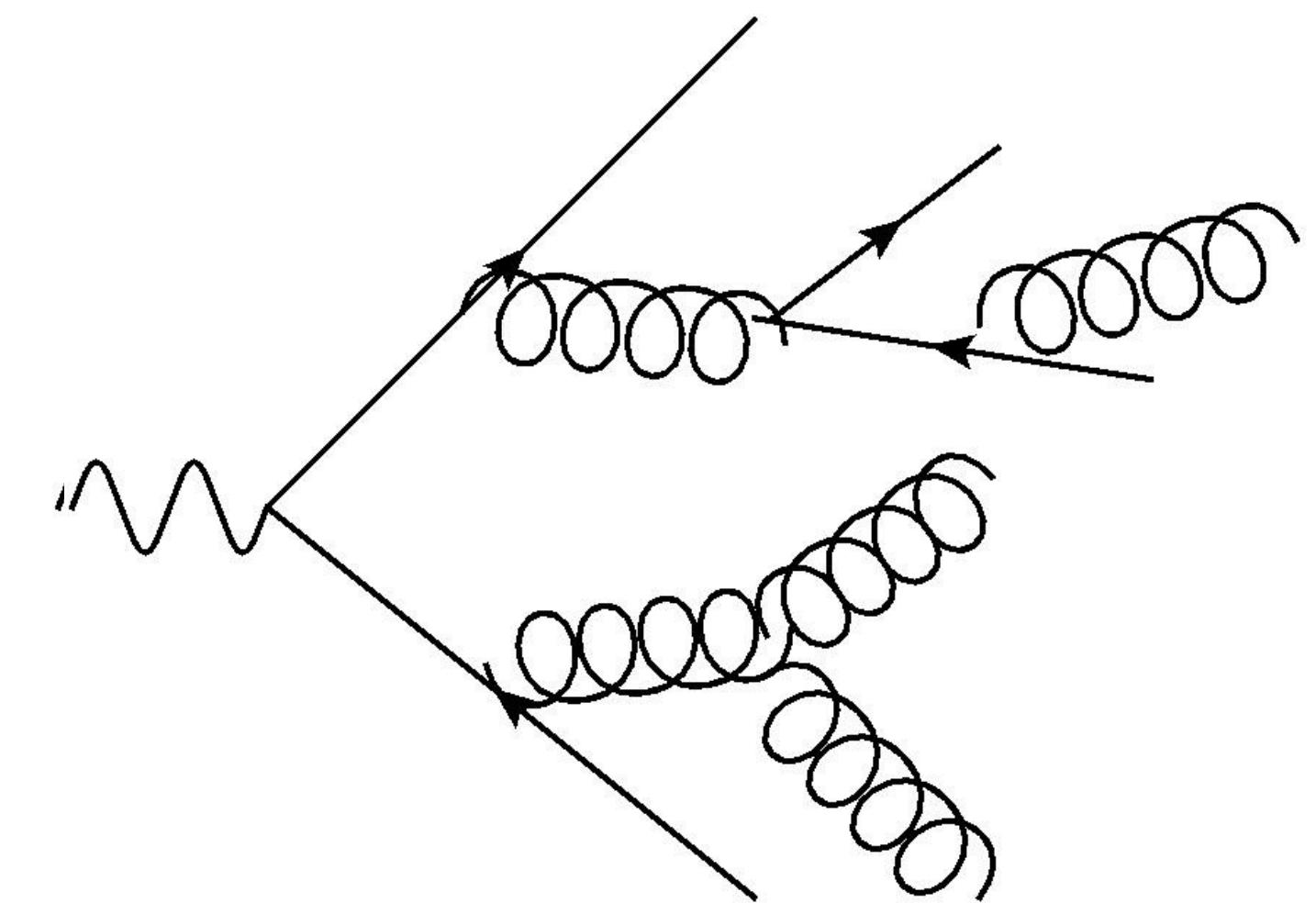
Parton shower indispensable tools for particle physics phenomenology

2. Parton Showers

Parton showers approximate higher-order real-emission corrections to the hard scattering process

- Generate cascades of radiation automatically
- Locally conserved four momentum
- Locally conserved flavor
- Unitarity by construction

Parton showers



- sample infrared configurations
- simulate the evolution of parton (resummation)

Parton shower indispensable tools for particle physics phenomenology

2. Parton Showers

In the collinear or soft limit, the matrix element can be factorized as

$$\begin{aligned}
 & |M(\dots, p_i, p_j, \dots)|^2 \xrightarrow{||j} g_s^2 \mathcal{C} \frac{P(z)}{S_{ij}} |M(\dots, p_i + p_j, \dots)|^2 \\
 & |M(\dots, p_i, q, p_j, \dots)|^2 \xrightarrow{a \rightarrow 0} g_s^2 \mathcal{C} \frac{p_i \cdot p_j}{p_i \cdot q \ p_j \cdot q} |M(\dots, p_i + p_j, \dots)|^2
 \end{aligned}$$

Together with phase space integration, the cross section is

$$d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \otimes d\phi_{n \rightarrow n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2}$$

If we want to get the single unresolved limit correct, $\frac{|M_{n+1}|}{|M_n|^2}$ can be written as universal functions.

higher multiplicities can be obtained recursively

2. Parton Showers

$$d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \otimes d\phi_{n \rightarrow n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2}$$

In the exact single-unresolved limit

$$s_{ij} = 0 \text{ or } E_q = 0$$

$$d\sigma_{n+2} = \frac{1}{2s} \int d\phi_{n+2} |M_{n+2}|^2 = d\sigma_n \times \frac{1}{2} \left(\int d\phi_{n \rightarrow n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2} \right)^2$$

$$d\sigma_{n+m} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \times \frac{1}{m!} \left(\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right)^m$$

2. Parton Showers

$$d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \otimes d\phi_{n \rightarrow n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2}$$

In the exact single-unresolved limit

$$s_{ij} = 0 \text{ or } E_q = 0$$

$$d\sigma_{n+2} = \frac{1}{2s} \int d\phi_{n+2} |M_{n+2}|^2 = d\sigma_n \times \frac{1}{2} \left(\int d\phi_{n \rightarrow n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2} \right)^2$$

$$d\sigma_{n+m} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \times \frac{1}{m!} \left(\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right)^m$$

$$\sum_{m=0}^{\infty} \sigma_{n+m}$$

$$d\sigma_n \times \exp \left[\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right]$$

2. Parton Showers

$$d\sigma_{n+1} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \otimes d\phi_{n \rightarrow n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2}$$

In the exact single-unresolved limit

$$s_{ij} = 0 \text{ or } E_q = 0$$

$$d\sigma_{n+2} = \frac{1}{2s} \int d\phi_{n+2} |M_{n+2}|^2 = d\sigma_n \times \frac{1}{2} \left(\int d\phi_{n \rightarrow n+1} \times \frac{|M_{n+1}|^2}{|M_n|^2} \right)^2$$

$$d\sigma_{n+m} = \frac{1}{2s} \int d\phi_{n+1} |M_{n+1}|^2 = d\sigma_n \times \frac{1}{m!} \left(\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right)^m$$

$$\sum_{m=0}^{\infty} \sigma_{n+m}$$

$$d\sigma_n \times \exp \left[\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right]$$

no additional radiation observed

with the probability function $\exp \left[\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right]$

$$\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2}$$

2. Parton Showers

Sudakov form factor: Non-branching probability $\exp \left[\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right]$

Probability that there is no branching from Q to q is $\Delta_i(Q^2, q^2)$

choose kinematic variable as the evolution scale

$$\Delta(Q^2, q^2) = \exp \left\{ \int_{Q^2}^{q^2} d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} \right\}$$

Probability for one observed branching $1 - \Delta(Q^2, q^2)$

Probability one branching between the scale q^2 to $q^2 + dq^2$

$$\frac{d}{dq^2} \Delta(Q^2, q^2) = \Delta(Q^2, q^2) \times d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2}$$

Additional radiations can be added according to the function $\Delta(Q^2, q^2)$

2. Parton Showers

Infrared structure for single unresolved limit is well known

$$\frac{\left| \frac{q}{g} \right|^2 + \left| \frac{\bar{q}}{g} \right|^2}{\left| \frac{q}{\bar{q}} \right|^2 + \left| \frac{\bar{q}}{q} \right|^2} \rightarrow \left\{ \begin{array}{l} \frac{P_{q \rightarrow qg}(z_q)}{s_{qg}} + \frac{P_{\bar{q} \rightarrow \bar{q}g}(z_{\bar{q}})}{s_{g\bar{q}}} \\ \text{q-collinear} \quad \bar{q}\text{-collinear} \\ \\ \frac{K_{q \rightarrow qg; \bar{q}}(z_q)}{s_{qg}} + \frac{K_{\bar{q} \rightarrow \bar{q}g; q}(z_{\bar{q}})}{s_{g\bar{q}}} \\ \text{q-(soft-)collinear} \quad \bar{q}\text{-(soft-)collinear} \\ \\ \frac{2s_{q\bar{q}}}{s_{qg}s_{g\bar{q}}} + \frac{1}{s} \left(\frac{s_{g\bar{q}}}{s_{qg}} + \frac{s_{qg}}{s_{g\bar{q}}} \right) \\ \text{soft} \quad \text{collinear} \end{array} \right. \begin{array}{l} \text{DGLAP} \\ \text{CS Dipoles} \\ \text{Antennae} \end{array}$$

DGLAP splitting functions used

applied widely used CS dipole subtraction terms

antenna function obtained directly from matrix element square

Phase space mapping

$$\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} = \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \frac{\alpha_s}{2\pi} \int_{Q_0^2/k^2}^{1-Q_0^2/k^2} dz P_{ji}(z)$$

$$\frac{d\theta^2}{\theta^2} = \frac{dq^2}{q^2} = \frac{dk_\perp^2}{k_\perp^2}$$

many choices for the evolution variables

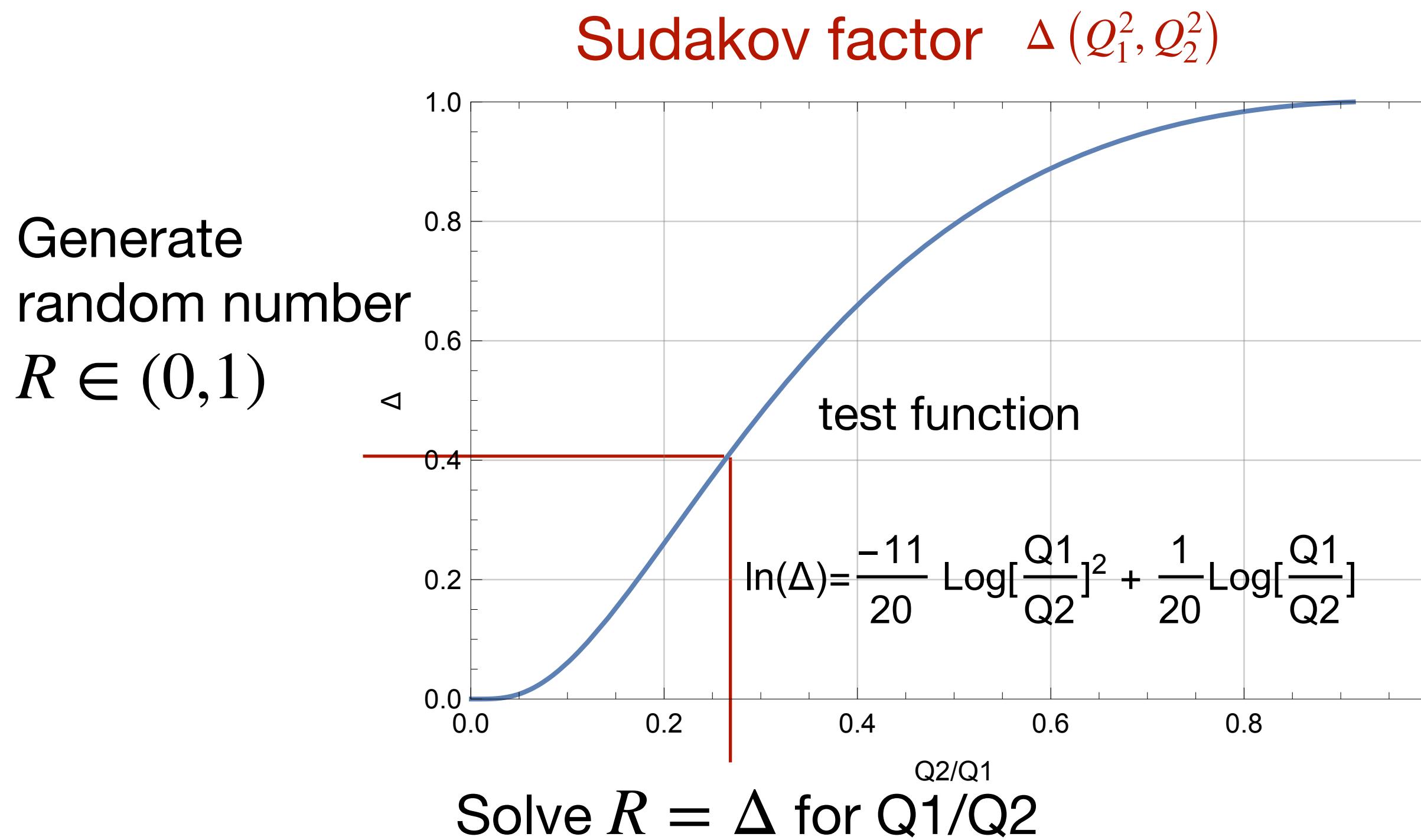
2. Parton Showers

Phase space mapping $\int d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2} = \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \frac{\alpha_s}{2\pi} \int_{Q_0^2/k^2}^{1-Q_0^2/k^2} dz P_{ji}(z)$

$$\frac{d\theta^2}{\theta^2} = \frac{dq^2}{q^2} = \frac{dk_\perp^2}{k_\perp^2}$$

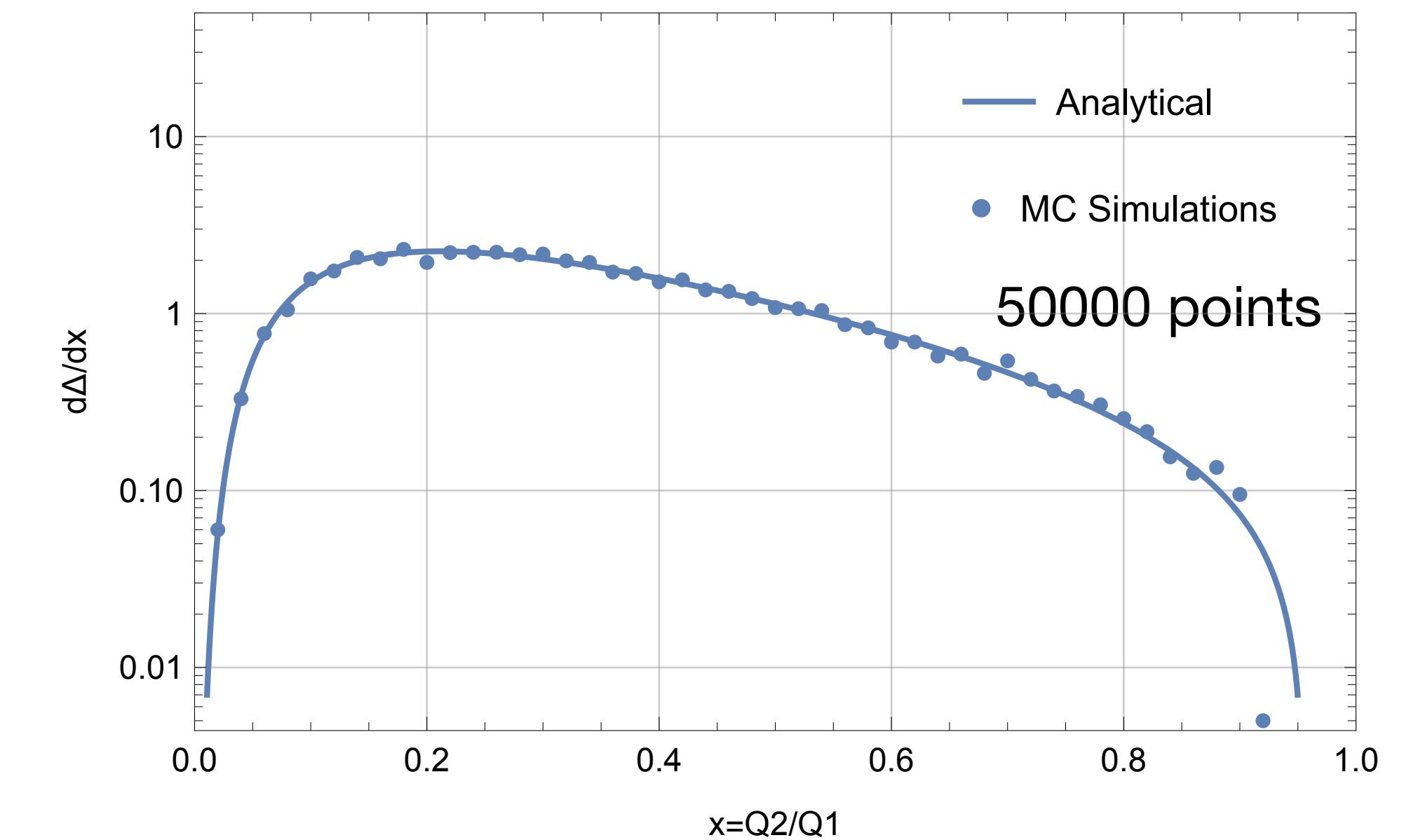
many choices for the evolution variables

