
FormCalc 8

Better Algebra and Vectorization

Thomas Hahn

Max-Planck-Institut für Physik
München

What others have to say about Version 8:

“More beautiful, more flexible, more you.”

– from microsoft.com/en-us/windows8/meet.

T. Hahn, FormCalc 8 – p.1

Diagram Evaluation in FeynArts, FormCalc, LoopTools

Diagram Generation:

• Create the topologies
• Insert fields
• Apply the Feynman rules
• Paint the diagrams

Algebraic Simplification:

• Contract indices
• Calculate traces
• Reduce tensor integrals
• Introduce abbreviations

Numerical Evaluation:

• Convert Mathematica output to Fortran code
• Supply a driver program
• Implementation of the integrals

Symbolic manipulation
(Computer Algebra)
for the structural and
algebraic operations.

Compiled high-level
language (Fortran) for
the numerical evaluation.

FeynArts

Amplitudes

FormCalc

Fortran Code

LoopTools

|M|2 Cross-sections, Decay rates, . . .

T. Hahn, FormCalc 8 – p.2

FeynArts

Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all allowed
combinations of fields

InsertFields

Draw the results
Paint

Diagrams

Apply the Feynman rules

CreateFeynAmp
Amplitudes

further
processing

T. Hahn, FormCalc 8 – p.3

Algebraic Simplification

The amplitudes of CreateFeynAmp are in no good shape for
direct numerical evaluation.

A number of steps have to be done analytically:

• contract indices as far as possible,

• evaluate fermion traces,

• perform the tensor reduction,

• add local terms arising from D·(divergent integral)
(dim reg + dim red),

• simplify open fermion chains,

• simplify and compute the square of SU(N) structures,

• “compactify” the results as much as possible.

T. Hahn, FormCalc 8 – p.4

FormCalc Internals

FormCalc

Mathematica
FORM

FeynArts
amplitudes

Analytical
results

Fortran

Generated Code

SquaredME
RenConst

Driver
programs

Utilities
library

T. Hahn, FormCalc 8 – p.5

FormCalc 8

New Features:

• Significant improvement of algebra through FORM 4
features.

• Vectorization of helicity loop.

• Handling of C code automated.

• OPP optimizations.

Cuba:

• Checkpointing available for all algorithms.

T. Hahn, FormCalc 8 – p.6

Improvements in the Algebra

• Take advantage of new FORM 4 features:
Abbreviationing, Factorization.

• Replace subexpressions by symbols once final
(ToPolynomial).

• Prevents expansion, preserves (pre-)simplified structure.

• Introduced symbols are largely inert in further operations,
thus faster FORM run.

• FormCalc does not use FORM’s format On output (yet).

• Factorization (both old/simple and new/full) applied
repeatedly.

• Cuts out extra pass to Mathematica as in FormCalc 7.

T. Hahn, FormCalc 8 – p.7

Improvements in the Algebra

• Volume of data returned to Mathematica significantly
smaller due to ‘telescoping effect.’

• Returned (sub)expressions small enough to use fairly
aggressive simplification in Mathematica within
reasonable run-time.

• Several functions can be redefined by the user to
fine-tune simplification: FormSub, FormDot, FormMat,
FormNum, FormQC.

• Storage-efficient: increase reference count rather than
insert full copy of subexpression, same as Mathematica’s
Share.

• Generated code shrinks considerably: O(30%).

T. Hahn, FormCalc 8 – p.8

Helicity Loop inherently SIMD

The helicity loop is
a fairly obvious
candidate for
parallel execution,
in particular
because FormCalc
does not insert
helicities in the
algebra, i.e.

Loop(s) over
√
s & model parameters

Loop(s) over angular variables

Loop over helicities λ1, . . . , λn

σ += ∑cCcM0
c(λ1, . . . , λn)

∗

M1
c(λ1, . . . , λn)

M = M(λ1, λ2, . . .) FormCalc

M = {M−−···,M+−···,M−+···,M++···} e.g. GoSam

Helicity sum in FormCalc is thus SIMD = Single Instruction
Multiple Data: same code M, different data λi.

T. Hahn, FormCalc 8 – p.9

Implementational Issues

Work done in collaboration with J.-N. Lang.

• Overall speedup depends on what fraction of CPU time
goes into the helicity loop, thus more efficient for OPP
than Pa-Ve (see later).

• fork/wait parallelization available since FormCalc 7.5
but competes for compute cores with Cuba. For few
cores (e.g. 8), Cuba has higher efficiency.

• Attempted GPU parallelization but not too efficient.
Presumably the (fairly expensive) CPU → GPU transfer of
the non-helicity-dependent results outweighs the
parallelization gains.

• Vectorization (= several helicity combinations at once)
best option on regular x86 hardware with no overhead.

T. Hahn, FormCalc 8 – p.10

Vectorization in C

• gcc/icc extensions for vector data types only available
for real arithmetic, thus have to insert explicit macros for
multiplication of complex vectors in C99 (avoid C++ for
linking hassles.)

• Code emits explicit SSE3/AVX instructions.

• Max. vector width 1 for SSE3 (2 doubles per operation).
Efficient complex multiplication available (2.5 instruct.
instead of 6).

• Max. vector width 2 for AVX (i7 Sandy Bridge, 4 doubles
per operation).

• Obtained 3.7 out of theoretical speedup 4 with AVX (just
the helicity loop).

T. Hahn, FormCalc 8 – p.11

Vectorization in Fortran

• Uses Fortran 90 vector data types and vector expression
syntax.

• Still fixed-format output, can fall back to Fortran 77
through preprocessor defs, e.g. for inclusion in legacy
packages.

