
Study of cache performance in distributed environment
for data processing

Dzmitry Makatun 1 3 Jerome Lauret2 Michal Sumbera 1

1Nuclear Physics Institute, Academy of Sciences, Czech Republic

2Brookhaven National Laboratory, USA

3Czech Technical University in Prague, Czech Republic

May 18, 2013

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 1 / 30

Outline

1 Motivation

2 Simulation setup

3 Access patterns

4 Results of simulation

5 Conclusions

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 2 / 30

Motivation

Motivation

The focus of this study is an evaluation of caching algorithms and selection of the
most appropriate one for data transfer in HEP/NP computations.

RIFT: Reasoner for Intelligent File Transfer

is a software being developed for efficient and controlled movement of replicated
datasets within computational Grid to satisfy multiple requests in the shortest
time.a

a
Michal Zerola et al ”One click dataset transfer: toward efficient coupling of distributed storage resources and CPUs”,

2012 J. Phys.: Conf. Ser. 368 012022 doi:10.1088/1742-6596/368/1/012022

How does the RIFT work?

1 Users submit requests for LFNs.

2 RIFT generates an optimal transfer plan.

3 RIFT executes the plan with the help of available data transfer tools.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 3 / 30

Motivation

Case 1: caching at RIFT.

NFS

HPSS

Xrootd

FDT
cache

BNL DUBNA

FDT
cache

PRAGUE
FDT cache

slow

fast fast

In RIFT, after transfer copies of files remain at each node on the
path. These copies can be used as cache.

In case of RIFT, the size of cache is small comparing to the size of
dataset (∼ 1%)

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 4 / 30

Motivation

Case 2: Xrootd

At present time, all the data of STAR experiment is stored in Xrootd
SE.

It may happen, that the amount of data will exceed the capacity of
Xrootd SE.

Possible solution

Restore data from MSS (HPSS) and put in Xrootd SE upon request.

Make space when needed by deleting files according to a cache
cleanup algorithm.

In this case the cache size is comparable to the size of the entire
dataset.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 5 / 30

Motivation

Problem definition

Two cases:

Caching for RIFT: small cache (several % of dataset).

Xrootd as a cache: large cache (up to entire dataset)

Two aspects of caching:

Reduce makespan of data transfer. (maximize the number of files taken from
cache)

Reduce network load. (maximize the amount of data taken from cache)

For successful cache implementation we need to know

What is the data access pattern in HEP/NP computations?

How does the cache performance depend on cache size?

What caching algorithm is the most efficient?

How can we measure an importance of a particular file (file size, time of

last access, time of creation, number of access)?

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 6 / 30

Simulation setup

How to measure cache performance?

Requests

Nreq - number of requests, Sreq - data transferred (bytes), Sj - size of file (bytes),
bj ∈ {0, 1} - was file in cache or not.

Storage

Nset - number of unique filenames, Sset - storage size (bytes), Si - size of file
(bytes), Ri - requests for the file.

Cache hits (minimize overhead due to transfer startup)

H =

∑Nreq

j=1 bj∑Nset

i=1(Ri − 1)
=

Ncache

Nreq − Nset
(1)

Cache data hits (minimize network traffic)

Hd =

∑Nreq

j=1 bj × Sj∑Nset

i=1(Ri − 1)× Si
=

Scache
Sreq − Sset

(2)

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 7 / 30

Simulation setup

What system is simulated?
Problem formulation

Parameters

Cache size, low mark, high mark, algorithm (utility function).

Input

Access pattern: log file of user access: [time, unique filename, size]

Output

Cache hits, cache data hits.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 8 / 30

Access patterns

What is an access pattern?

User access pattern is data on accessed filenames and access time.

Defines the use case: it makes sense to evaluate a particular cache algorithm for a
particular access pattern.

Input for simulation [time, unique filename, size].

Random

If the access pattern is completely random, the expected cache hit and cache data hits would be
equal to cache size/storage size.

Access patterns used for simulation

STAR1: RCF@BNL, Tier-0 for STAR experiment, Xrootd log, user analysis, 3 months
period (June-August 2012).

STAR2: RCF@BNL, Tier-0 for STAR experiment, Xrootd log, user analysis, 7 months
period (August 2012 - February 2013).