Monte-Carlo Technique and resummation



Q_2/Q_1 distribution generated by

$$\frac{d}{dq^2} \Delta(Q^2, q^2) = \Delta(Q^2, q^2) \times d\phi_{n \rightarrow n+1} \frac{|M_{n+1}|^2}{|M_n|^2}$$



new phase space point generated according to the new scales

2. Parton Showers

For multi-scale problem

固定阶计算

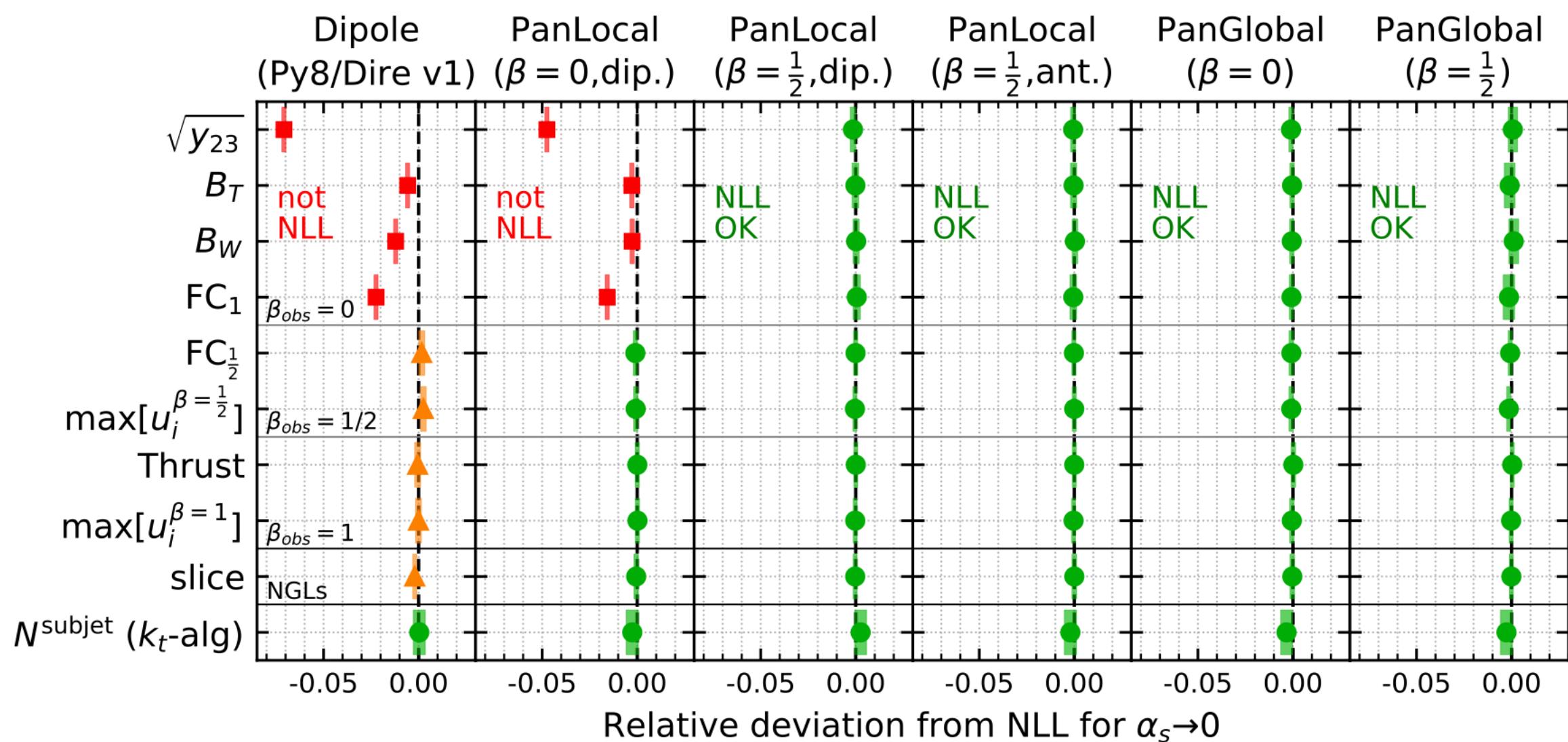
$$\begin{aligned}
 z \frac{1}{\sigma_0} \frac{d\sigma}{dz} \propto z + & \frac{\alpha_s}{4\pi} a_{1,2} \ln z + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,4} \ln^3 z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,6} \ln^5 z + \dots \text{ LL} \\
 & + \frac{\alpha_s}{4\pi} a_{1,1} + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,3} \ln^2 z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,5} \ln^4 z + \dots \text{ NLL} \\
 & + \frac{\alpha_s}{4\pi} a_{1,0} z + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,2} \ln z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,4} \ln^3 z + \dots \text{ NNLL} \\
 & + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,1} + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,3} \ln^2 z + \dots \text{ NNNLL} \\
 & + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,0} z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} \ln z + \dots \text{ NNNNNLL} \\
 & + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} + \dots \\
 & + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} z + \dots
 \end{aligned}$$

重求和

For observables that involve scale hierarchies
resummation is required

NLL: PanScales, Alaric, Herwig et al
with higher order effects: Vincia, DIRE et al

PanScales:



arXiv:2002.11114

2. Parton Showers

NLL accuracy is becoming the new standard

Logarithmic accuracy of parton showers: a fixed-order study

Dasgupta, Dreyer, Hamilton, Monni, Salam [1805.09327]

Colour and logarithmic accuracy in final-state parton showers

Hamilton, Medves, Salam, Scyboz, Soyez [2011.10054]

Soft spin correlations in final-state parton showers

Hamilton, Karlberg, Salam, Scyboz, Verheyen [2111.01161]

PanScales parton showers for hadron collisions: all-order validation

van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto Ontoso, Soyez, Verheyen [2207.09467]

Introduction to the PanScales framework, version 0.1

van Beekveld, Dasgupta, El-Menoufi, Ferrario Ravasio, Hamilton, Helliwell, Karlberg, Medves, Monnim Salam, Scyboz, Soto Ontoso, Soyez, Verheyen [2312.13275]

Building a consistent parton shower

Forshaw, Holguin, Plätzer [2003.06400]

Improvements on dipole shower colour

Forshaw, Holguin, Plätzer [2011.15087]

Parton showers beyond leading logarithmic accuracy

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114]

Spin correlations in final-state parton showers and jet observables

Karlberg, Salam, Scyboz, Verheyen [2103.16526]

PanScales parton showers for hadron collisions: formulation and fixed-order studies

van Beekveld, Ferrario Ravasio, Salam, Soto Ontoso, Soyez, Verheyen [2205.02237]

Next-to-leading-logarithmic PanScales showers for deep inelastic scattering and vector boson fusion

van Beekveld, Ferrario Ravasio [2305.08645]

Logarithmic accuracy of angular-ordered parton showers

Bewick, Ferrario Ravasio, Richardson, Seymour [1904.11866]

A new approach to color-coherent parton evolution

Herren, Höche, Krauss, Reichelt, Schönherr [2208.06057]

New approach to QCD final-state evolution in Alaric processes with massive partons

Assi, Höche [2307.00728]

The Alaric parton shower for hadron colliders

Höche, Krauss, Reichelt [2404.14360]

A partitioned dipole-antenna shower with improved transverse recoil

Preuss [2403.19452]

Apollo

Summation of large logarithms by parton showers

Nagy, Soper [2011.04773]

Deductor

Summation by parton showers of large logarithms in electron-positron annihilation

Nagy, Soper [2011.04777]

Herwig

Initial state radiation in the Herwig 7 angular-ordered parton shower

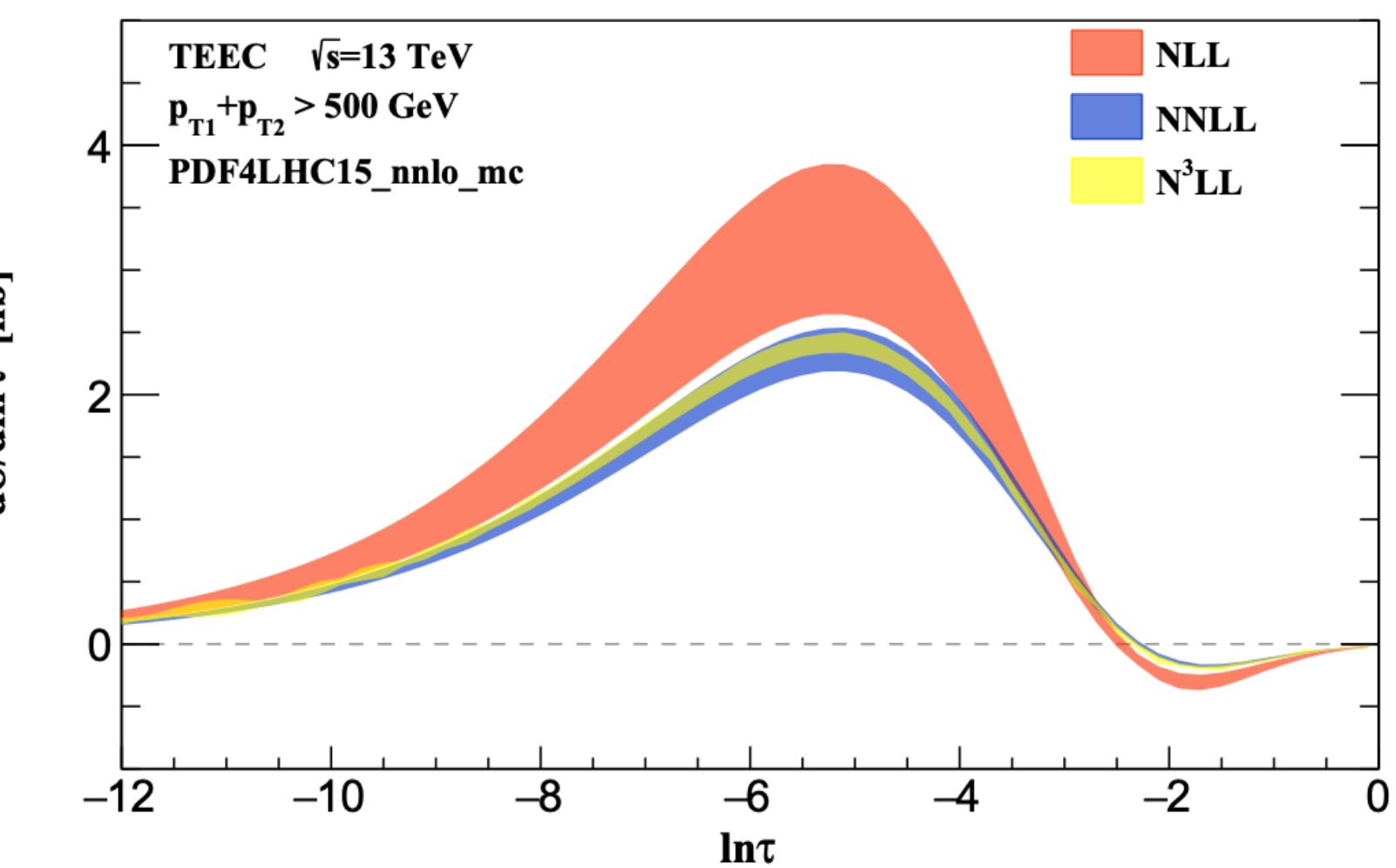
Bewick, Ferrario Ravasio, Richardson, Seymour [2107.04051]

2. Parton Showers

固定阶计算

$$\begin{aligned}
 z \frac{1}{\sigma_0} \frac{d\sigma}{dz} \propto z + & \frac{\alpha_s}{4\pi} a_{1,2} \ln z + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,4} \ln^3 z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,6} \ln^5 z + \dots \text{ LL} \\
 + & \frac{\alpha_s}{4\pi} a_{1,1} + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,3} \ln^2 z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,5} \ln^4 z + \dots \text{ NLL} \\
 + & \frac{\alpha_s}{4\pi} a_{1,0} z + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,2} \ln z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,4} \ln^3 z + \dots \text{ NNLL} \\
 + & \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,1} + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,3} \ln^2 z + \dots \text{ NNNLL} \\
 + & \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,0} z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} \ln z + \dots \text{ NNNNLL} \\
 & + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} + \dots \\
 & + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} z + \dots
 \end{aligned}$$

重
求
和



Gao, HTL, Moult, Zhu, JHEP 2024

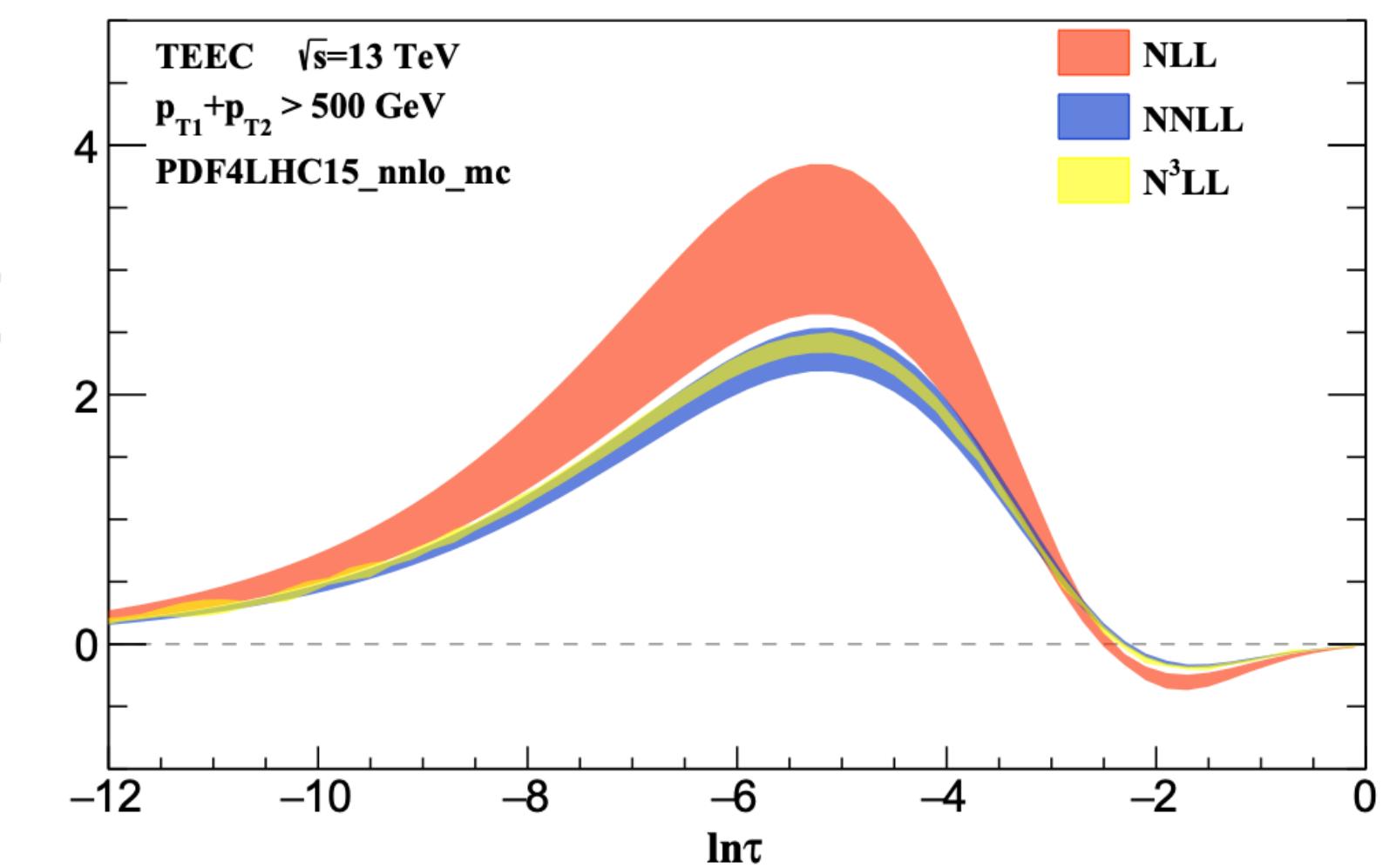
2. Parton Showers

固定阶计算

$$\begin{aligned}
 z \frac{1}{\sigma_0} \frac{d\sigma}{dz} \propto z + & \frac{\alpha_s}{4\pi} a_{1,2} \ln z + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,4} \ln^3 z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,6} \ln^5 z + \dots \text{ LL} \\
 + & \frac{\alpha_s}{4\pi} a_{1,1} + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,3} \ln^2 z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,5} \ln^4 z + \dots \\
 + & \frac{\alpha_s}{4\pi} a_{1,0} z + \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,2} \ln z + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,4} \ln^3 z + \dots \text{ NLL} \\
 + & \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,1} + \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,3} z + \dots \text{ NNNLL} \\
 + & \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,0} z + \dots \text{ NNNNLL} \\
 & \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} + \dots \\
 + & \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} z + \dots
 \end{aligned}$$