• Arbitrary choice of vector width because handled by
compiler.

• Efficiency depends on compiler optimization, i.e. cannot
force particular instruction set.

• No performance figures yet.

T. Hahn, FormCalc 8 – p.12

Output in C

Up to now: Code generation in Fortran.

Generating C code, available from FormCalc 7, is now mostly
automated, i.e. also drivers and utility files are available.

• Switch to C with SetLanguage["C"].

• Only the declarations of the driver code needed to be
translated to C, initialization still takes place in Fortran in
usual setup (C object files just linked in).

• Private declarations (e.g. for new models) are not
automatically translated.

• Setting of compiler flags for CPU type (e.g. AVX on with
-march=corei7-avx) not yet automated. Default will
probably be code generation for host CPU type, to be
turned off for generic executable.

T. Hahn, FormCalc 8 – p.13

OPP Optimizations

Work done in collaboration with E. Mirabella.

We employ the OPP (Ossola, Papadopoulos, Pittau) methods
as implemented in the two libraries CutTools and Samurai.

Instead of introducing tensor coefficients, the numerator is put
into a subroutine which is sampled by the OPP function, as in:

ε
µ
1
εν2Bµν(p,m

2
1,m

2
2) = Bcut(2, N, p,m2

1,m
2
2)

where N(qµ) = (ε1 · q) (ε2 · q).

Compare Pa-Ve: ε
µ
1
εν2Bµν = (ε1 · ε2)B00 + (ε1 · p)(ε2 · p)B11

T. Hahn, FormCalc 8 – p.14

OPP Optimizations

Interfacing with CutTools and Samurai quite similar, handled
by preprocessor (no re-generation of code necessary).

OPP method generates fewer terms but nevertheless runs
significantly slower than Passarino–Veltman decomposition.

OPP originally ca. factor 10 slower, now ∼ 3.

OPP optimization is work in progress.

T. Hahn, FormCalc 8 – p.15

OPP Optimizations

One main reason for slowdown: OPP integrals are evaluated
for every helicity configuration, but only once in Pa-Ve.

Observe: OPP masters (scalar integrals) depend only on the
denominators, so move them out of helicity loop.

Currently worked around through LoopTools cache.

More general solution: Take apart computation of masters
and sampling of numerator. For example:
ComplexType mas145(Mcc)

...

call Cmas(mas145, (C0 args))

...

call Ccut(mas145, num, (C0 args))

Waiting for Samurai and CutTools folks to adapt API.

T. Hahn, FormCalc 8 – p.16

OPP Optimizations

• Option to specify the N in N -point up to which
Passarino–Veltman is used, above OPP.

• Optimize OPP calls to reduce sampling effort, e.g. by
collecting denominators, as in:

N4

D0D1D2D3

+
N3

D0D1D2

→ N4 +D3N3

D0D1D2D3

Depending on N and rank, this is not universally better.
Sampling behavior of Samurai and CutTools tabulated
and implemented.

• Implementation of link to Ninja library in progress,
samples fewer times + more stable results.

T. Hahn, FormCalc 8 – p.17

OPP Optimizations

MadLoop and OpenLoops do this:
Move helicity sum into numerator in interference term,

∑
λ

2ReM∗
0

∫
d4q

N

D · · ·
︸ ︷︷ ︸

∼M1

=

∫
d4q

∑λ 2ReM∗
0N

D · · ·

Disadvantages:

• Applicable only if tree-level 6= 0.

• Not obvious how to efficiently join with present
abbreviation concept.

T. Hahn, FormCalc 8 – p.18

OPP Optimizations

• Profiler pointed to bottleneck in Fermion Chains.
Now evaluated in single inlined function call:

〈u| σµσνσρ |v〉 kµ1 kν2k
ρ
3
= 〈u| k1k2k3 |v〉

old = SxS(u, VxS(k1, BxS(k2, VxS(k3, v))))

new = ChainV3(u, k1, k2, k3, v)

• Take into account helicity information for massless
fermions, as in:

Dcut(3, N, 1− Hel1, . . .)

Evaluate integrals only if “hel-delta” argument is
non-zero.

T. Hahn, FormCalc 8 – p.19

Cuba Checkpointing

Work done in collaboration with B. Chokoufe.

New version Cuba 3.1 allows checkpointing for all routines.

• Useful for long-running integrations.

• Available only for Vegas so far (3.0).

• Writes complete internal state of integrator to disk in
regular intervals.

• Overwrites old state only when new state complete, i.e.
crash while writing state recoverable.

• Can recover from last checkpoint, e.g. lose 1 h instead of
1 day after system crash.

• Works regardless of parallelization.

T. Hahn, FormCalc 8 – p.20

Summary

New Features in FormCalc 8.2: feynarts.de/formcalc

• Better algebra (faster + more compact results) through
the use of FORM 4 features.

• Vectorization of helicity loop.

• Output & handling of C code automated.

• OPP optimizations.

• Process specs generated automatically.

Cuba 3.1: feynarts.de/cuba

• Checkpointing for all algorithms.

T. Hahn, FormCalc 8 – p.21

	Diagram Evaluation in FeynArts, FormCalc, LoopTools
	FeynArts
	Algebraic Simplification
	FormCalc Internals
	FormCalc 8
	Improvements in the Algebra
	Improvements in the Algebra
	Helicity Loop inherently SIMD
	Implementational Issues
	Vectorization in C
	Vectorization in Fortran
	Output in C
	OPP Optimizations
	OPP Optimizations
	OPP Optimizations
	OPP Optimizations
	OPP Optimizations
	OPP Optimizations
	Cuba Checkpointing
	Summary

