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Mass Hierarchy
One of the biggest 
questions remaining 
in the standard model:

Why do the electron 
and the top quark 
have such different 
masses? 

Top-Higgs coupling 
measurement is an 
important step in 

Accessible via ttH 
production
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Top Quark M = 3x105 Melectron 

 Melectron = 0.5 MeV
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Overview of this talk

In this talk, we will see that TTH production is a 
challenging measurement because:

Signal production rate is small compared to backgrounds
Uncertainties are large
No single variable gives great discrimination

We can overcome these issues using multivariate 
analysis techniques:

To identify the objects associated with ttH decay with 
high efficiency and purity
To distinguish ttH events from background
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Signal Process
Production: ttH
Cross section: 130 fb at M=125 
GeV and 8 TeV
Focus on

H to bb (largest BR, 58%)
σ x BR(H to bb) = 75 fb

Final state:
WWbbbb

We require >=1 W to e,µ
1 lepton and up to 6 jets. 
4 jets come from b-quarks.
2 leptons and up to 4 jets. 
All 4 jets come from b-quarks.
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Production

Decay

130 fb
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Background Processes at 8 TeV

WWbbbb: tt+bb
~2-4 pb
irreducible, ~24x larger than signal σ x BR(H to bb)

WWbb+>=0jets: tt+jets
234 pb
fewer jets/ fewer tags, ~3000x larger than signal

Single top, Dibson, W/Z+jets
Many fewer jets and tags

Classify events according to jets and tags
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Compare to Signal
WWbbbb
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Object definitions

6

Electrons from W
Tight
• pT > 30 GeV
• eta < 2.5
• Tight Isolation
• MVA ID
Loose (main differences)
• pT > 15 GeV
• Loose Isolation

Muons from W
Tight
• pT > 30 GeV
• eta < 2.1
• Tight Isolation
• Tight ID
Loose (main differences)
• pT > 10 GeV
• Loose ID & Isolation

Jets from W, t, H

• Anti-kT size 0.5
• pT > 40 for jets 1,2,3
• pT > 30 each other jet
• Loose ID requirements

B-jets

•Pass all jet requirements
• Combined 
Secondary Vertex
(Medium operating point)
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Ele performance compare

MVA: Implemented with a 
Boosted decision tree

Trained for real vs fake 
electrons

Ele MVA ID uses:
Tracking variables
Shower-shape variables
Geometric matching 
between track and 
calorimeter
Energy matching between 
track and calorimeter

Has better efficiency for the 
same electron fake rejection
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From DP-13-003
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CSV tagger
B-jets can be distinguished 
from other kinds of jets by 
looking for the decay of long-
lived b-hadrons

Vertexing
Track impact parameter

Combined Secondary Vertex 
(CSV) uses both
Overcomes vertexing efficiency
For the medium working point

Efficiency: 65% per jet
Fake rate: 1-1.5% per jet
(tt+jets is 3000x larger than 
ttH)
For the same fake rate, a tagger 
using vertex-only information 
would have 55% efficiency
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Efficiency: 65%

Fake Rate at this working point: 1-1.5%
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Event categorization

Background has fewer jets and tags, so classify events 
by num jets, and num tags
Use all 9 categories in simultaneous fit 
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4jets 5jets >=6jets

2tags x x 0.0031

3tags 0.0027 0.0063 0.011

>=4tags 0.028 0.037 0.040

2jets >=3jets

2tags 0.0001 x

>=3tags x 0.015

S/B Ratio - 1 tight lepton

Signal

S/B Ratio - 2 lepton

Signal

8 TeV 8 TeV
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Uncertainties
The uncertainties that 
have the greatest effect on 
the analysis are the ones 
that effect the number of 
jets/tags

Jet energy Scale, btag SF, 
mistag SF, madgraph scale 

The analysis is also 
sensitive to the amount of 
irreducible background
Overall rate uncertainties 
in our prediction
These are nuisance 
parameters in our fit
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Uncertainty Max Rate
Impact

Jet Energy Scale 60%

tt+bb ONLY (theory) 50% 
(only tt+bb)

Btag SF 34%

Mistag SF 24%

Madgraph Scale 20%

Theory xsecs, Lumi, 
lepton efficiencies, etc ~15%

Signal size: ~ 4% of background
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Yield Summary: 1 lepton events
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Yields agree overall
Majority of background is 
   tt+light 65% - 90% of all events
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Signal Extraction Strategy

Yield in >=6jets >=4tags
2.5 Signal on background of 63 +/- 21
Counting experiment will not be very sensitive

Improve sensitivity by simultaneously fitting 
discriminating distributions in all categories

Treat uncertainties as nuisance parameters in the fit
Start by establishing a baseline using one kinematic 
variable in each category
Then measure impact of combining multiple variables 
with an MVA technique

12
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Higgs Mass in TTH
Initially expect the Higgs mass 
resonance to provide 
distinguishing power

This is where discovery modes H 
to ZZ and H to γγ get their power

For ttH, mass is not so powerful
Helps somewhat in 6 jets 4 tags, 
but it is not the most sensitive

Reasons:
b-jet energy resolution worse than 
photon/e/µ energy resolution
Combinatorics of b-jets in final 
state can wash out resonance 
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Wuming Luo

Unlike other Higgs searches, 
can’t use the invariant Higgs 
mass as discriminant. 