求和

NLL is not enough



Gao, HTL, Moult, Zhu, JHEP 2024

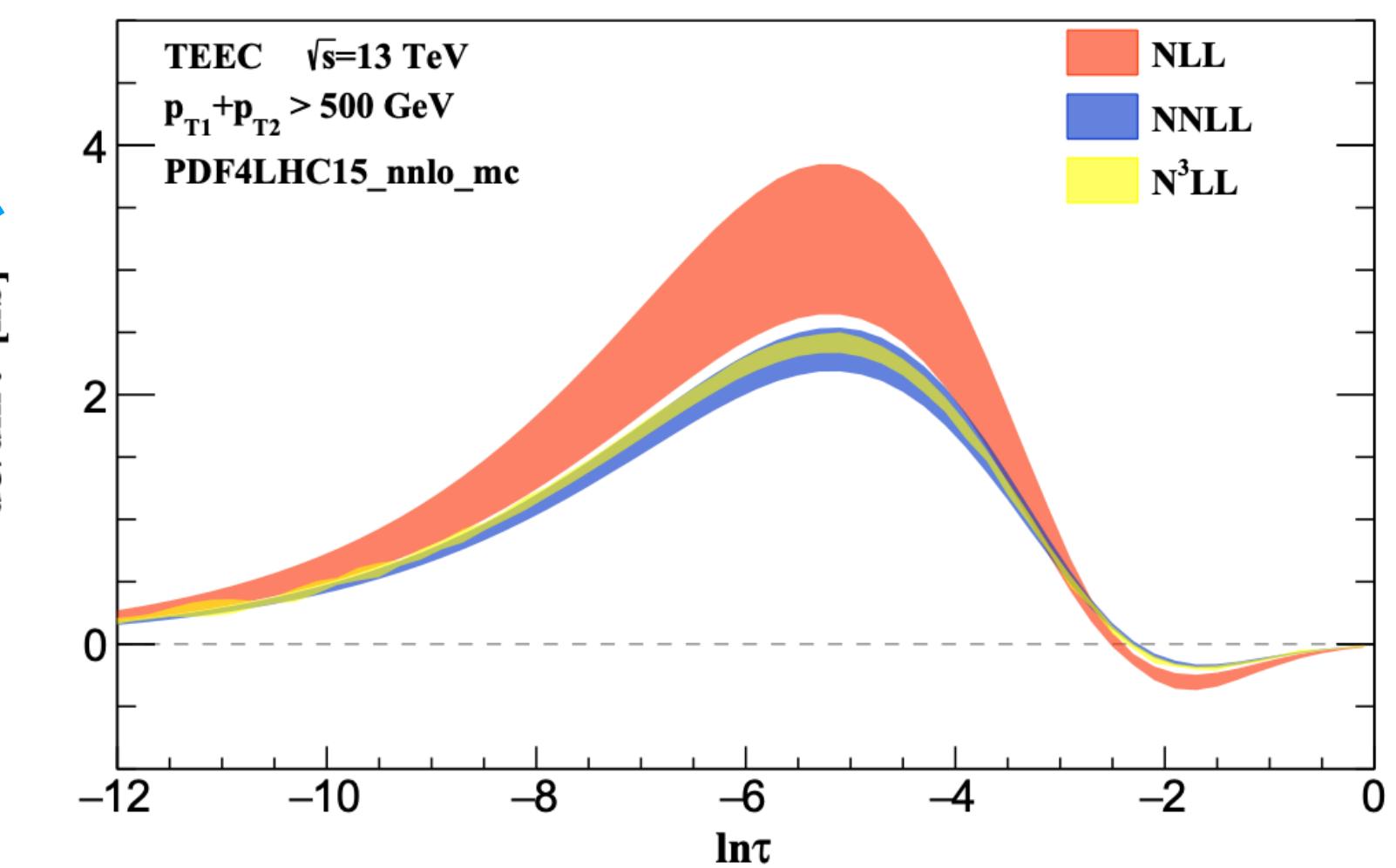
2. Parton Showers

固定阶计算

$$\begin{aligned}
 z \frac{1}{\sigma_0} \frac{d\sigma}{dz} \propto & z + \frac{\alpha_s}{4\pi} a_{1,2} \ln z + \text{NNLO} \\
 & + \frac{\alpha_s}{4\pi} a_{1,1} + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,4} \ln^3 z + \text{NNNLO} \\
 & + \frac{\alpha_s}{4\pi} a_{1,0} z + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,3} \ln^2 z + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,6} \ln^5 z + \dots \text{LL} \\
 & + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,2} \ln z + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,5} \ln^4 z + \dots \\
 & + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,1} + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,4} \ln^3 z + \dots \text{NNLL} \\
 & + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^2 a_{2,0} z + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,3} \ln^2 z + \dots \text{NNNLL} \\
 & + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} + \dots \\
 & + \frac{\alpha_s}{4\pi} \left[\frac{\alpha_s}{4\pi} \right]^3 a_{3,2} z + \dots
 \end{aligned}$$

求和

NLL is not enough



Gao, HTL, Moult, Zhu, JHEP 2024

NNLL would include the full NNLO pole structures

2. Parton Showers

LO parton shower

From parton shower

$$\sigma_{\text{NLO}}^{\text{PS}} = \sigma_0 \Pi_i \left(\Delta_i(Q^2, Q_0^2) + \int_{Q_0^2}^{Q^2} \frac{dq^2}{q^2} \Delta_i(Q^2, q^2) \int dz P_{ji}(z) \right)$$

0-radiation **1-radiation (Sudakov suppressed)**

From the definition of Sudakov factor, we have

$$\mathcal{P}(\text{unresolved}) + \mathcal{P}(\text{resolved}) = 1$$

probability conservation from the definition of Δ

Resummation from Showers +

From NLO calculations

$$\sigma_{\text{NLO}} = \sigma_0 + \left(\int d\Phi_n V + \int d\Phi_{n+1} S \right) \mathcal{O}_n + \int d\Phi_{n+1} (R\mathcal{O}_{n+1} - S\mathcal{O}_n)$$

virtual **integrated**
subtraction **subtracted real**

$$\sigma_{\text{NLO}} = \sigma_0^n + \int_0^{t_n} d\sigma_{(1)}^n + \int_{t_n} d\sigma_{(1)}^{n+1}$$

t_n as the resolution scale for 1-radiation

LO parton showers reproduce the NLO singular behavior of the underlying hard process with unitarity assumption

$$V + \int R = 0.$$

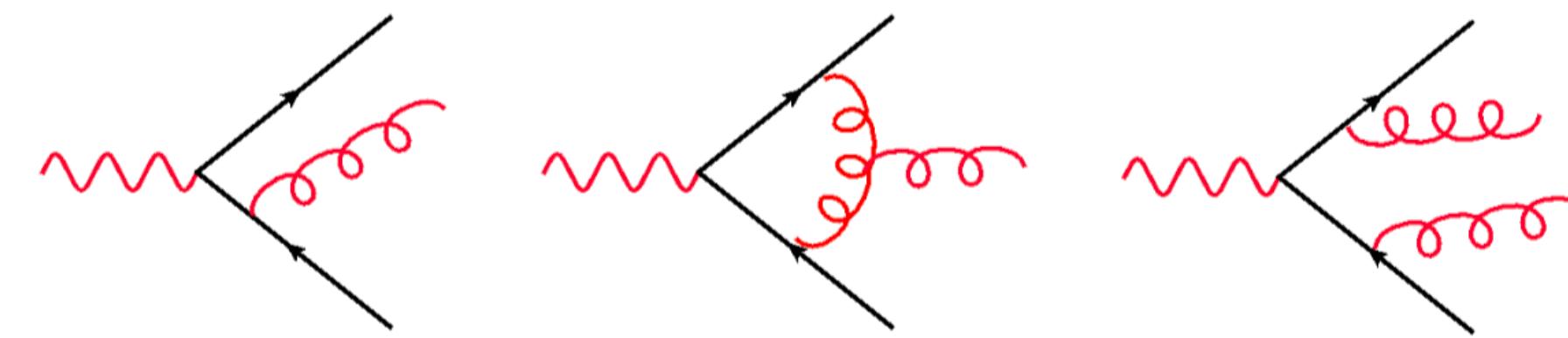
Hard emissions From fixed orders

2. Parton Showers

To which order can Parton Showers do?

NLO corrections to resummation kernel

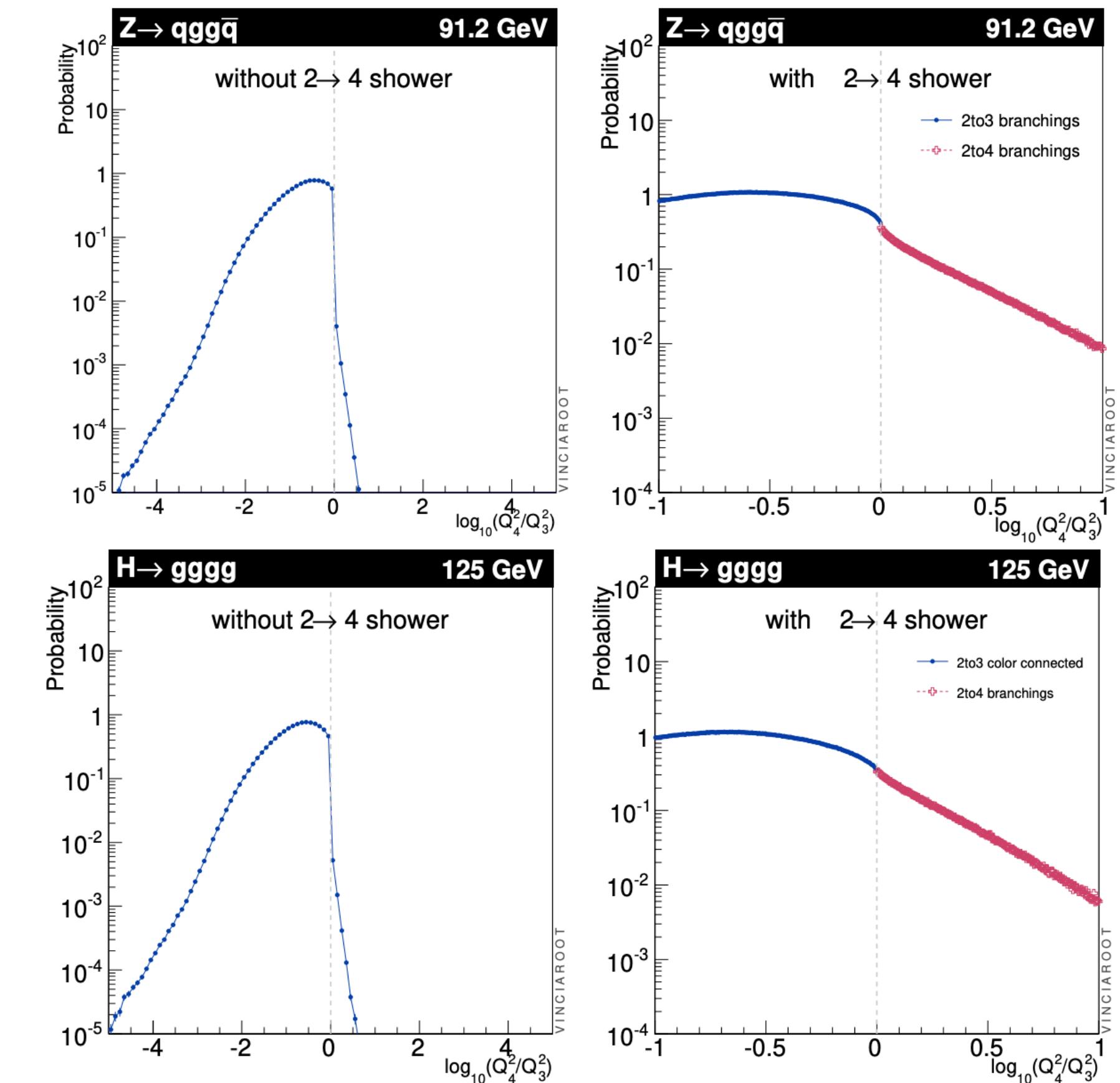
What we expect for NLO showers



NLO parton shower

$$\frac{d}{dQ^2} \underbrace{(1 - \Delta(Q_0^2, Q^2))}_{\text{branching probability}} = - \underbrace{\int \frac{d\Phi_3}{d\Phi_2} \delta(Q^2 - Q^2(\Phi_3)) (a_3^0 + a_3^1) \Delta(Q_0^2, Q^2)}_{\text{born and virtual correction}} - \underbrace{\int \frac{d\Phi_4}{d\Phi_2} \delta(Q^2 - Q^2(\Phi_4)) a_4^0 \Delta(Q_0^2, Q^2)}_{\text{real correction}}$$

