Fast event generation system using GPU

Junichi Kanzaki (KEK) ACAT 2013 May 16, 2013, IHEP, Beijing

Motivation

• The mount of LHC data is increasing.

- $-5fb^{-1}$ in 2011
- $-22 fb^{-1}$ in 2012
- High statistics data
 - -> Reduction of systematic errors becomes essential for good physics measurements.
- Better understandings of backgrounds from QCD multi-jet productions
 - -> Fast event generation by changing model parameters

Overview

- Basic tests of HEGET (helicity amplitude library) with simple QED (n-photon) and QCD (n-jet) processes
- Development of GPU versions of VEGAS and BASES/SPRING
- Test of cross section computation and event generation with SM processes
- Summary & Prospect

Bibliography

- QED: K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Eur. Phys. J. C66 (2010) 477, e-print <u>arXiv:0908.4403</u>.
- QCD: K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Eur. Phys. J. C70 (2010) 513, e-print <u>arXiv:0909.5257</u>.
- MC integration (VEGAS & BASES): J. Kanzaki, Eur. Phys. J. C71 (2011) 1559, e-print <u>arXiv:1010.2107</u>.
- SM: submitted to Eur. Phys. J. C, e-print <u>arXiv:1305.0708v2</u>
- Event generation (SPRING): in preparation

J. Kanzaki: ACAT 2013, May 16, 2013, IHEP, Beijing

Our GPU Environment

	C2075	GTX580	GTX285	GTX280	9800GTX
Streaming Processors	448	512	240	←	128
Global Memory	5.4GB	I.5GB	2GB	IGB	500MB
Constant Memory	64KB	64KB	64KB	↓	64KB
Shared Memory/block	48KB	48KB	I6KB	+	I6KB
Registers/block	32768	32768	16384	+	8192
Warp Size	32	32	32	+	32
Clock Rate	I.I5GHz	I.54GHz	I.30GHz	+	I.67GHz

- NVDIA GPUs + CUDA
- C2075: Peak floating point performance 1.03 TFLops (single), 515 GFlops (double)

Test with QED and QCD

- Test with simple final states:
 - -n-photon production (QED)
 - -n-jet production (QCD)
- Development of basic components to calculate cross sections on GPU (CUDA)
 - -Amplitude calculation: Heget (HELAS in FORTRAN)
 - -Phase space generation
 - -Random number generation

*Simple event loop program to calculated cross sections

Test with QED and QCD

- Check the total cross sections with MadGraph
- Compare process time / loop between CPU and GPU.
- Learn and experience GPU computation:
 - -double/single performance ratio
 - -parameter dependence of performance: register allocation, no.of threads/block
 - -loop unrolling

QED Processes

- uu~ -> n-photons
- Test with two kinds of amplitude:
 - -MadGraph amplitude in FORTRAN -> C/CUDA
 - -Amplitude by permutation of photons (short)
- Divide a long amplitude program into smaller pieces
 -> successive kernel calls

# photons	# diagrams = (# photons)!	
2	2	
3	6	
4	24	
5	120	
6	720	
7	5040	
8	40320	

Event process time ratio (QED)

 Large reduction of process time / event loop from CPU to GPU (single precision)

•gg>5g: the program cannot be executed on GPU.

•uu~>n-gluons, gg>n-gluons, uu>uu+gluons

# final	gg → gluons		uu~ → gluons		uu → uu+gluons	
jets	#diagram	#color	#diagram	#color	#diagram	#color
2	6	6	3	2	2	2
3	45	24	18	6	10	8
4	510	120	159	24	76	40
5	7245	720	1890	120	786	240

Ratio of Process Time (QCD)

• Performance degraded due to the size of amplitude and color factor multiplications.

Monte Carlo integration on GPU

- For the practical event generation on GPU
 -> GPU versions of BASES/SPRING
- Application of GPU to MC integration: each GPU thread evaluates function value at each space point
- Test of BASES programs using SM processes with decaying massive particles.

• Compare total process time of original FORTRAN on CPU and CUDA on GPU, and cross sections between MG5 and BASES (CPU and GPU).

SM Processes

- Decay of all massive particles:
 W>l(e, μ)v, Z->ll (e, μ), t->W(lv)b,
 H->TT
- Automatic conversion of MadGraph amplitude matrix.f -> CUDA functions (MG2CUDA):
- We fixed the kernel parameters: No. of register=64, the thread block size = 256
- Double precision computations

SM Processes

- •W, Z + up to 4jets:
 - $-ud \gg W^+$, $ug \gg W^+d$, $uu \gg W^+ud$, $gg \gg W^+du \gg$
 - -uu~>Z, ug>Zu, uu>Zuu, gg>Zuu~
- •WW, WZ, WW + up to 3jets:
 - -uu~>W⁺W⁻, ug>W⁺W⁻u, uu>W⁺W⁻uu, uu>W⁺W⁺dd, gg->W⁺W⁻uu~
 - $-ud \sim W^{T}Z, ug \sim W^{T}Zd, uu \sim W^{T}Zud, gg \sim W^{T}Zdu$
 - -uu~>ZZ, ug>ZZd, uu->ZZuu, gg>WWuu~
- •tt~+up to 3jets: uu~>tt~, ug>tt~u, uu>tt~uu, gg>tt~

SM Processes (contn'd)

- HW, HZ+up to 3jets:
 - -ud~>HW⁺, ug>HW⁺d, uu>HW⁺ud, gg>HW⁺du~
 - -uu~>HZ, ug>HZu, uu>HZuu, gg>HZuu~
- Httx+2jets: uu~>Htt~, ug>Htt~u, uu>Htt~uu, gg>Htt~
- H(WBF)+2jets: ud>Hud, uu>Huu, ug>Hudd~,
 gg>Huu~dd~
- HH+up to 3jets: ud->HHud, uu->HHuu
- HHH+up to 2jets: ud->HHHud, uu->HHHuu

Ratio of Total Integration Time

Comparison of total execution time with double precision.

Event Generation by SPRING

- Generate unweighted events by BASES results
- One thread generates one event in a certain hyper-cell of multi-dimension space (acceptance-rejection):
 the most inefficient hyper-cell determines
 - -> the most inefficient hyper-cell determines the total process time
- Iterative reuse of threads: threads that have finished event generation can be assigned to inefficient hyper-cell at the next iteration
 - -> improves total performance

SPRING performance

• Total execution time [sec]: generation of unweighted 10⁶ events

No. of gluons	FORTRAN	GTX580	CPU/GPU
0	9.72	0.346	28
I	43.2	0.768	56
2	4224.8	26.53	160

large improvement is expected for processeswith more particles in its final state.* Preliminary test in single precision

Summary & Prospect

 Program components of cross section computation and event generation based on MadGraph system can be executed on GPU with high performance:

-GPU version of VEGAS and BAES/SPRING

- Improvement factor of performance can become between 10~100 for total execution time of BASES integration.
- Large improvement of SPRING can be expected.

*Hardware is improving and more applications of GPU to HEP software should be useful.