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1. Introduction

e perturbative calculation for the hard cross section

do = d6®? + o, deHY +a?2d60 + a2 d6Y + ade®Y + any detY + ..

Leading NLO NNLO N3LO NI.O Mixed
Order QCD QCD QCD EW QCD-EW
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Leading
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e perturbative calculation for the hard cross section

do = d6' " + o, d6h? + a2 d6*? + a2 de®? + ads' OV + aa, e +

Mixed

QCD-EW
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1. Introduction
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Resummation is essential for many collider observables.
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1. Introduction

The purpose of Monte Carlo event generators is to generate events in as much
details as nature (generate average and fluctuation right)

Lq)event — quHard ® Lquecay X ‘@ISR ® Lq)FSR ® L?JMPI & &P Had ™

[_JHard process in high energy 1  hard scale

] Transition from high energy to
low energy
— parton shower

Parton shower

e hadronization
[JLow energy soft regime l

Fragmentation
—fragmentation J

stable particles
[Parton shower: for the evolution from high scale to hadronization scale|
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Uncertainties

:/ - 10%F | | | - 3 . ] | | | IS B
o| 3 - ATLAS H Lata ] wlE210L ATLAS em Lata il
12 . S 10F (s=13TeV, 140" Plwhegspythia 1 Sl | (s=13TeV, 14017 " plitoipyinia |
—lo 1 k> 1.0 GeV v gnerpa Iiuzng; : lb-c ki > 1.0 GeV v gﬂerpa Iéuzng
5 erpa ERRE erpa
2 € [500, 750] GeV 2 Sherga 2.2.11) ; U3 Pr €[500, 750] GeV 2 Sherga 2.2.11) =
10~ o w+  Sherpa (DIRE) | - x  Sherpa (DIRE) ]
In(k?) o . ™ Sherpa (Alaric) : l Sherpa (Alaric)
4 t . + Herwig (AngOrd) 1L . B ¥ + Herwig (AngOrd) |
more 1072 ¥ 4 107k ¥ 5
: In(R/AR) = ; :
perturbative : : i
] 10° | : i -
! o i | | | L 1o 1077 | | | | | | | 3
58 1.6f I | | I$ | 58 16fx I ! I I I |
A 140, " 5o Moy
a4 1.2- $§ - 5 & 4 1.25- & &
L AL S B S B LA T
2 o4l | | | | | 2 a1 | | | | | |
= - — Total Syst. ---- Stat. O = - — Total Syst. ---- Stat.
include =8 e Unfolding — MC Model =8 e Unfolding — MC Model
© 8 0.2 — Experimental © 8 0.2+ — Experimental
TR = TR = ]
X s Pt e e e e el O S5 e L e
In(ki,cut) T e e TSSO STt o ieivtehivieiiviviieivivivisiviviteivieiieieiteirion 0 ....'..'..'..""‘E;Ez""“""""" e L
5 ' I I I I I I I I I I I I
Y 5 10 15 20 25 2 4 6 8 10 12 14
more NLund NET:;ary
non-perturbative

ATLAS, 2402.13052

10



1. Introduction

e Hard scattering matrix elements |

Perturbative
e Parton shower

Uncertainties arise from

~« Hadronization models |

| Non-perturbative « Color reconnection

b
|
g i i e Sedeiaiasin el ag AN T L BB il e o 0 TP e S -Rdaion kGt odeus A NS R SN e e SR 5 -
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2. Parton Showers

Parton showers approximate higher-order real-emission corrections to
the hard scattering process

(1 Generate cascades of radiation automatically
[ Locally conserved four momentum
(] Locally conserved flavor

(1 Unitarity by construction
Parton showers
1 sample infrared configurations

(J simulate the evolution of parton (resummation)