HTL, Skands, arXiv:1611.00013



include correct logs and cover the full space

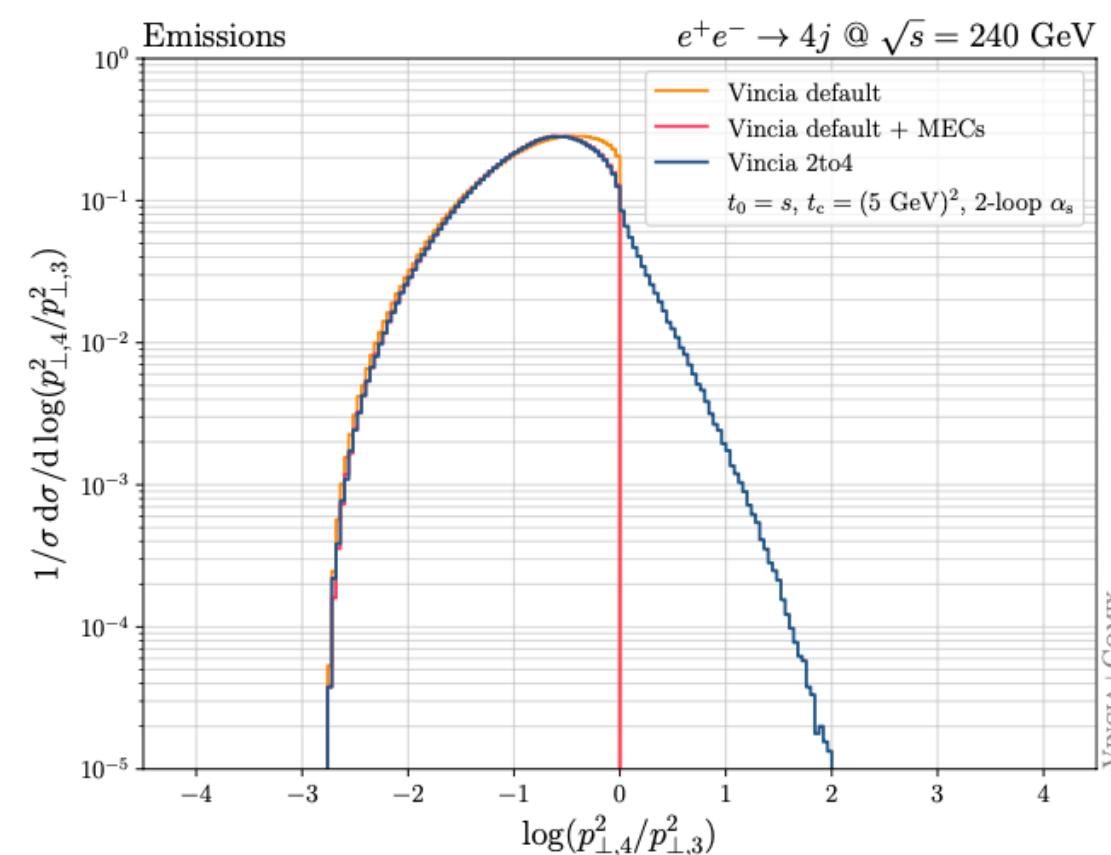
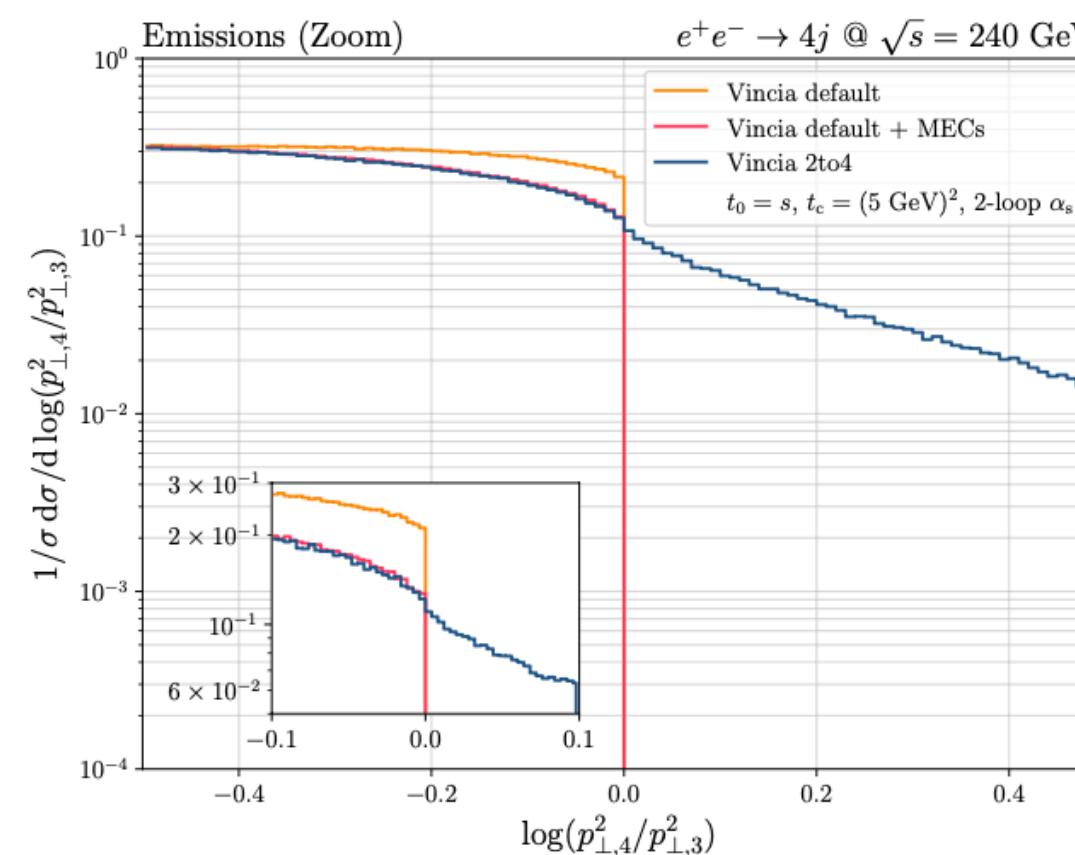
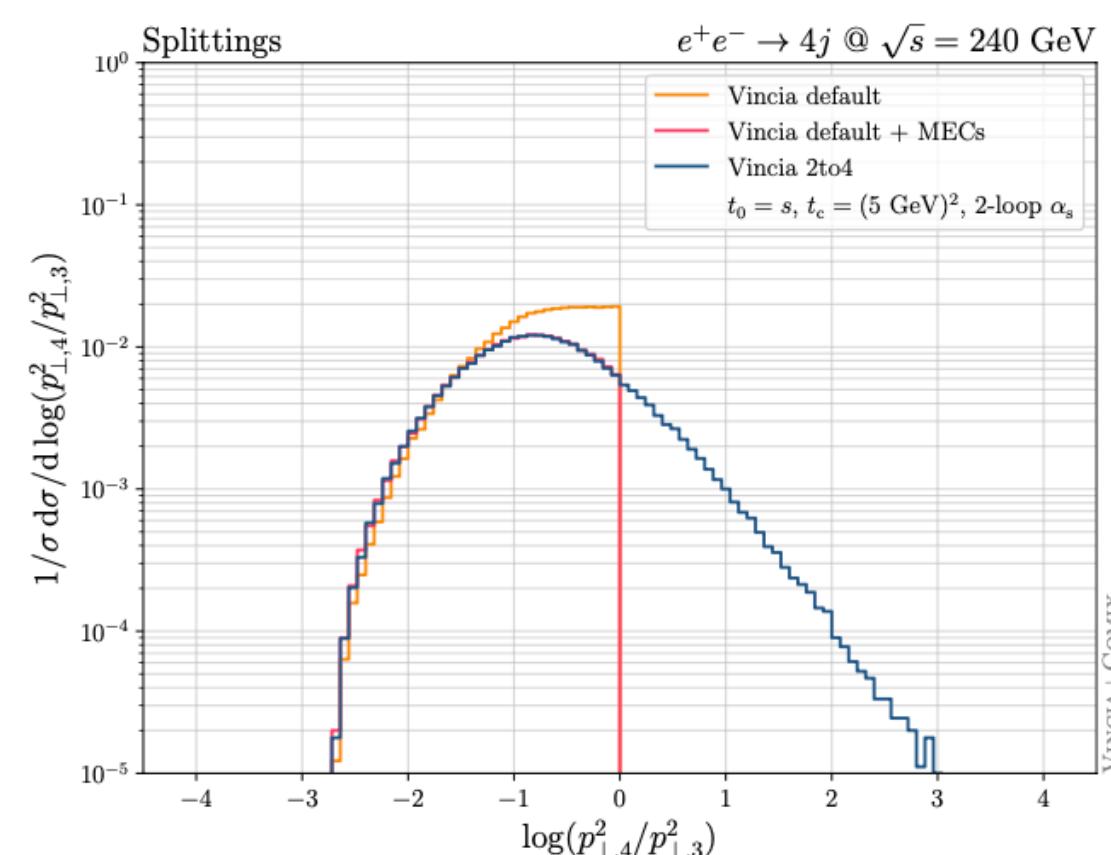
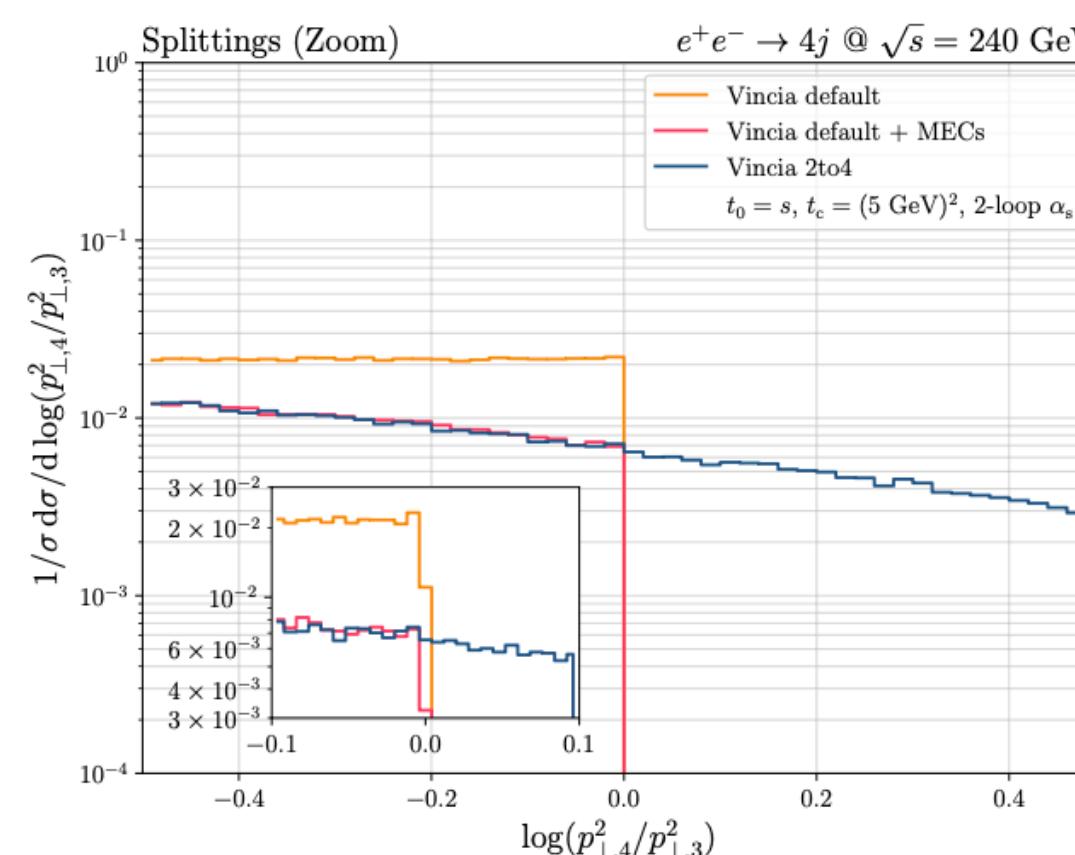
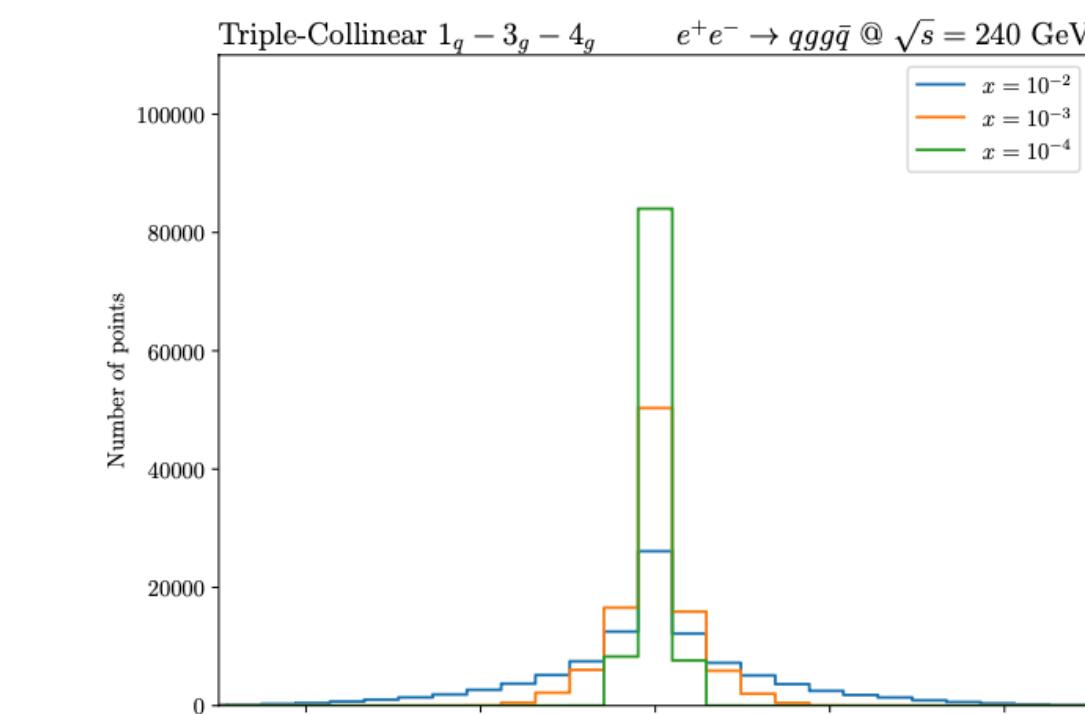
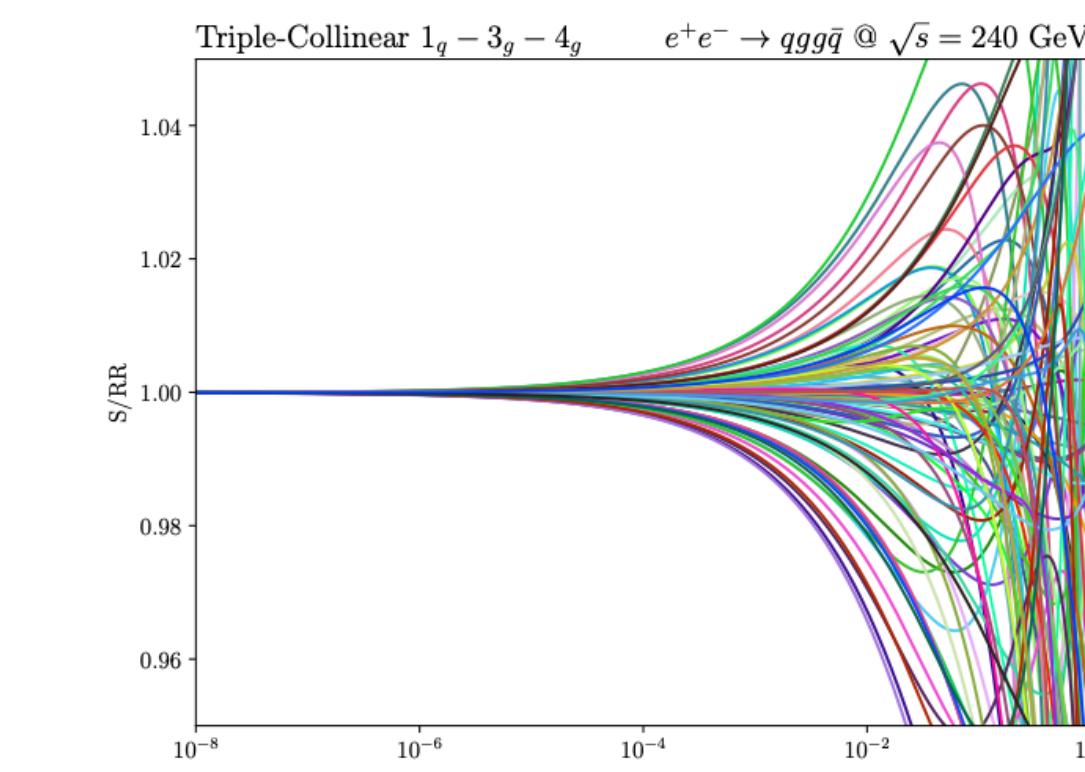
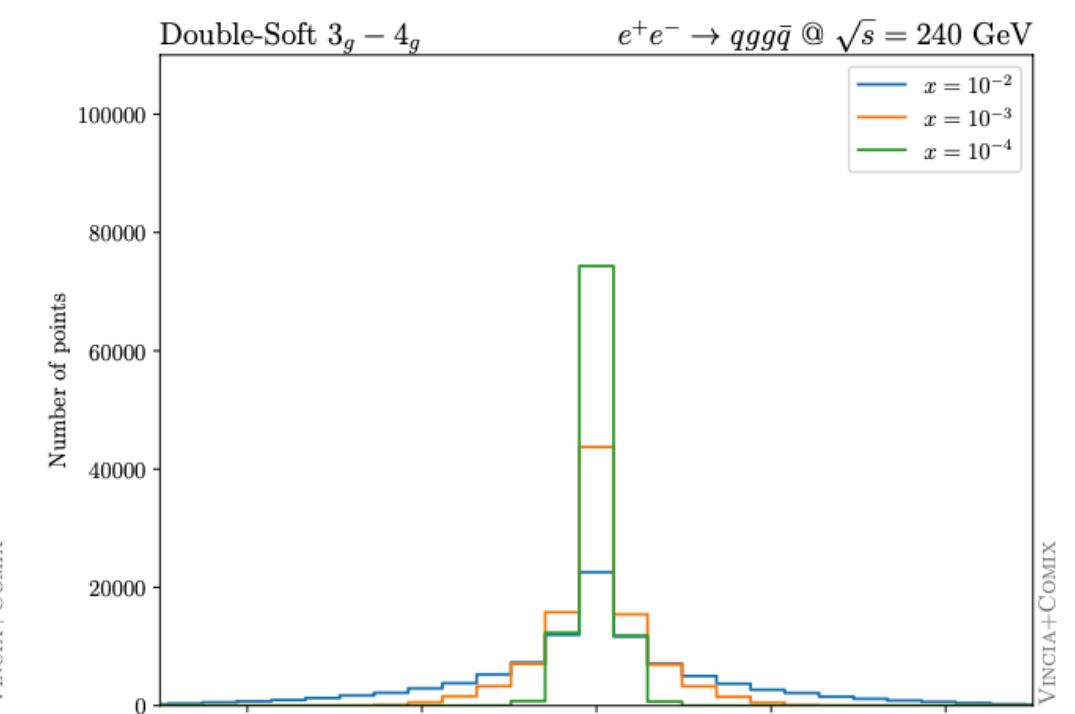
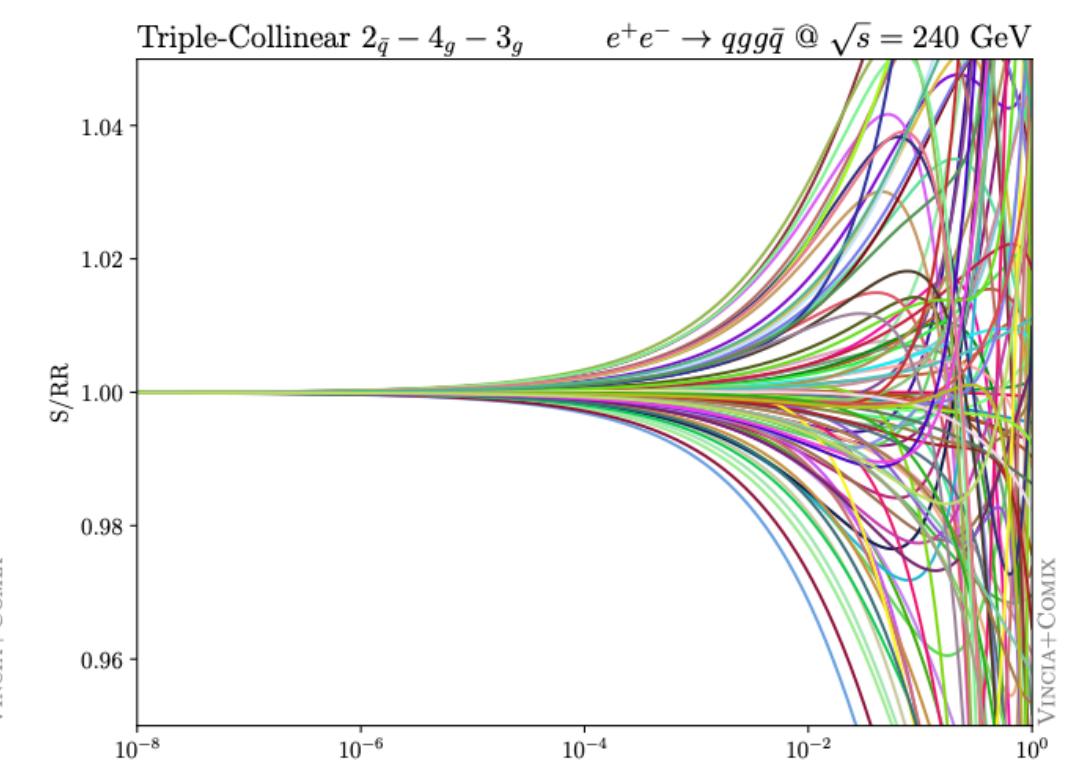
2. Parton Showers