GOLIAS: FZU Prague, part of Tier-2 of ATLAS. ATLAS and AUGER experiments, DPM
log, user analysis + production, 3 months period (November 2012 - February 2013).
AUGER makes less than 1% of total requests.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 9 / 30

Access patterns

Access patterns summary

STAR1 STAR2 GOLIAS

Time period months 3 7 3

Number of requests ×106 33 52 21

Data transferred PB 50 80 10

Maximal number of requests for one file − 192 203 94260

Average number of requests per file − 19 15 5

Number of unique files ×106 1.8 1.7 3.8

Total size of dataset PB 1.45 2 1

Maximal file size GB 5.3 5.3 18

Average file size GB 0.8 1 0.3

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 10 / 30

Access patterns

Distribution of files by size

(file size)
10

log
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

nu
m

be
r o

f f
ile

s

0

50

100

150

200

250

300

350
310×

(a) STAR1

(file size)
10

log
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

nu
m

be
r o

f f
ile

s

0

50

100

150

200

250

300

310×

(b) STAR2

(file size)
10

log
0 2 4 6 8 10

nu
m

be
r o

f f
ile

s

0

100

200

300

400

500

600

700

310×

(c) GOLIAS

• At STAR filesize is limited, at GOLIAS it is not.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 11 / 30

Access patterns

Access patterns as contour plots

file size (GB)
0 1 2 3 4 5

nu
m

be
r o

f r
eq

ue
st

s

0
20
40
60
80

100
120
140
160
180
200

nu
m

be
r o

f f
ile

s

1

10

210

310

410

510

(a) STAR1

file size (GB)
0 1 2 3 4 5

nu
m

be
r o

f r
eq

ue
st

s

0
20
40
60
80

100
120
140
160
180
200

nu
m

be
r o

f f
ile

s

1

10

210

310

410

(b) STAR2

file size (GB)
0 2 4 6 8 10 12

nu
m

be
r o

f r
eq

ue
st

s

0
100
200
300
400
500
600
700
800
900

1000

nu
m

be
r o

f f
ile

s

1

10

210

310

410

510

610

(c) GOLIAS

• Most of the files are small ones accessed several times. • GOLIAS has 2 tails: small files

accessed ∼ 100 times; large files accessed ∼ 10 times. • Looping access patterns are visible.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 12 / 30

Access patterns

Distribution of time between two requests for the same file

 (time in seconds)
10

log
0 1 2 3 4 5 6 7

nu
mb

er
of

req
ue

sts

0

500

1000

1500

2000

2500

3000

310×

1 day1 minute

(a) STAR1

 (time in seconds)
10

log
0 1 2 3 4 5 6 7

nu
mb

er
of

req
ue

sts

0

1000

2000

3000

4000

5000
310×

1 day1 minute

(b) STAR2

 (time in seconds)
10

log
0 1 2 3 4 5 6 7

nu
mb

er
of

req
ue

sts

0

100

200

300

400

500

600

310×

1 day
1 minute

(c) GOLIAS

• At STAR the average period is 1 day. • At GOLIAS the period distribution is less uniform.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 13 / 30

Results of simulation

What are the canonical caching algorithms?

− First-In-First-Out (FIFO): evicts files in the same order they
entered the cache.

© Least-Recently-Used (LRU): evicts the set of files which were not
used for the longest period of time.

4 Most-Recently-Used (MRU): evicts the set of files which were used
most recently.

• Least-Frequently-Used (LFU): evicts the set of files which were
requested less times since they entered the cache.

� Most-Frequently-Used (MFU): evicts the set of files which were
requested most times since they entered the cache.

F Most Size (MS): evicts the set of files which have the largest size.

Least Size (LS): evicts the set of files which have the smallest size.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 14 / 30

Results of simulation

Caching algorithms performance: large cache

low mark = 0.75 ,high mark = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

FIFO

LRU

LS

LFU

MRU
MS

MFU

• Access patter difference between Tier-2 and Tier-0 leads to distinct cache performance.
• Majority of the algorithms lay above the line of random access pattern estimation.
•The behavior of algorithms is similar within each dataset.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 15 / 30

Results of simulation

Caching algorithms performance: Most Size vs Least Size
low mark = 0.75 ,high mark = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

LS

MS

•Keeping the smallest files in cache increases cache hits but reduces the
cache data hits.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 16 / 30

Results of simulation

Caching algorithms performance: LRU vs MRU

low mark = 0.75 ,high mark = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

LRU

MRU

•Keeping the most recently accessed files increases both cache hits and
cache data hits.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 17 / 30

Results of simulation

Caching algorithms performance: LFU vs LRU

low mark = 0.75 ,high mark = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

FIFO

LRU

LFU

• LRU outperforms LFU as well as majority of the canonical algorithms.
• LFU has unstable performance.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 18 / 30

Results of simulation

Caching algorithms performance: small cache
low mark = 0.75 ,high mark = 0.85

-410 -310 -210

-310

-210

-110

1
cache hits

cache size / storage size
-410 -310 -210

-310

-210

-110

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

FIFO

LRU

LS

LFU

MRU
MS

MFU

• Tendencies are similar to those for large cache.
• Access patter difference between Tier-2 and Tier-0 leads to distinct cache performance.
• Most of the algorithms lay under FIFO.
• MS - highest cache hits for STAR patterns, but not for GOLIAS.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 19 / 30

Results of simulation

Are there better algorithms?
Improvements over LRU

2Q, MQ, LIRS, LRU-K, LRFU ...