Parton shower indispensable tools for particle physics phenomenology

12
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2. Parton Showers

In the collinear or soft limit, the matrix element can be factorized as

n+1 external legs n external legs

Together with phase space integration, the cross section is

2
doy,y = — | iy, | M, 1> = do, ® d M
Opt+1 = 2_S ¢n+1 ‘ n+1 ‘ — do, X ¢n—>n+1 X )
If we want to get the single unresolved limit correct, dad > — can be written as universal functions.
| M, |

higher multiplicities can be obtained recursively

13



2 Parton Showers

+1 — 4 Jd¢n+1 | M n+1 ‘ — d" ® d¢n—>n+1 X

\Mn E
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2 Parton Showers

do, | = 2s Jd¢n+1‘ +1‘ = oy @ Ay X U\Z 2

HIn the exact single-unresolved limit]

] ‘Mn_|_j_ ‘2
Un X eXp ¢n—>n+1 ‘M 2

n

with the probability function exp J‘d¢n_>n+1

M

n+1

| M

n

14



2. Parton Showers

2
‘Mn+1 ‘

| M, |

Sudakov form factor: Non-branching probability exp J'dqﬁn_mﬂ

choose kinematic variable as
the evolution scale

nqz ‘Mn ‘2
A (Qza C]2> — CXP d¢n—>n+l +12
J Q2 ‘Mnl

Probability that there is no branching from Qto gis A, (Qz, qz)

Probability for one observed branching 1 —A <Q29 q2>

Probability one branching between the scale q2 to q2 + dq2

d I
d_qu <Q29 q2> = A (Qza q2) X dqbn—>n+1 |M 2

Additional radiations can be added according to the function A (Qz, qz)

15



2. Parton Showers

Infrared structure for single unresolved limit is well known

Pg—qg(2q) | Pg—ag(23) DCGLAP
5 Sqg Sgq
| R N —

DGLAP splitting functions used

|
Sqg Sgq

g-(soft-)collinear  g-(soft-)collinear

applied widely used CS dipole subtraction terms

2\ g

q
g-collinear g-collinear
g
) Kqug;a(Zq) : KaHag;q(Zc'r) CS Dipoles
q

25, 1 (sga S8 ) Antennae antenna function obtained directly from

| |
SqgSgg S \ Sqg  Sgg matrix element square

S~ ————
soft collinear
do? B dqg* B dk?
> dZPji(Z) 92 q2 sz_
q ks 2. Q3/k> many choices for the evolution variables

0 2 1 —O2/12
. ‘Mn+1‘ o dk2 as ok
Phase space mapping |d¢,_, . =
M, |
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Phase space mapping

d¢n—>n+1 —

2. Parton Showers

2
‘Mn+1 ‘2 JQ dk2 U

‘]‘4n|2 q2 k2 27[

Monte-Carlo Technigue and resummation

Sudakov factor A (0% 03)

J 1-Q3/k?
Q3/k>

1.0 w

0.8 |-

Generate
random number "
Re(©0,1) .

0.0

test function

0.0

Q2/Q1

Solve R = A for Q1/Q2

11, Q1, 1. Qf
=— Log[—1% + —Log[~—
20 "9t T 2079,

| 0.2 | O|4 016 O|8 | 1.0

dzP ji(Z)

do? B dq? B dk?
2 g2 k?
many choices for the evolution variables

0,/ distribution generated by

dA/dx

d | M, |

— A (O? 4%2) = A (0O? 42
e (0%.¢%) = A(Q%q%) X dby 41 P

—— Analytical
10 -

® MC Simulations

50000 points

0.10 -

0.01 -
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x=Q2/Q1
new phase space point generated

according to the new scales 5



2. Parton Showers

For multi-scale problem

ey YA . .
EEMITE NLL: PanScales, Alaric, Herwig et al
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2. Parton Showers

NLL accuracy is the becoming the new standard

Logarithmic accuracy of parton A new approach to color-coherent parton
showers: a fixed-order study  Parton showers beyond leading evolution
Dasgupta, Dreyer, Hamilton, Monni, logarithmic accuracy Herren, Hoche, Krauss, Reichelt, Schénherr [2208.06057]
Salam [1805.093271 Nasgupta, Dreyer, Hamilton, Monni, Salam, - ) o
P SO{/GZ 12002.11114] New,approach to QCD final-state evolution i