Matching using NLO antenna shower

$$\Delta_2^{\text{NLO}}(t_0, t) = \exp \left\{ - \int_t^{t_0} d\Phi_{+1} A_{2 \rightarrow 3}^{(0)}(\Phi_{+1}) w_{2 \rightarrow 3}^{\text{NLO}}(\Phi_2, \Phi_{+1}) \right\} \times \exp \left\{ - \int_t^{t_0} d\Phi_{+2}^> A_{2 \rightarrow 4}^{(0)}(\Phi_{+2}) w_{2 \rightarrow 4}^{\text{LO}}(\Phi_2, \Phi_{+2}) \right\}$$

Expanding the Sudakov factor to NNLO and compare it with full NNLO corrections

First fully differentially matching



2. Parton Showers

Fixed order should look like

Sunshine by @vector_corp on freepik.es

Sunshine

Sudakov Nesting of Hard Integrals

Using generalized parton shower to generate fixed order corrections

matrix element ratio

$$(0 \rightarrow 1) \times (1 \rightarrow 2) \times \cdots \times (n-1 \rightarrow n)$$

Usually showers will give $(0 \rightarrow n)$

$$\frac{d\mathcal{P}_{00\dots 0}}{d\Phi_n} = |M_0|^2 \prod_{i=0}^{n-1} \text{ant}_{i \rightarrow i+1} \Delta_i(t_i, t_{i+1})$$

Sudakov factor from showers $\Delta_0 \times \Delta_1 \times \cdots \times \Delta_{(n-1)}$

2. Parton Showers

keep the parent events after branching, and ask the event branches m times at stage $0 \rightarrow 1$, then shower them afterwards

Sunshine by @vector_corp on freepik.es

Sunshine

Sudakov Nesting of Hard Integrals

Using generalized parton shower to generate fixed order corrections

$$\frac{d\mathcal{P}_{m0\ldots 0}}{d\Phi_n} = \frac{d\mathcal{P}_{00\ldots 0}}{d\Phi_n} \prod_{j=1}^m \int_{t_1}^{\tilde{t}_{j-1}} \text{ant}_{0 \rightarrow 1}(\tilde{t}_j) d\tilde{t}_j$$

keep all the intermediate states and shower them m_k times from $k-1$ partons to k partons

$$\frac{d\mathcal{P}_{m_1 m_2 \ldots m_n}}{d\Phi_n} = \frac{d\mathcal{P}_{00\ldots 0}}{d\Phi_n} \prod_{k=1}^n \prod_{j=1}^{m_k} \int_{t_k}^{\tilde{t}_{k_j-1}} \text{ant}_{k-1 \rightarrow k}(\tilde{t}_{k_j}) d\tilde{t}_{k_j}$$

sum m_k to infinity

$$\sum_{m_k \geq 0} \frac{d\mathcal{P}_{m_1 m_2 \ldots m_n}}{d\Phi_n} = \frac{d\mathcal{P}_{00\ldots 0}}{d\Phi_n} \prod_{k=1}^n \frac{1}{\Delta_k(t_{k-1}, t_k)}.$$

SUNSHINE :

$$\sum_{m_k \geq 0} \frac{d\mathcal{P}_{m_1 m_2 \ldots m_n}}{d\Phi_n} = |M_0|^2 \prod_{i=0}^{n-1} \text{ant}_{i \rightarrow i+1}.$$

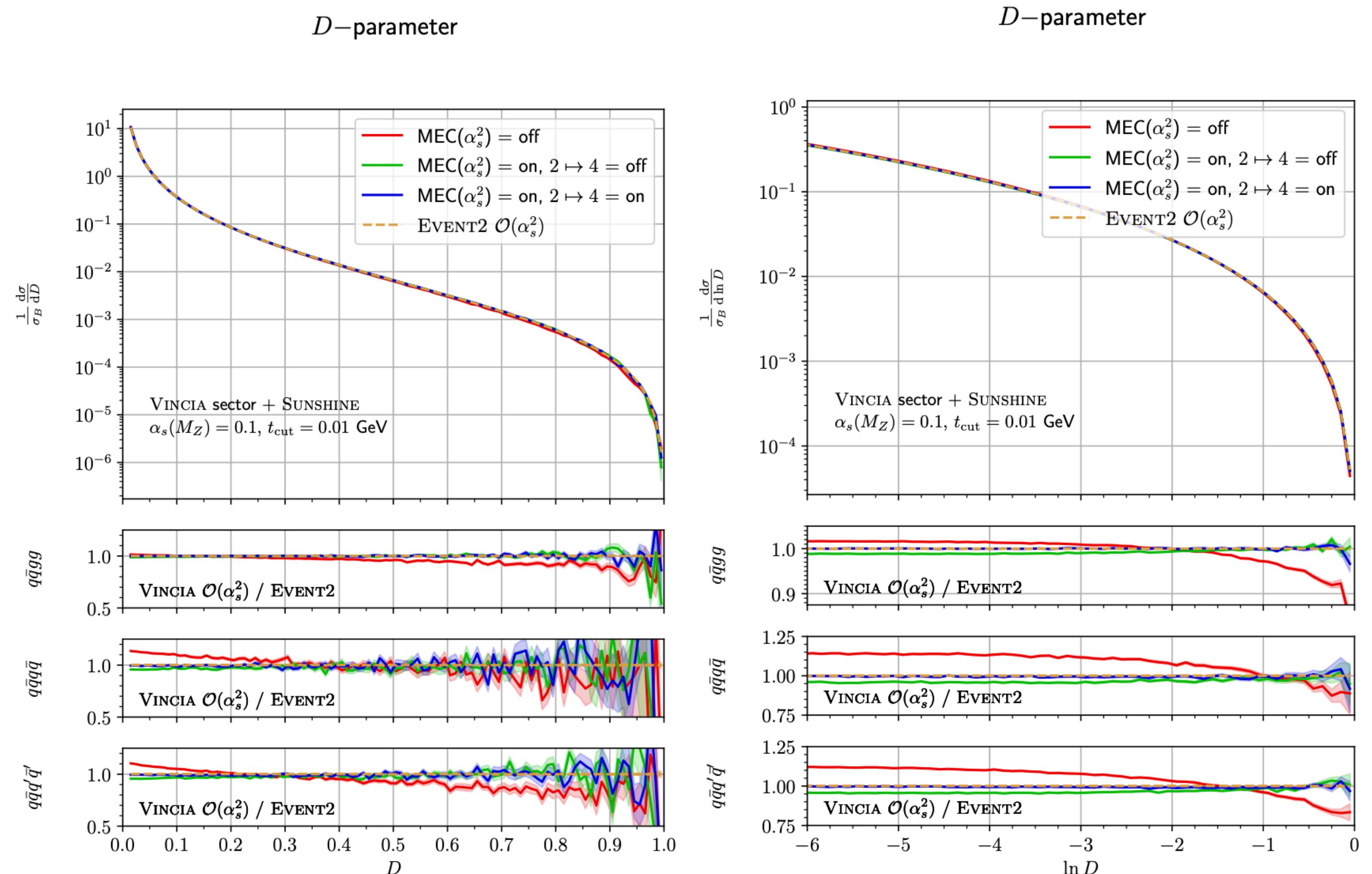
2. Parton Showers

Sunshine by @vector_corp on freepik.es

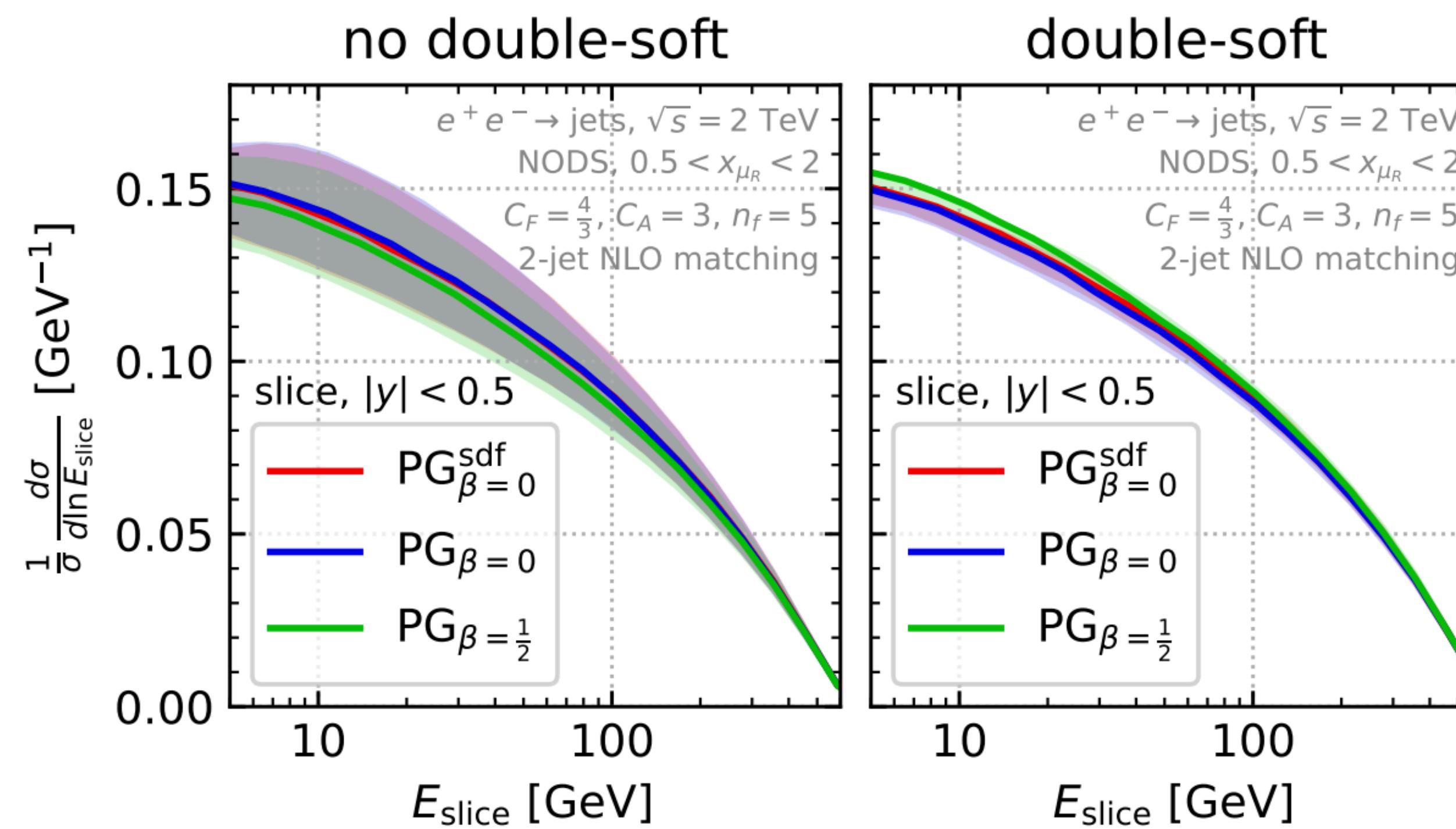
Sunshine

Sudakov Nesting of Hard Integrals

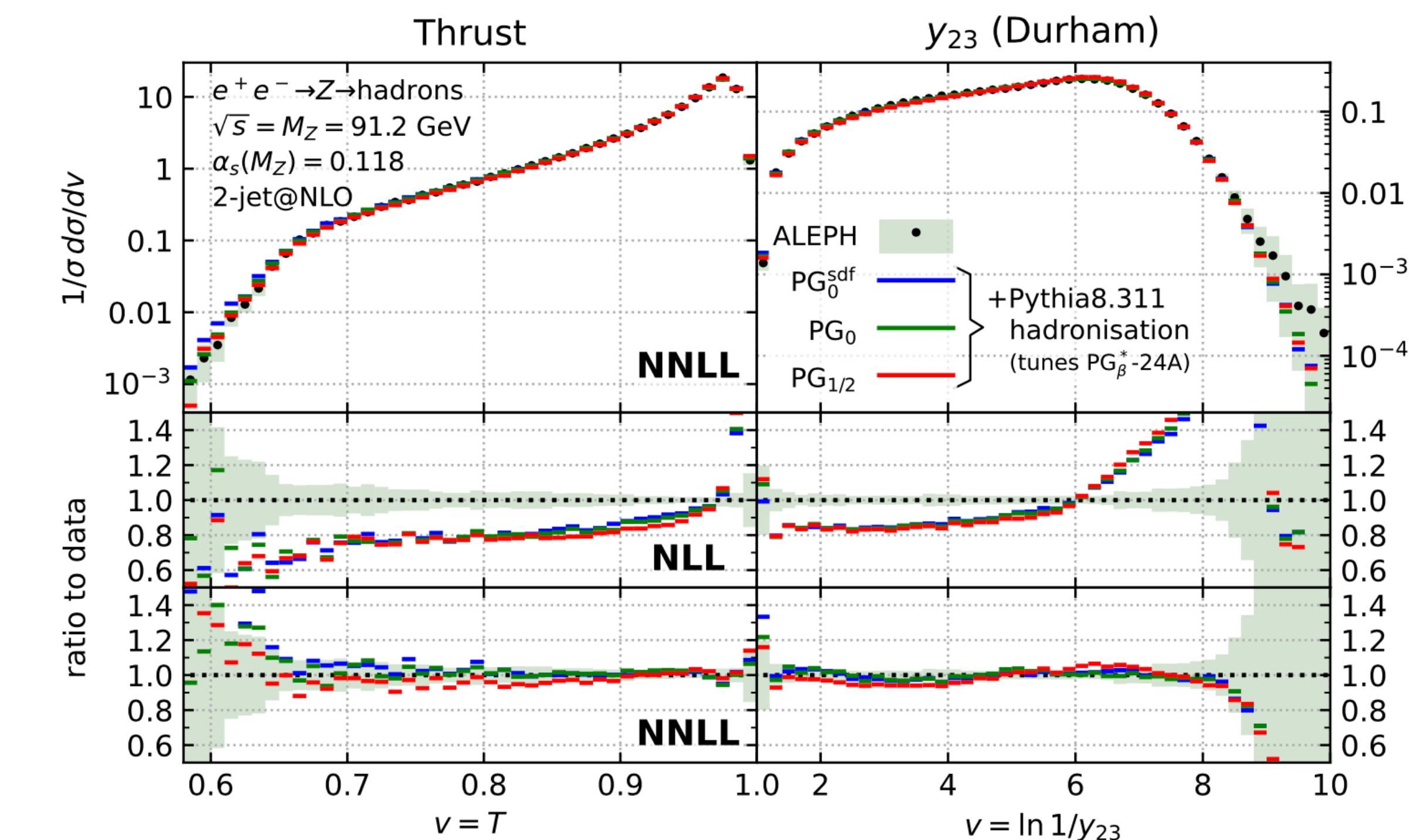
Using generalized parton shower to generate fixed order corrections