General idea:

Split cached files into several lists and treat them separately.

Use F (access count, times of last k requests) instead of time of last
request.

Adaptive Replacement Cache (ARC)a:

2 lists: L1 - files with access count = 1, and L2 - files with access count > 1

LRU is applied to both list.

Self adjustable parameter p = cache hits in L1/cache hits in L2.

The algorithm defines the number of cached files in each list depending on p.

a
Megiddo, Nimrod; Modha, D.S., ”Outperforming LRU with an Adaptive Replacement Cache algorithm,” Computer ,

vol.37, no.4, pp.58,65, April 2004 doi: 10.1109/MC.2004.1297303

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 20 / 30

Results of simulation

Caching algorithms performance: ARC vs LRU
low mark = 0.75 ,high mark = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

LRU

• The average improvement with ARC algorithm over LRU is ∼5% for
cache hits and ∼7% for cache data hits.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 21 / 30

Results of simulation

Caching algorithms performance: ARC vs LRU
low mark = 0.75 ,high mark = 0.95

-410 -310 -210

-310

-210

-110

1
cache hits

cache size / storage size
-410 -310 -210

-310

-210

-110

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

LRU

• The average improvement with ARC algorithm over LRU is ∼5% for
cache hits and ∼7% for cache data hits.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 22 / 30

Results of simulation

What other algorithms are known?
algorithms using caching time (CT)

∗Least Value based on Caching Time (LVCT):

Deletes files according to the value of the Utility Function.

UtilityFunction =
1

CachingTime × FileSize
(3)

where Caching Time of a file F is the sum of size of all files accessed after the last
request for the file F. a

a
Song Jiang, Xiaodong Zhang, ”Efficient distributed disk caching in data grid management”, 2003. Proceedings. IEEE

International Conference on Cluster Computing, 0-7695-2066-9

5Improved-Least Value based on Caching Time (ILVCT):

UtilityFunction =
1

NumberOfAccessedFiles × CachingTime × FileSize
(4)

where Number Of Accessed Files is a count of files been requested after the last
request for selected file. a

a
J. P. Achara et al,”An improvement in LVCT cache replacement policy for data grid”, PoS ACAT 2010, 044

(2010).POSCI,ACAT2010,044;

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 23 / 30

Results of simulation

Caching algorithms performance: LVCT vs ILVCT
(large cache)

low mark = 0.75 ,high mark = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS

algorithms:

FIFO

ILVCT

LVCT

• LVCT outperforms ILVCT for studied access patterns.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 24 / 30

Results of simulation

Caching algorithms performance: LVCT vs ILVCT
(small cache)

low mark = 0.75 ,high mark = 0.85

-410 -310 -210

-310

-210

-110

1
cache hits

cache size / storage size
-410 -310 -210

-310

-210

-110

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

FIFO

ILVCT

LVCT

• LVCT outperforms ILVCT for studied access patterns.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 25 / 30

Results of simulation

Dependence of cache performance on low mark
cache size / storage size = 0.1 ,high mark = 0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

low mark
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

LVCT

MS

FIFO

LRU
LS

LFU

• With higher low mark the number of clean-ups increases.
• Performance of efficient algorithms (FIFO, LRU, ARC and LVCT)
increases steadily with the the low mark. For inefficient algorithms (LS,
LFU, etc.) decrease is observed.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 26 / 30

Results of simulation

What caching algorithm is the best?

Average improvement over FIFO

Algorithm cache hits cache data hits

MS 116 % -20 %

LRU 8 % 5 %

ARC 13% 11%

LVCT 86 % 2 %

For studied access patterns

MS has the best cache hits performance but the worst cache data hits

ARC has the highest cache data hits

LVCT balances between cache hits and cache data hits

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 27 / 30

Conclusions

Conclusions

Performance of cache algorithms implemented with watermarking
concept was simulated for a wide scope of cache size and low marks.
3 access patterns from Tier-0 and Tier-2 sites of 2 different
experiments were used as input for simulations.

Regardless of the cache size, Tier-level and specificity of experiment
the LVCT and ARC appear to be the most efficient caching
algorithms.

If the goal is to minimize makespan due to a transfer startup
overhead the LVCT algorithm should be selected.

If the goal is to minimize the network load the ARC algorithm is an
option.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 28 / 30

Conclusions

thank you for your attention.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 29 / 30

Conclusions

backup

How the algorithms were compared:

Average improvement =

∑n
i=1

value2i−value1i
value1i

n
(5)

where:
n - total amount of shared points (with equal parameters) for both
algorithms,
i - number of point,
value1 - cache hits or cache data hits of reference algorithm,
value2 - cache hits or cache data hits of compared algorithm.

Dzmitry Makatun (NPI ASCR) ACAT 2013 May 18, 2013 30 / 30

	Motivation
	Simulation setup
	Access patterns
	Results of simulation
	Conclusions