Colour and logarithmic accuracy ir

final-state parton showers Spin correlations in final-state parton processes with massive partons

Assi, Héche [2307.00728]

Hamilton, Medves, Salam, Scyboz, Soyez showers and jet observables \
[2011.10054] Karlperg, Salam, Scyboz, Verheyen [2103.16526] The Alaric parton shower for hadron colliders
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2. Parton Showers
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2. Parton Showers
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2. Parton Showers
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X zZ + [ s : . ::f,i 2 ﬁ:fclg

PDF4LHC1S_nnlo_mc

N’LL

| | I | | | | | |
| | | | | | | | |
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NNLL would include the full NNLO pole structures

20



2. Parton Showers

LO parton shower

From parton shower

_1-A(0% 02
A

O-radiation

1-radiation (Sudakov suppressed)
From the definition of Sudakov factor, we have

SP(unresolved) + L(resolved) = 1

probability conservation from the definition of A

Resummation from Showers +

From NLO calculations

dd V +

ONLO = Op T (

integrated
subtraction

virtual subtracted real

d6n+1

Ly
[

0

n

1, as the resolution scale for 1-radiation

LO parton showers reproduce the NLO singular behavior
of the underlying hard process with unitarity assumption

v+ |R=0.

Hard emissions From fixed orders ..



2. Parton Showers

To which order can Parton Showers do?

NLO corrections to resummation kernel

What we expect for NLO showers

L G <

NLO parton shower

dd
o (1-2(0.07)  =- Jdsz‘S (0 - 0% (@) (a5 +a3) A (Q5. Q%)
branching probability “born and virtual correction
dd
- | St (02~ 0 (@)t a (0307

d®,

real correction

HTL, Skands, arXiv:1611.00013
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Expanding the Sudakov factor to NNLO and compare it with full NNLO corrections
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2. Parton Showers

Matching using NLO antenna shower
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2. Parton Showers

Fixed order should look like

Sunshine by @vector_corp on freepik.es . . g
matrix element ratio 0> DX(1->2)Xx-Xnm—1—->n)

R — Usually showers will give (O — n)
| Sudakov Nesting of Integrals|

. Using generalized parton
shower to generate fixed |
_order corrections |

Altmann, HTL, Scyboz, Skands, arXiv:2507.00111
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2. Parton Showers

keep the parent events after branching, and ask the event branches m
times at stage 0 — 1, then shower them afterwards

dPnmo...0 _ dPOO .0 H/ anto.1 (1 )dfj
t

do,,
Sunshine by Ovector_corp on freepik.es keep all the intermediate states and shower them 1, times
SunSh | ne from kK — 1 partons to k partons
S— SR — dPmima..mn dpoo...o - mk T,
| mimz..Mn __ / ante_ 1.k (tkj) dtkj
d®,, 4o, k AL,
| | | | . . e dPrmims..m dPoo 0
' Using generalized parton k m%o d®n H A tk 1 tk)
shower to generate fixed |
_order corrections | dP n—.l
SUNSHINE : E m&gz“'mn = | Mp|? H ant; ;41 -
n .
Altmann, HTL, Scyboz, Skands, arXiv:2507.00111 my 20 1=0
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Sunshine by @vector_corp on freepik.es

Sunshine

2. Parton Showers

1 do
G'BdD

Sudakov Nesting of Hard Integrals

Using generalized parton .