2. Parton Showers



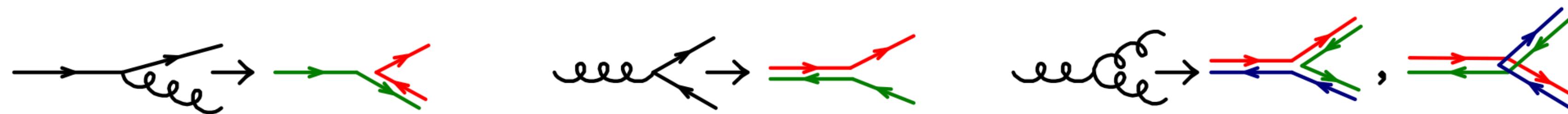
Ravasio et al arXiv:2307.11142



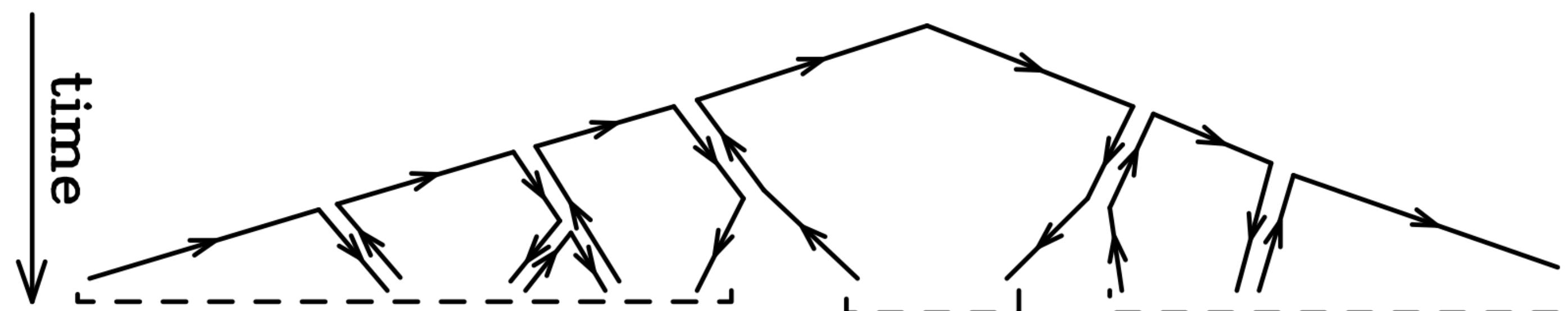
Beekveld et al arXiv:2406.02661

2. Parton Showers

Leading Color Approximation: Dipole Shower



QCD radiation in this approximation is always simulated as the radiation from a single color dipole, rather than a coherent sum from a color multipole.



a color density operator Deductor, arXiv:1902.02105

simulates parton showers at the amplitude level with full color information CVolver, arXiv:2502.12133

$$\text{Diagram: Two blue circles with diagonal lines and dashed lines branching off.} \rightarrow \text{Tr} \left(\text{Diagram: Two blue circles with diagonal lines and dashed lines branching off} \right) \quad \mathbf{A}_n(E) = \mathbf{V}_{E,E_n} \mathbf{D}_n^\mu \mathbf{A}_{n-1}(E_n) \mathbf{D}_{n\mu}^\dagger \mathbf{V}_{E,E_n}^\dagger \Theta(E \leq E_n),$$

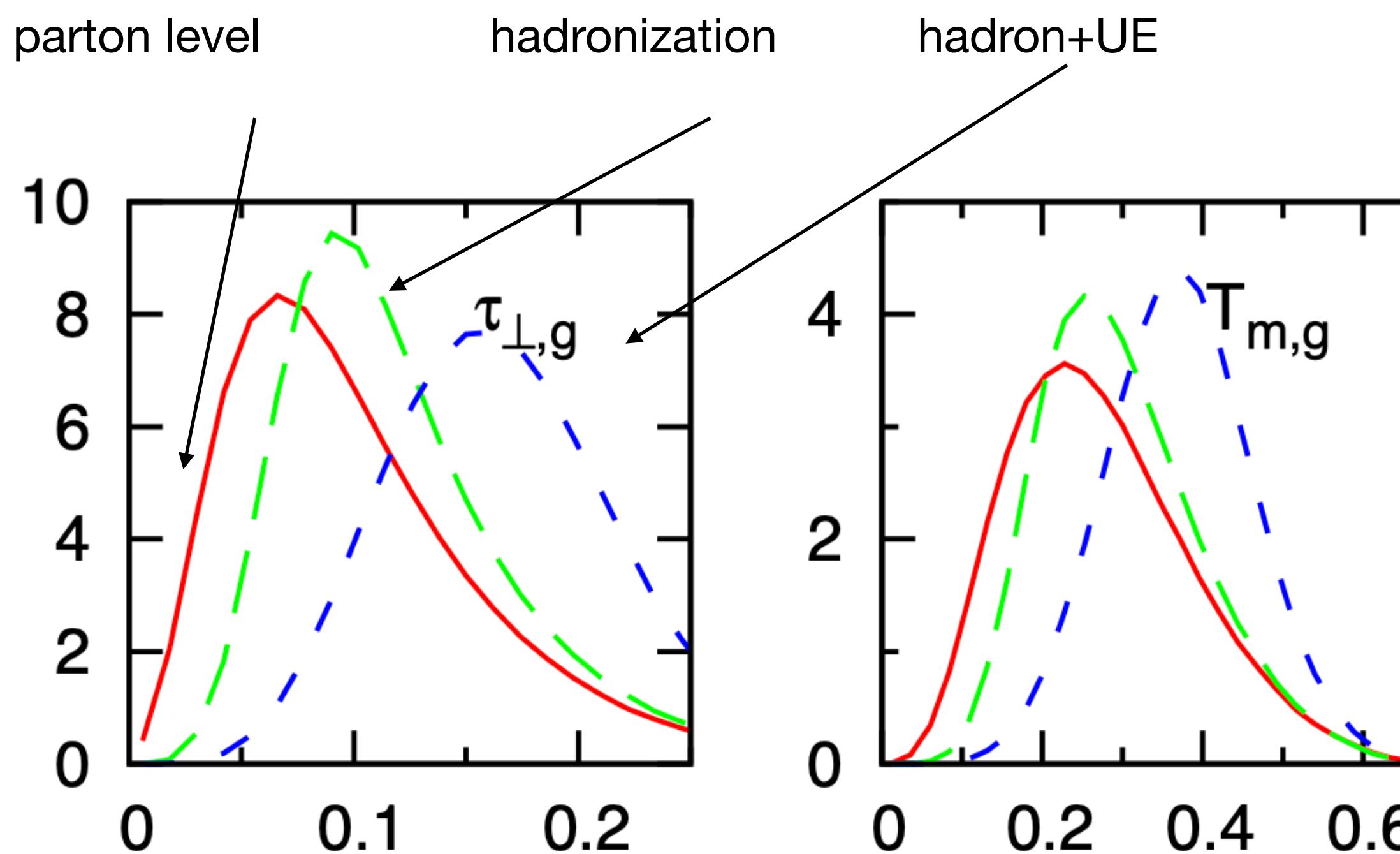
3. Hadronization

hadronization effects

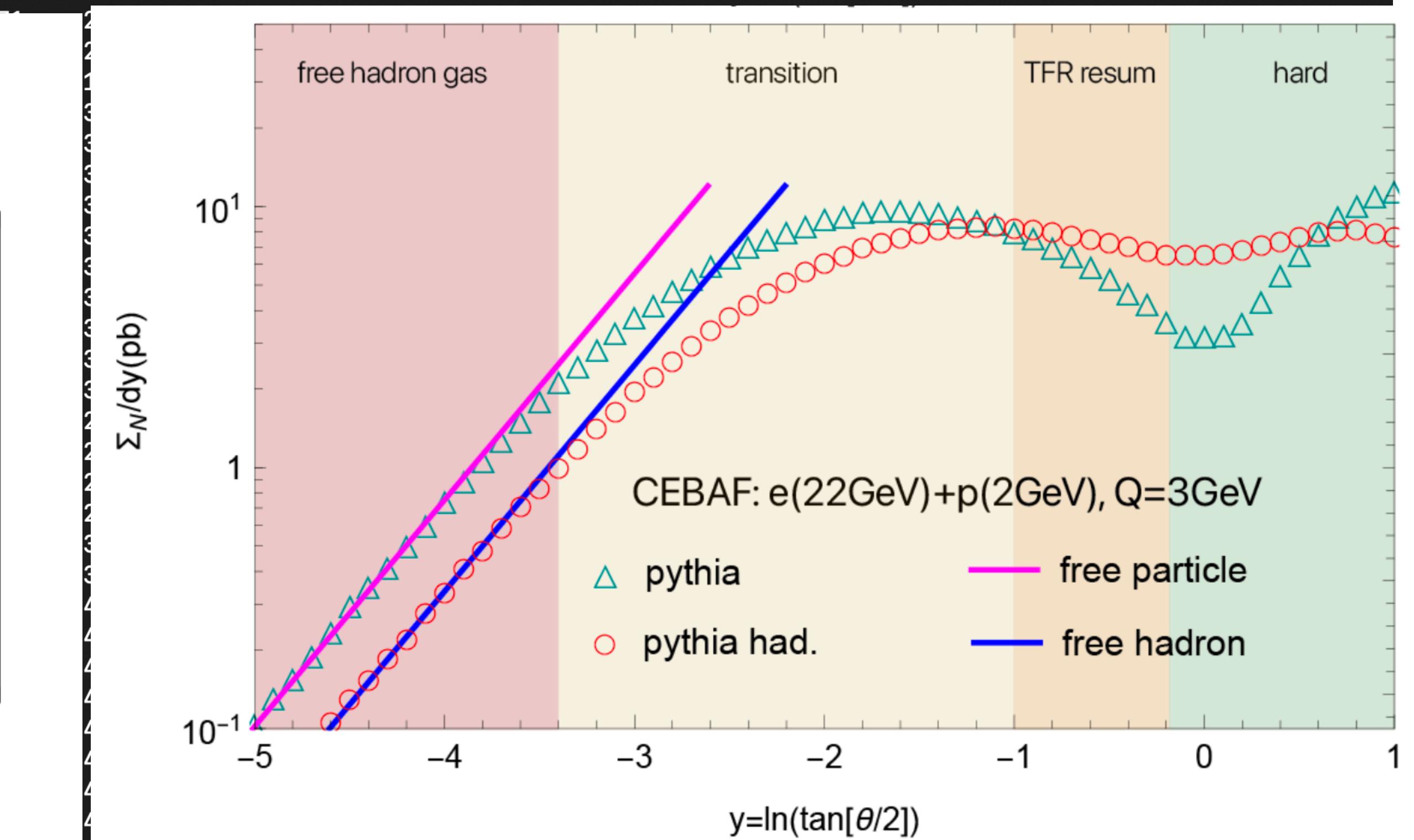
π^0	π^+	π^-	π^0	π^+	π^-	π^0	π^+	π^-	π^0	π^+	π^-	π^0	π^+	π^-	π^0	π^+	π^-
27	-2	(ubar)	-71	17	17	28	29	0	103	-4.526	1.098	4.097	6.212	0.330			
28	3322	(Xi0)	-83	26	27	46	47	0	0	-16.278	-0.490	18.555	24.723	1.315			
29	-3222	(Sigmabar-)	-84	26	27	48	49	0	0	-7.403	1.034	7.932	10.963	1.189			
30	2	(u)	-71	22	22	36	45	101	0	-5.718	1.277	7.107	9.216	0.330			
31	21	(g)	-71	21	21	36	45	107	101	-0.390	0.609	0.444	0.849	0.000			
32	21	(g)	-71	23	23	36	45	110	107	3.597	-0.501	-4.105	5.481	0.000			
33	21	(g)	-71	24	24	36	45	106	110	1.334	0.455	-1.320	1.932	0.000			
34	21	(g)	-71	25	25	36	45	105	106	7.964	-0.514	-7.933	11.253	0.000			
35	-3	(sbar)	-71	11	11	36	45	0	105	16.893	-1.870	-20.679	26.772	0.500			
36	111	(pi0)	-83	30	35	50	51	0	0	-3.511	0.738	4.002	5.377	0.135			
37	211	pi+	83	30	35	0	0	0	0	0.002	0.218	0.085	0.273	0.140			
38	-211	pi-	83	30	35	0	0	0	0	-1.767	-0.071	2.475	3.045	0.140			
39	211	pi+	83	30	35	0	0	0	0	-0.182	0.285	0.651	0.747	0.140			
40	-211	pi-	83	30	35	0	0	0	0	0.016	0.232	0.209	0.342	0.140			
41	211	pi+	83	30	35	0	0	0	0	-0.413	0.450	-0.145	0.643	0.140			
42	-211	pi-	84	30	35	0	0	0	0	2.478	-0.473	-2.622	3.642	0.140			
43	2212	p+	84	30	35	0	0	0	0	6.374	-0.009	-6.640	9.252	0.938			
44	111	(pi0)	-84	30	35	52	53	0	0	0.270	0.111	-0.364	0.486	0.135			
45	-3122	(Lambdabar0)	-84	30	35	54	55	0	0	20.414	-2.024	-24.136	31.696	1.116			
46	3122	(Lambda0)	-91	28	0	56	57	0	0	-14.222	-0.534	16.090	21.510	1.116			
47	111	(pi0)	-91	28	0	58	59	0	0	-2.056	0.043	2.465	3.213	0.135			
48	-2112	nbar0	91	29	0	0	0	0	0	-5.613	0.671	6.203	8.445	0.940			
49	-211	pi-	91	29	0	0	0	0	0	-1.790	0.363	1.728	2.518	0.140			
50	22	gamma	91	36	0	0	0	0	0	-3.222	0.667	3.613	4.887	0.000			
51	22	gamma	91	36	0	0	0	0	0	-0.289	0.071	0.388	0.490	0.000			
52	22	gamma	91	44	0	0	0	0	0	0.028	-0.020	-0.008	0.036	0.000			
53	22	gamma	91	44	0	0	0	0	0	0.242	0.131	-0.356	0.450	0.000			
54	-2212	pbar-	91	45	0	0	0	0	0	18.123	-1.732	-21.512	28.198	0.938			
55	211	pi+	91	45	0	0	0	0	0	2.291	-0.292	-2.624	3.498	0.140			
56	2212	p+	91	46	0	0	0	0	0	-10.893	-0.393	12.398	16.535	0.938			
57	-211	pi-	91	46	0	0	0	0	0	-3.329	-0.140	3.692	4.975	0.140			
58	22	gamma	91	47	0	0	0	0	0	-0.678	0.003	0.911	1.136	0.000			
59	22	gamma	91	47	0	0	0	0	0	-1.378	0.040	1.554	2.077	0.000			

