Computing Technology for Physics Research

Summary Track 1, ACAT 2013 / Beijing Axel Naumann, CERN Jerome Lauret, BNL Gang Chen, IHEP David Britton, University of Glasgow

Topics

- Programming Languages, software quality, IDE and UI
- Distributed and parallel computing
- New architectures, many-cores
- Virtualization
- Online monitoring and control, HLT

Contributions

- 6 plenaries
- 23 parallels
- 3 posters
- 14 hours by 27 presenters

Prog langs, software quality, IDE and UI

- Rieger: web-based collaborative data analysis
- Tkachov: Oberon

• This topic is consistently underrepresented

Distributed and parallel computing - Data

 al-Turany: Flexible data transport for online reconstruction @ FAIR

0MQ

	Publisher	
	PUB	
	bind	
	updates	
updates	updates	updates
*	+	+
connect	connect	connect
SUB	SUB	SUB
Subscriber	Subscriber	Subscriber

- Request/Reply
- Publish/Subscribe
- Pipeline
- Exclusive Pair

Distributed and parallel computing - Data

- al-Turany: Flexible data transport for online reconstruction @ FAIR
- Elmer: CMS use of a data federation

Adding I/O Paths

• Fallback, interactive, remote CPU overflow

Distributed and parallel computing - Data

- al-Turany: Flexible data transport for online reconstruction @ FAIR
- Elmer: CMS use of a data federation
- Gheata: Performance optimization for distributed analysis at ALICE
- Horsky: Influence of distributing data storage on physics analysis

Distributed and parallel computing - Data (2)

 Makatun: Cache performance in distributed environment for data processing

Cache Eviction

Results of simulation

What caching algorithm is the best?

Average improvement over FIFO

Algorithm	cache hits	cache data hits
MS	116 %	-20 %
LRU	8 %	5 %
ARC	13%	11%
LVCT	86 %	2 %

For studied access patterns

- MS has the best cache hits performance but the worst cache data hits
- ARC has the highest cache data hits
- LVCT balances between cache hits and cache data hits

Distributed and parallel computing - Data (2)

- Makatun: Cache performance in distributed environment for data processing
- Liu: HPC at BESIII (tag)
- Sangaline: Experience, use, performance of Hadoop FS in nuclear physics analysis
- Triendl (DataDirect Networks): Storage architectures for large data-analysis systems

Distributed Filesystem

140000 120000 120000 100000 80000 60000 40000 20000 0

File stat(shared)

Much improved Lustre 2.3/2.4

Forget NFS

- I/O hierarchies; checkpointing writes versus global update - POSIX kills us
- Look out for Fast Forward for Exascale I/O

Distributed and parallel computing

- Grigoras: JAliEn interface between AliEn jobs and central services
- Nairz: ATLAS distributed computing

New architectures, many-cores

- Elmer: Initial explorations of ARM processors for scientific computing
- Gheata: Concurrent vector-based steering framework for particle transport
- Kanzaki: Event generation using GPU
 - more in cooperation with track 3?
- Meng:TianHe-IA, HPC in China

Tian-He, HPC in China

- Long tradition Chinese supercomputing
- Culminated in Tian-He IA
 - 14K Xeons
 - 7K Teslas
 - 2K SPARC-based CPUs
 - 260GB RAM

New architectures, many-cores

Nowak: Opportunities and choice in a new vector era

Inhomogeneous Everything

What should next-generation code look like?

New architectures, many-cores

- Nowak: Opportunities and choice in a new vector era
- Oyanagi: Lessons learned from Kei

Kei and the World

- History of HPC incl. Japan
- K brought Japan back with Parallel computing
- HPC and being number one
- Applications, applications
- Memory hierarchy makes programming on Exascale very hard

New architectures, many-cores

- Nowak: Opportunities and choice in a new vector era
- Oyanagi: Lessons learned from Kei
- Vicini: GPU for real-time processing in HEP trigger systems
- Vicini: Host and GPU interface in 3D torus network

Virtualization

- Bagnasco: Tier-2 with a private cloud
- Bird: Grid and cloud evolution from now onward

Grid + Cloud

- Move towards Cloud is happening
- Integration into grid still needed, e.g. for federations
- Private cloud is baseline; buying cloud hours costly + needs standards
- HEP Cloud will benefit from being integrated into other science fields, too

Virtualization

- Bagnasco:Tier-2 with a private cloud
- Bird: Grid and cloud evolution from now onward
- Colling: CMS HLT farm as a cloud resource

Online monitoring and control, HLT

- Dell'Asta: ATLAS muon and tau trigger
- Ionita: ALICE expert system
- Krasznahorkay: Trigger and DAQ in ATLAS
- Krasznahorkay: Data quality monitoring for ATLAS trigger
- Liu: Performance quality monitoring for the Daya Bay reactor neutrino experiment

[This drawer has no name]

- Al-Turany: FairRoot framework
- Elmer: Checkpoint-Restart for HEP software

Checkpoint / Restore

- Pause button for programs
 - e.g. debugging
- Problem is resuming
 - best in controlled environment
- Reduce startup

[This drawer has no name]

- Al-Turany: FairRoot framework
- Elmer: Checkpoint-Restart for HEP software
- Lopez Villarejo: Documenting through activity diagrams
- Luzzi:TGeoCad interface between ROOT and CAD systems

Current Main Topics

Get Data From A to B

- Solid engineering
 - Where is B?
 - How much data
 - In what format (file system,...)
- Measurements!
- Not new, but now without dreaming

Get Data From A to B (2)

- Data structures: optimizing for I/O?
- Data transfer: more connections, more heterogeneity, network as a resource
- Data cache: multi-level, complex
 - inhomogeneous elements (+file system!)
 - file level versus partial read

Groud

- Virtualization as a tool is understood
- Grid is becoming cloudy
 - Grid concept likely not replaced
 - looks like a grid, managed as clouds
- We are just another entity with lots of data
 - Re-use, encourage standards (!= EC2?)

O those CPUs

- They don't do what we want. Thus:
 - data-driven parallelism
 - ever growing toolbox
 - vectorization: language? features? architecture? cost? benefit? user tool?

O those CPUs (2)

- We don't master Intel CPUs. Let's look at others (that we also won't master):
 - GPGPUs, MIC: likely niche but obligatory
 - Heterogeneous System Architecture (!)
 - ARM

Conclusion

Thank you, IHEP!

- Ideal conference infrastructure
- Perfect organization
- Wonderful local team

Thank you, presenters!

- Many **excellent** presentations
- Good discussions during the sessions
- Reflections of computer scientists, experimental and theoretical physicists
- Some new seeds were planted let's water them and inspect them at ACAT 2014!