9999
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q99

shower to generate fixed

order corrections
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Altmann, HTL, Scyboz, Skands, arXiv:2507.00111
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2. Parton Showers

no double soft

double soft

oo —>Jet5 \5—2TeV
NODS; 0.5 <x,, <27

: ince, ly| < 0.5
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2-jet NLO matching 1 |
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2-jet NLO matching -
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Ravasio et al arXiv:2307.11142

1/odo/dv

ratio to data

Th ru st

y>3 (Durham)

10 } e*e~—Z-hadrons ‘_-‘*- __M”Wv" ]
Vs =Mz=91.2 GeV o = ".. '-’01
1 b as(Mz) V q_° :
2-jet@NLO 40.01
0.1F -~ | ALEPH  * b
3 sdf - -3
o1l v | PGo +Pythia8.311 =..3 10
| = PGy — 2 hadronisation - »
10-3 B NNLL | pg , ——] (tunesPG;-24n) -310
1.4
1.2
1.0
0.8
0.6
1.4
1.2
1.0
0.8
0.6
0.6 0.7 0.8 0.9 1.0 2 4 6 10
v=T v=Inl/y>s3

Beekveld et al arXiv:2406.02661
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2. Parton Showers

Leading Color Approximation: Dipole Shower

> (CQ? >\< wu./<—>—=—< qw(_ﬁi>—=—/<, 1<

QCD radiation in this approximation is always simulated as the radiation from a
single color dipole, rather than a coherent sum from a color multipole.

i @/QOW\\,

a color density operator Deductor, arXiv:1902.02105
simulates parton showers at the amplitude level with full color information CVolver, arXiv:2502.12133

\ / — Tr( / \ ) A,(F) :VE,EanAn—l(En)DIWVE,En@(E < E,),

aWIT)
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3. Hadronization
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hadronization effects

parton level
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3. Hadronization

0

-2 (ubar)
3322 (Xi9)
-3222 (Sigmabar-)
2 (u)
21 (g)
21 (g)

hadron+UE

02 04 0.6
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ﬂTRING Hadronization \

3. Hadronization
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Physics should be independent on the transition scales

3. Hadronization

From PYTHIA

@ Meson
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Matching the evolution of the perturbative evolution with hadronization arXiv:2404.09856
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3. Hadronization
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Physics should be independent on the transition scales

Matching the evolution of the perturbative evolution with hadronization arXiv:2404.09856



MCEGs are essential computational tools for ]

experimentalists and theorists

4. Summary

Starting from hard processes to generate the perturbative
and nonperturbative QCD radiations

Recently, a lot progresses on improving the logarithmic
resummation order of Parton Showers

Also, subleading color effects are discussed

Hadronization model, multiple parton interactions (MPI),

Theory/Data

and underlying event descriptions introduce uncertainties

| T | L I o

= LHCb Data

«— Monash (2013) tune
—— 0Old junction model

«— New junction model
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Altmann, Skands, 2404. 12040l
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4. Summary

MCEG Simulation Chain: From Partons to Detector-Level Hadrons & Jets

Monte Carlo Event Generator (MCEG)

Hard
Process

Simulation Steps

g P 4
arton Hadronization

Shower (Strin
: g / Cluster
(Multiple QCD Models)

Branchings)

r

Underlying Event,
Multiparton Interactions,

Color Reconnection
G 3

Unstable
Particle
Decays

\

r

Jets

Experiment
(ATLAS/CMS/LHCb Data)

at Detector Level

Hadrons

~

13) tune
' model
n model

Experiments see hadrons & jets, not partons. Without these simulations, theory cannot be compared to real data. 1.12040
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4. Summary

MCEG Simulation Chain: From Partons to Detector-Level Hadrons & Jets

Monte Carlo Event Generator (MCEG)

Simulation Steps

Hard

Process

7

Parton

Shower

(Multiple QCD
Branchings)

r

Hadronization

(String / Cluster
Models)

r

Underlying Event,
Multiparton Interactions,

Color Reconnection
G 3

Unstable
Particle
Decays

\

r

Jets

Experiment
(ATLAS/CMS/LHCb Data)

at Detector Level

Hadrons

~

13) tune
' model
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Experiments see hadrons & jets, not partons. Without these simulations, theory cannot be compared to real data. 1.12040

Thank you!
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