3. Hadronization

hadronization effects

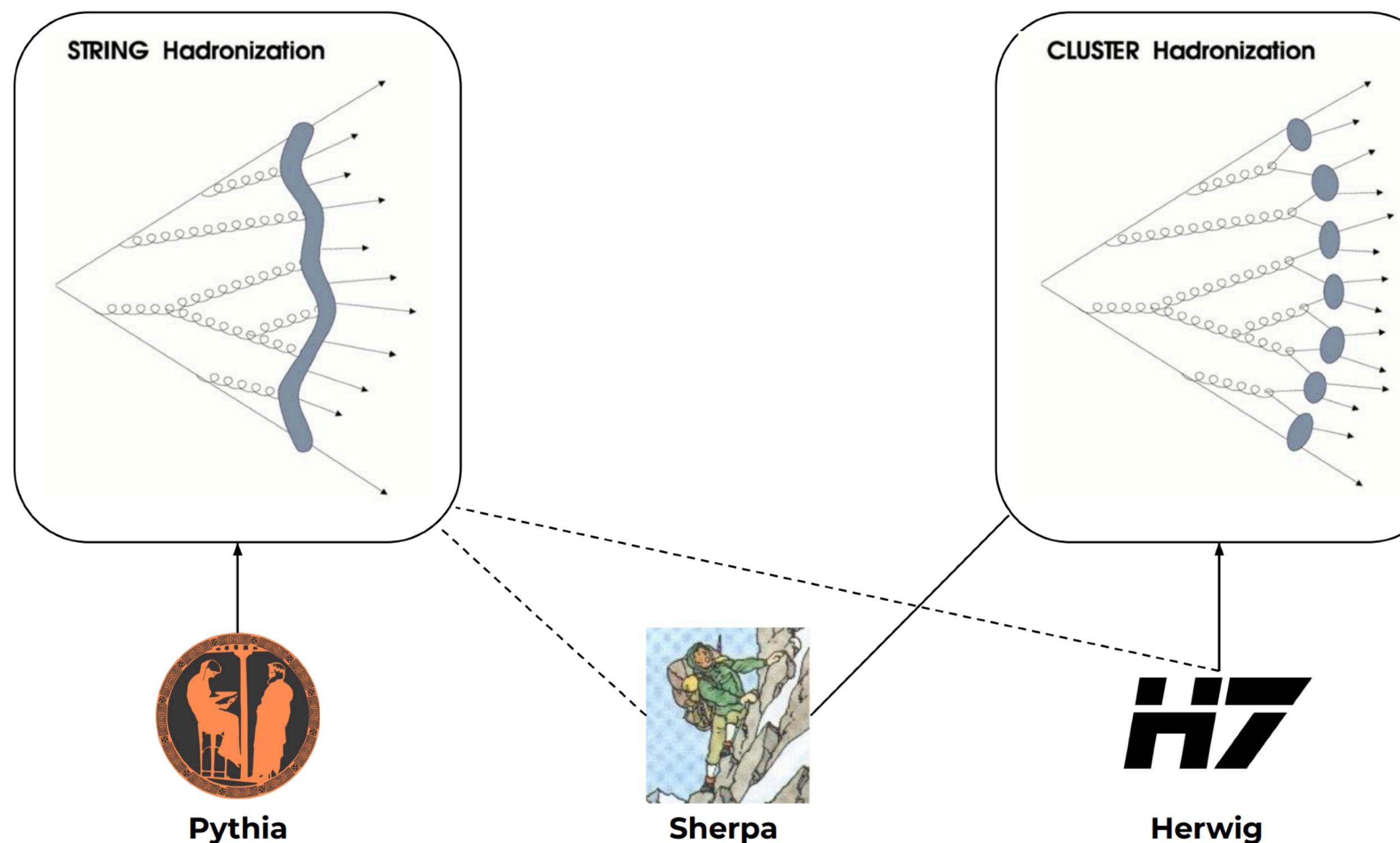
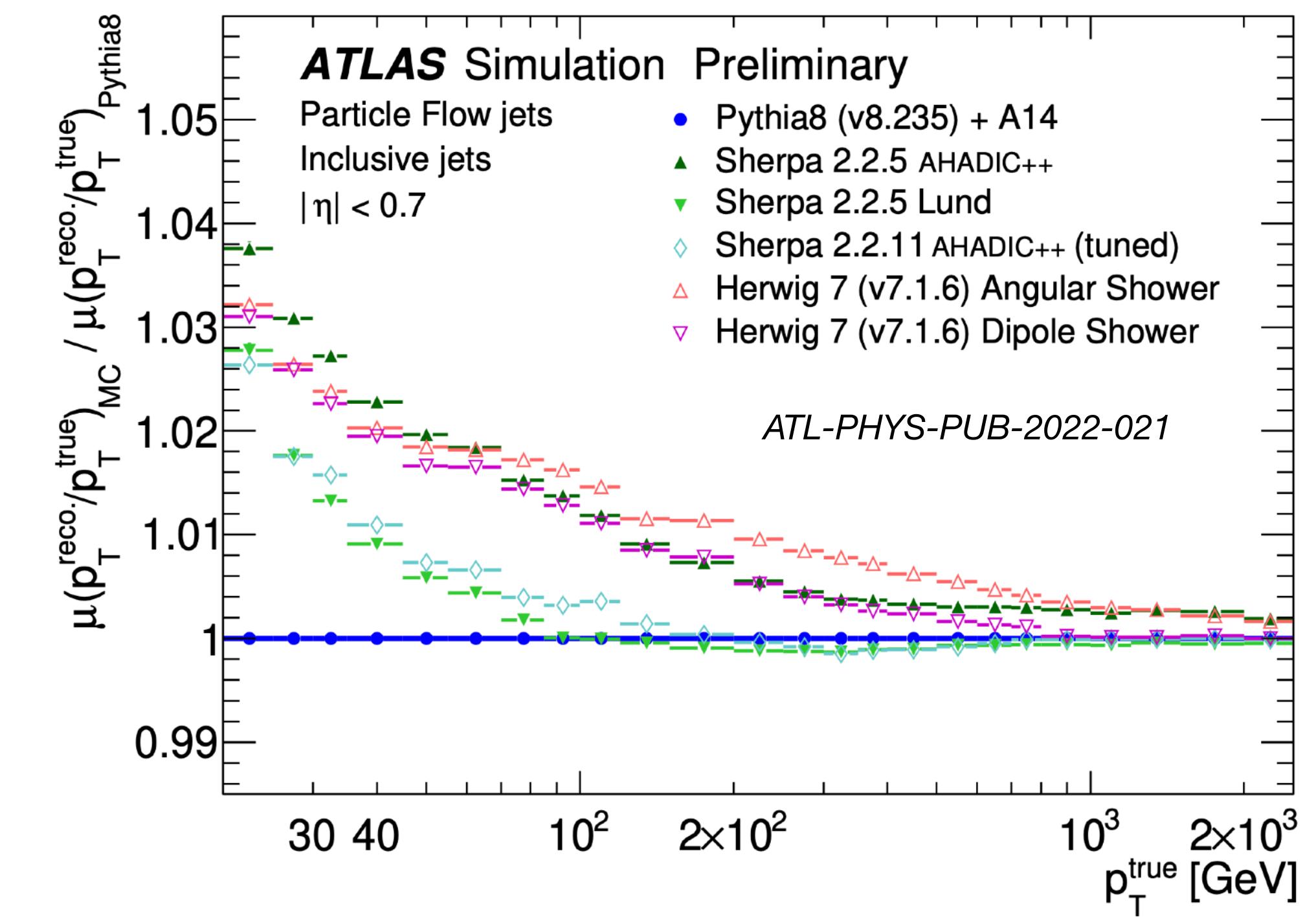


Banfi, Salam and Zanderighi arXiv:1001.4082



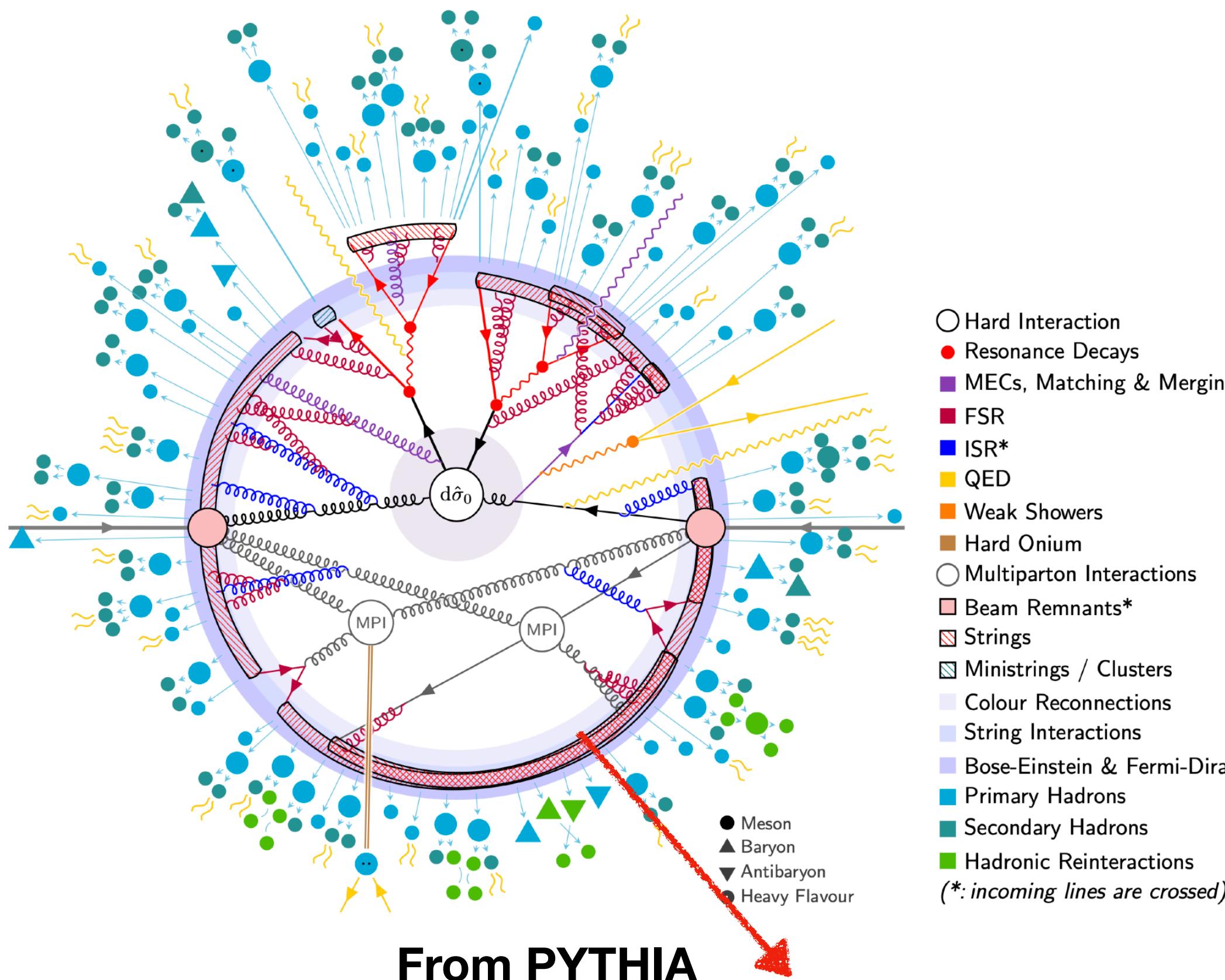
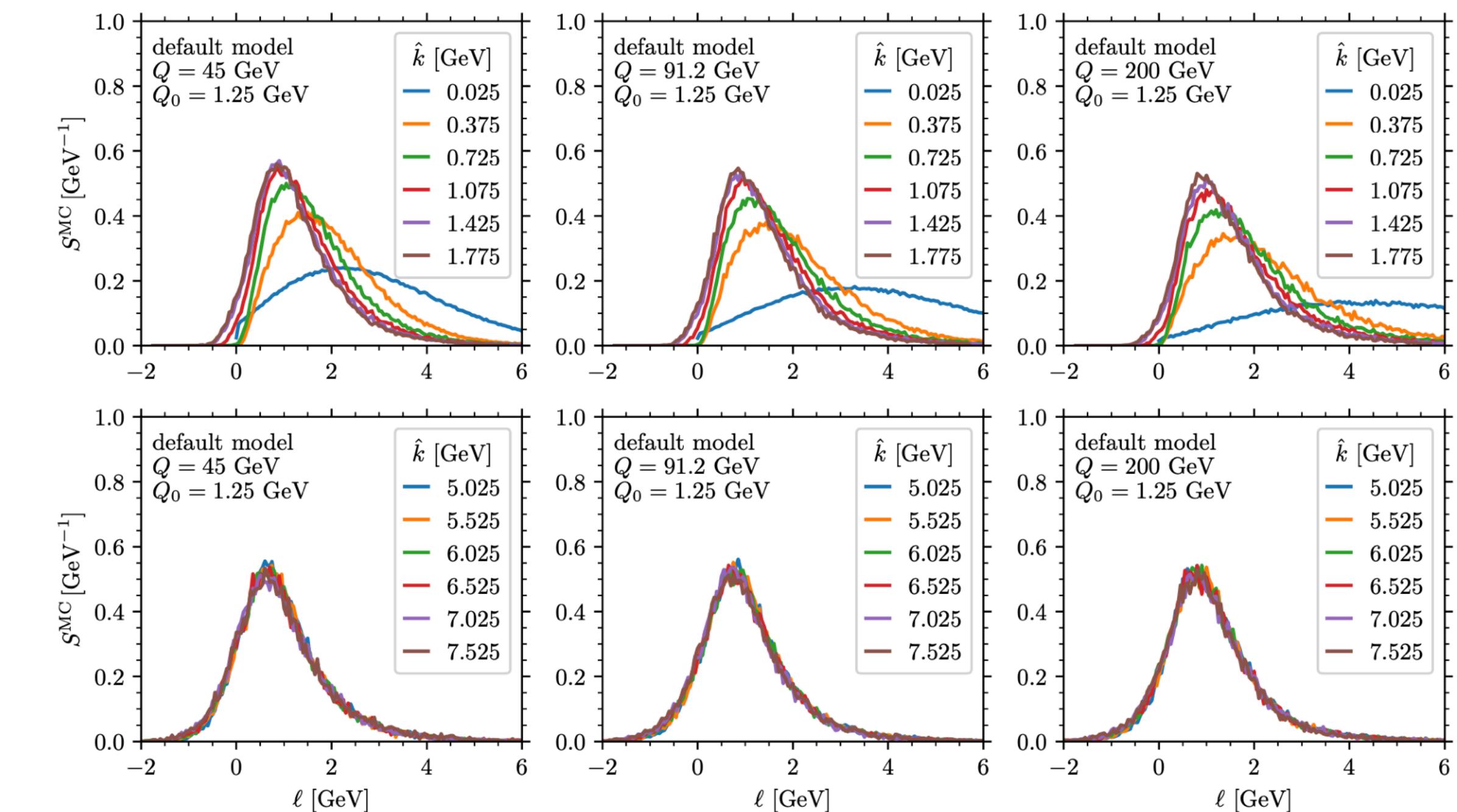
Cao, HTL, Mi, arXiv:2312.07655

3. Hadronization



differences between
different models and tunes

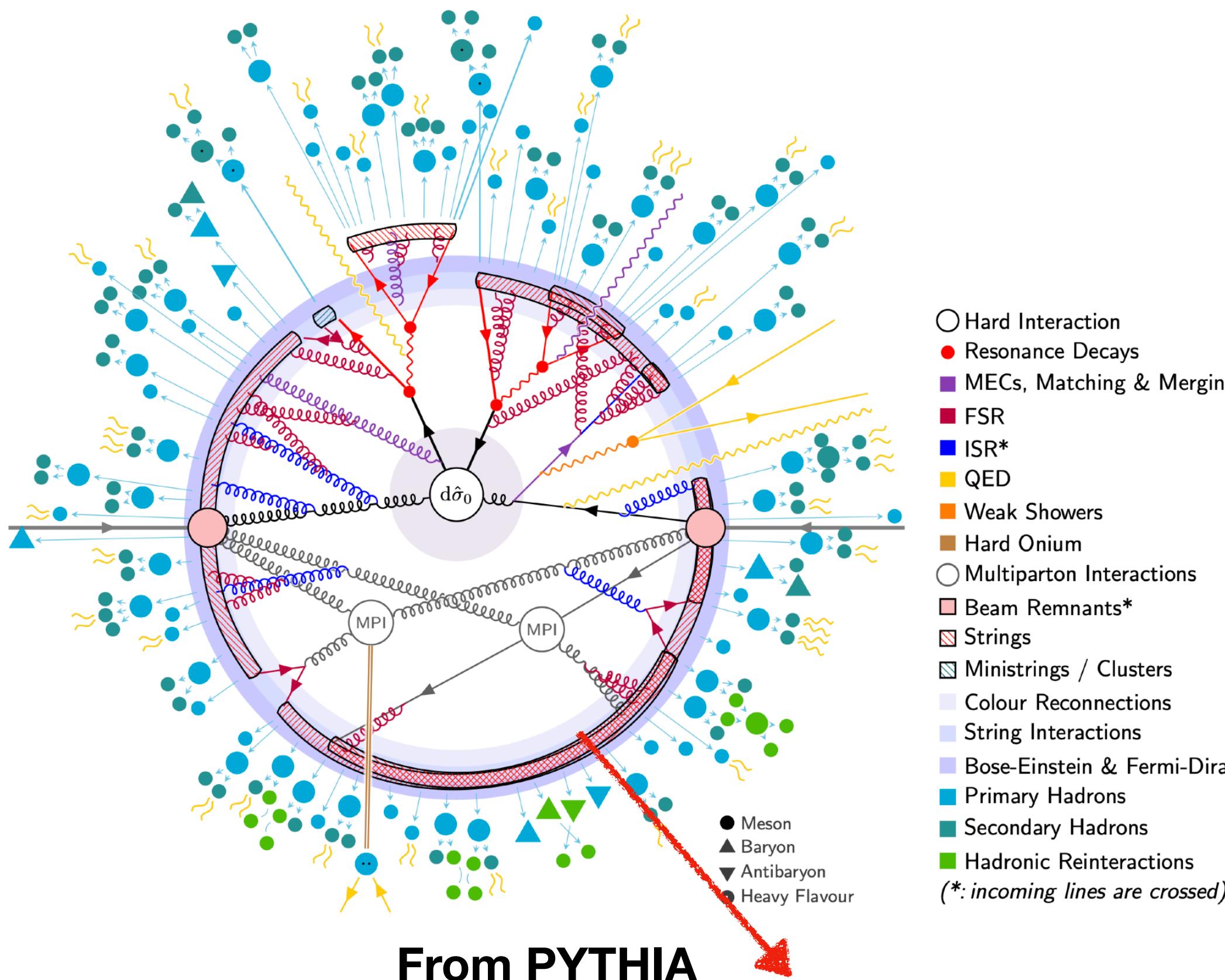
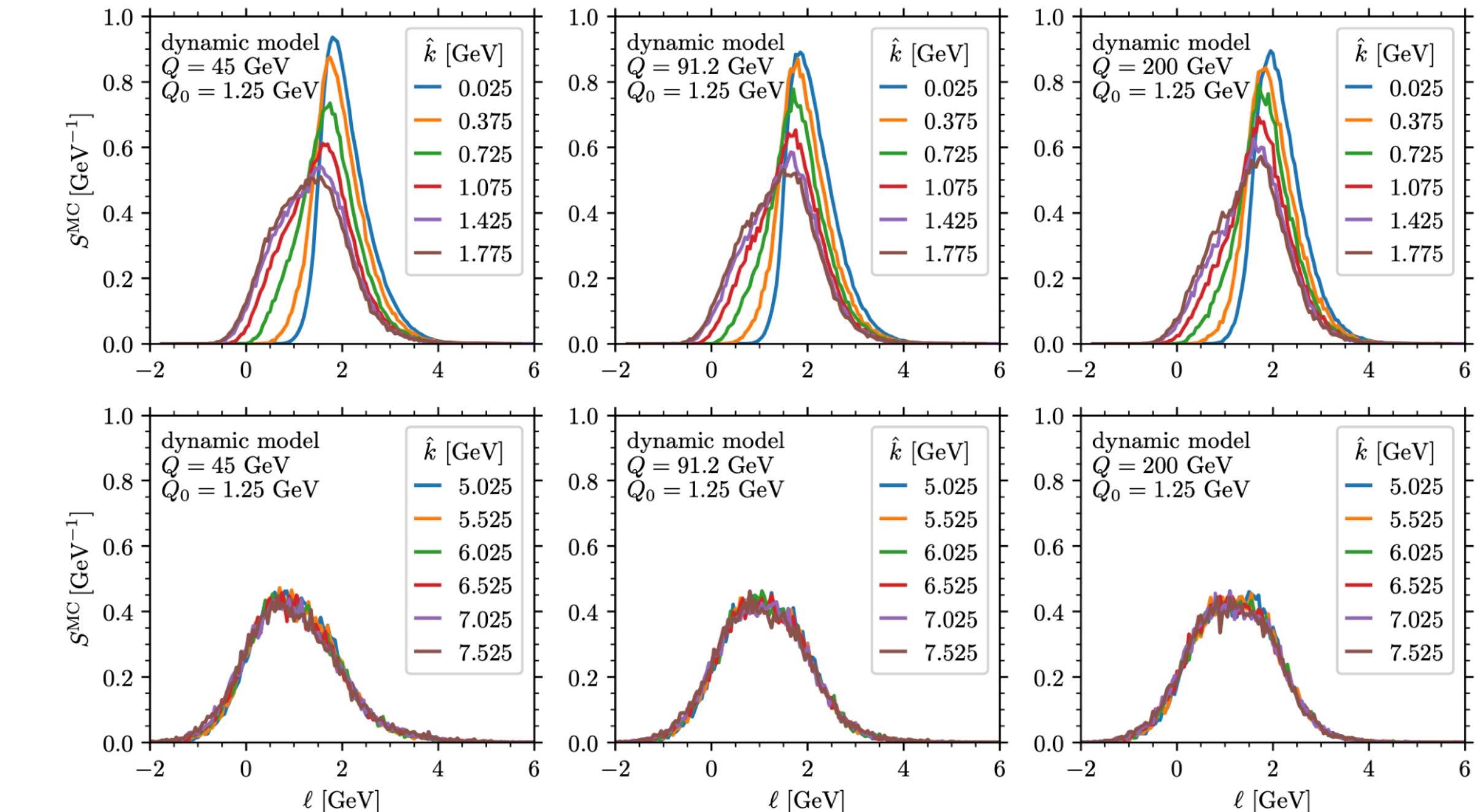
3. Hadronization



Physics should be independent on the transition scales

Matching the evolution of the perturbative evolution with hadronization arXiv:2404.09856

3. Hadronization

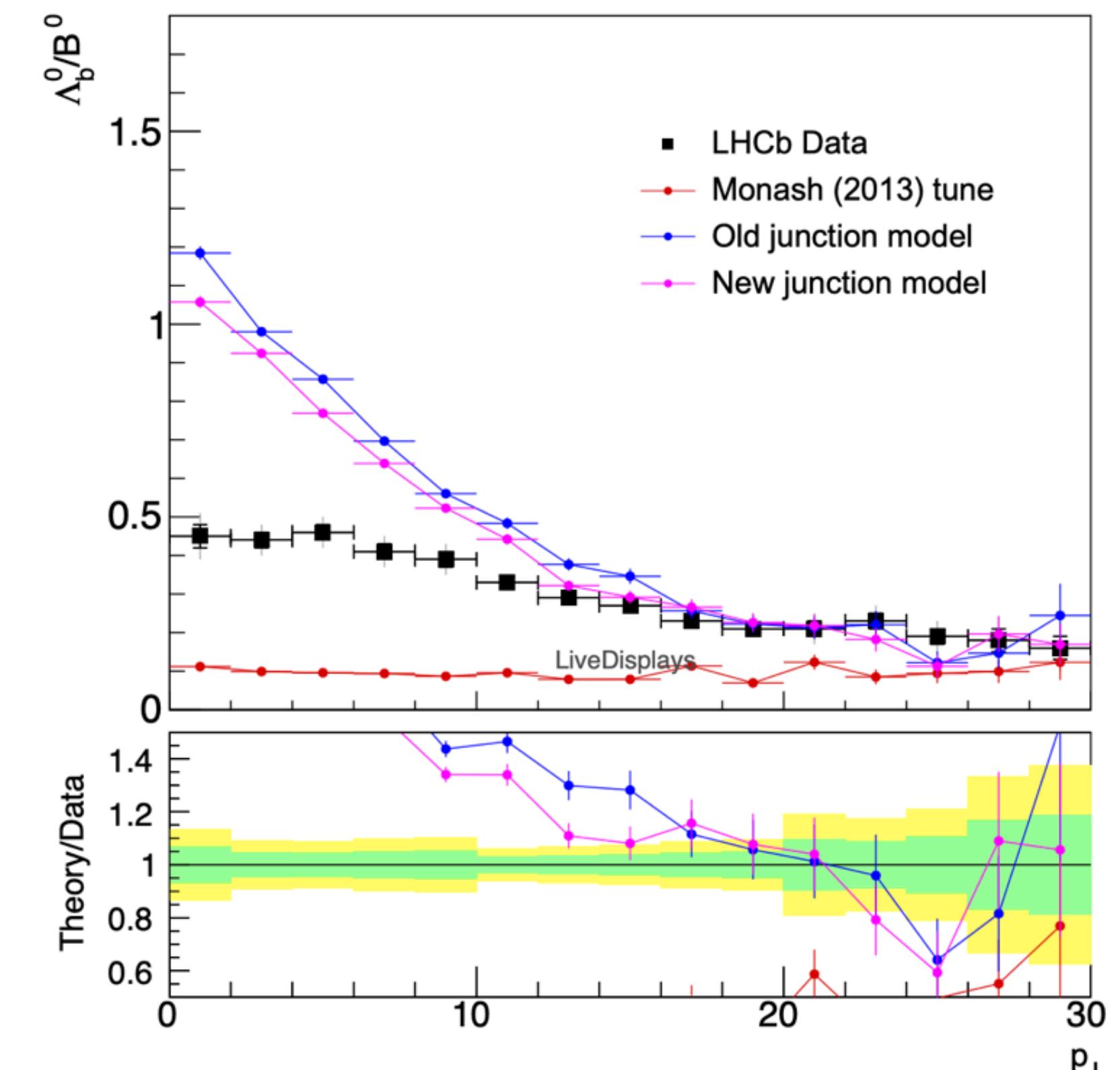


Physics should be independent on the transition scales

Matching the evolution of the perturbative evolution with hadronization arXiv:2404.09856

4. Summary

- MCEGs are essential computational tools for experimentalists and theorists
- Starting from hard processes to generate the perturbative and nonperturbative QCD radiations
- Recently, a lot progresses on improving the logarithmic resummation order of Parton Showers
- Also, subleading color effects are discussed
- Hadronization model, multiple parton interactions (MPI), and underlying event descriptions introduce uncertainties

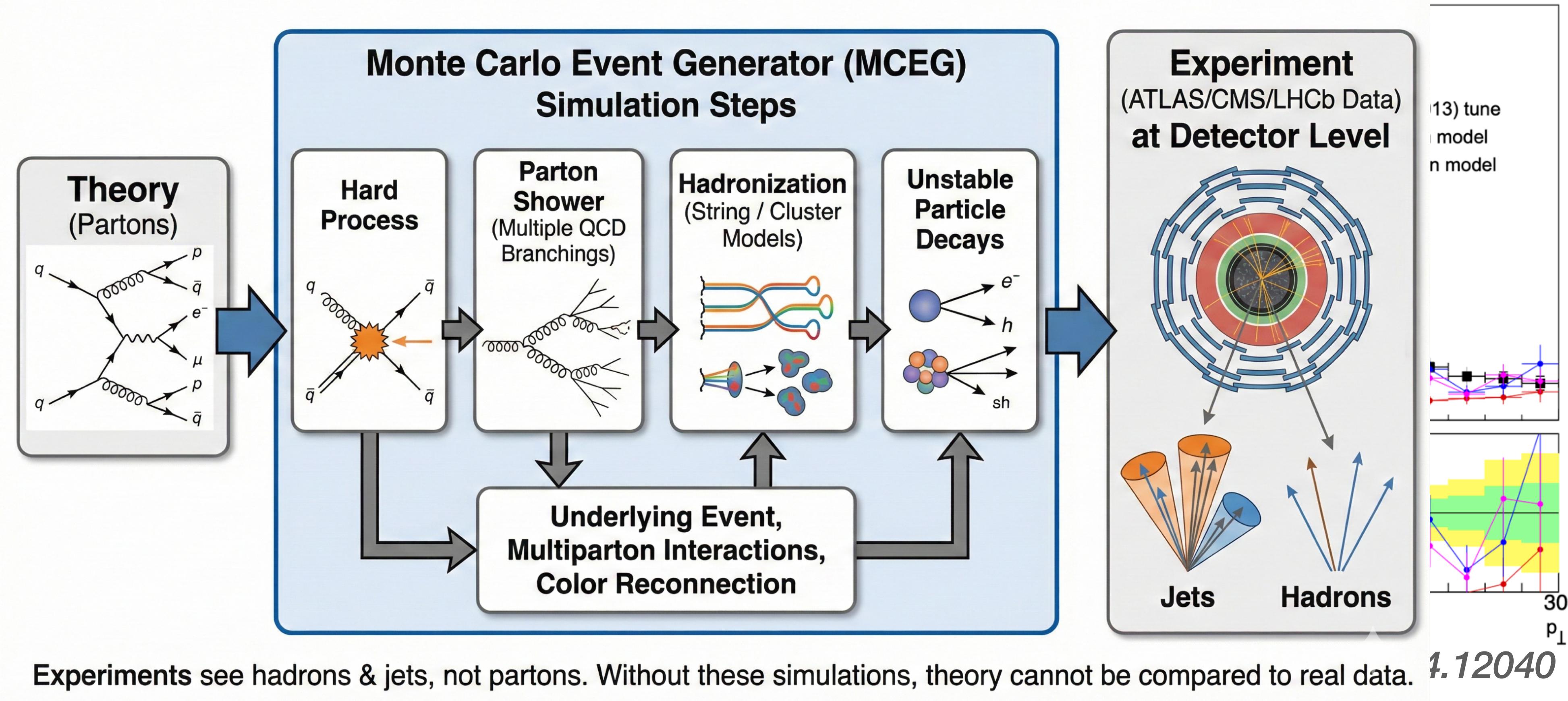


Altmann, Skands, 2404.12040

4. Summary

MCEG Simulation Chain: From Partons to Detector-Level Hadrons & Jets

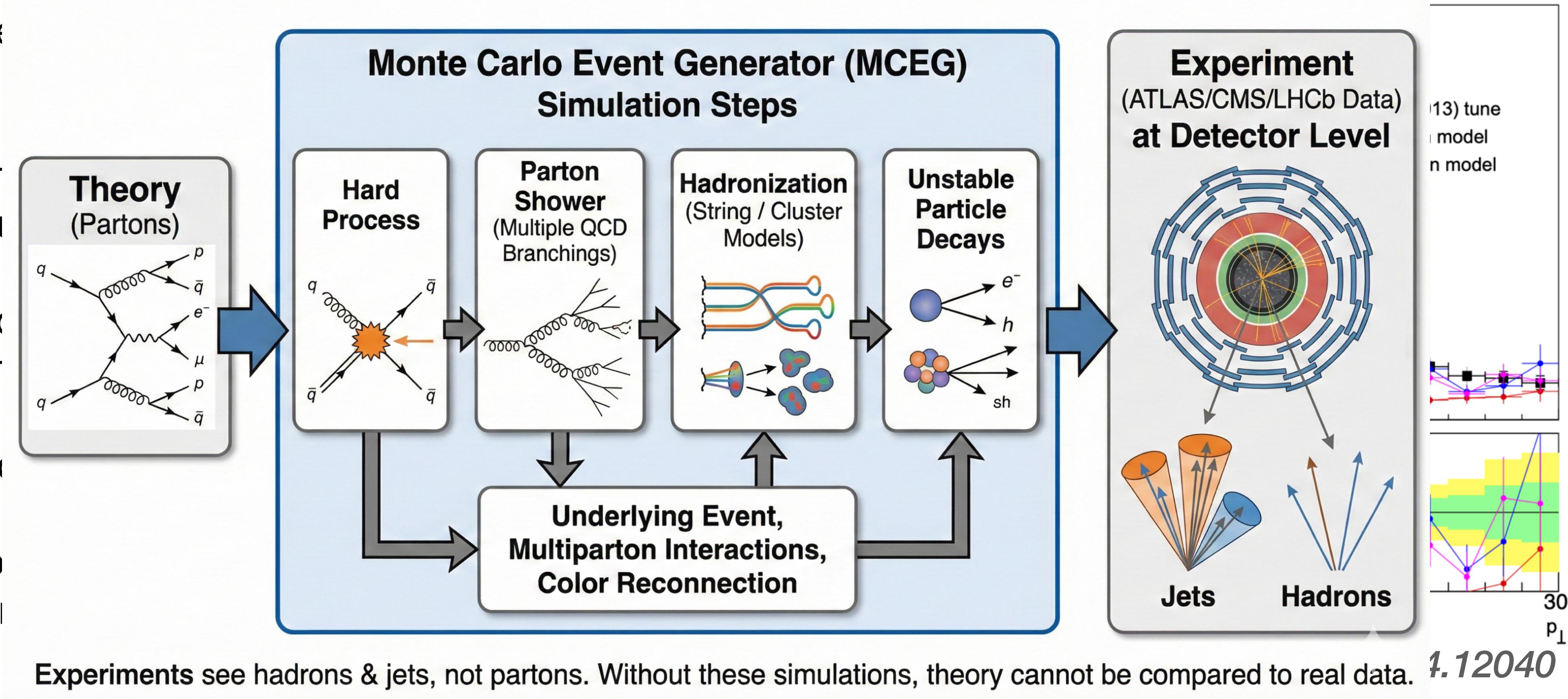
- MCEGs are essential for experiments
- Starting from theory and nonperturbative models
- Recently, a lot of work on resummation
- Also, subleading order
- Hadronization and underlying event



4. Summary

MCEG Simulation Chain: From Partons to Detector-Level Hadrons & Jets

- MCEGs are theoretical tools for experiments
- Starting from theory and nonperturbative models
- Recently, a lot of work on resummation
- Also, subleading order corrections
- Hadronization and underlying event



Thank you!