Two extra b’s from top pair’s 
decay
Difficult to pick precisely the 
two b’s from H decay
Alternative approach to 
separate S and B (Artificial 
Neural Network)

Irreducible background: 
ttbar+bb
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Figure 2: This figure shows the breakdown of jet-to-parton assignments for the two jets with
the minimum �R separation in the event for events with � 4 jets and different numbers of
tags. The top-left plot shows events with 2 b-tagged jets, the top-right plot shows events with
3 b-tagged jets, and the bottom-middle plot shows events with � 4 b-tagged jets.

2 Data and MC Samples74

2.1 Data Samples75

The results presented here are based on the full 2011 CMS dataset. Table 1 list the datasets76

used for this analysis, based on the triggers used to collect the data (see Sect. 3.2 for more77

details). Luminosities are quoted from the pixel luminosity calculation, including the effects of78

any trigger prescales, and have a 2.2% uncertainty.79

2.2 Signal Samples80

The tt̄H signal is modeled using the PYTHIA, generated privately using the same conditions81

and configuration as the “Fall11” MC campaign. The samples and associated cross sections82

used are listed in Table 2.83

2.3 Background Samples84

To model the backgrounds, this analysis primarily uses Monte Carlo (MC) samples from the85

“Fall11” MC campaign, except where noted in the table below. Most of the samples are gener-86

ated either with the MADGRAPH tree-level matrix element generator matched to PYTHIA for the87

parton shower, or with the NLO generator POWHEG combined with PYTHIA. These samples88

are reconstructed with the same CMSSW version as the data samples listed above. The pileup89

distribution in all MC samples is reweighted, using the producedure listed below so that the90

MC pileup distribution matches the one expected for data. Table 3 lists the background MC91

samples and associated cross sections.92

lepton+≥4jets+≥4tags

mass(b-jet, b-jet)closest  distribution 
for signal ttH125GeV MC sample

5Wednesday, April 3, 2013

ttH  M= 125 Signal Monte Carlo

No mass peak visible on 
top of combinatoric 

background

S/B ~ 3/100
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Performance with Best 
Variable

For most categories, the 
average CSV value for tagged 
jets is the best discriminant

Helps reject largest 
background: tt + light flavor

Fit best single variable in 
each category and extract 
upper limit on xsec

6.6x SM expectation
“If cross section was more 
than 6.6 times what we 
expect, then we would have 
seen it with this measurement”

14

x150
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ANN Design and Training
We use Artificial Neural Networks 
(ANN) to combine multiple 
variables into a single discriminant

Multi-layer perceptron as 
implemented in ROOT and TMVA

Create one ANN per category with  
own set of input variables
Structure: N inputs, 2 hidden layers, 
one output

Hidden layer 1: N nodes
Hidden layer 2: N-1 nodes

Training
50% Signal = ttH, M(H)=120
50% Background = tt
Reserved testing sample for 
overtraining check

15

Categories of variables

Kinematics of objects, 
single and composite

Kinematics of jet pairs

Event shape

Btag CSV discriminant
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Example ANN: One lepton 6 jets and 4 tags

16

Variable Category

Mass (lep, MET, Jets) Kin. of composite obj

Mass (j,j) closest jets Jet pairs

Mass (j,j) best Jet pairs

Average 
ΔR(tag, tag) Jet pairs

Minimum ΔR(lep, jet) Shape

Sphericity Shape 

H2 Shape

H3 Shape

Average CSV* Btag*

2nd-highest CSV Btag

lowest CSV Btag

11 input variables in total

x30
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Limit Results
Fit NN output distribution 
simultaneously in all 9 
categories to extract overall 
limit
5.2xSM expectation at 
M=125
27% improvement over single 
variable
Equivalent to increasing data 
collected by 60%

Effectively 3/fb additional in 
this dataset
Effectively 12/fb on full dataset
Worth half a year of data 
taking

17

Expected @ 125: 5.2xSM
Observed @ 125: 5.8xSM
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Top Quark M = 3x105 Melectron 

 Melectron = 0.5 MeV

Summary
• Mass hierarchy is a compelling 

problem that can be explored through 
ttH
• Challenging: ttH cross section is small 

compare to the backgrounds, the 
uncertainties are large, and the mass 
resonance is not especially powerful
• Multivariate techniques help us 

overcome some these challenges by 
optimizing:
• Object identification (b-tags, electrons)
• Signal discrimination

• The optimizations help us get more 
performance out of the data we 
collected

18
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btag performance

20

10 4 Algorithms for b-jet identification
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Figure 6: Performance curves obtained from simulation for the algorithms described in the text.
(a) light-parton- and (b) c-jet misidentification probabilities as a function of the b-jet efficiency.

4.5 Impact of running conditions on b-jet identification

All tagging algorithms rely on a high track identification efficiency and a reliable estimation
of the track parameters and their uncertainties. These are both potentially sensitive to changes
in the running conditions of the experiment. The robustness of the algorithms with respect to
the misalignment of the tracking system and an increase in the density of tracks due to pile up,
which are the most important of the changes in conditions, has been studied.

The alignment of the CMS tracker is performed using a mixture of tracks from cosmic rays and
minimum bias collisions [35, 36], and is regularly monitored. During the 2011 data taking, the
most significant movements were between the two halves of the pixel barrel detector, where
discrete changes in the relative z position of up to 30 µm were observed. The sensitivity of b-jet
identification to misalignment was studied on simulated tt̄ samples. With the current estimated
accuracy of the positions of the active elements, no significant deterioration is observed with
respect to a perfectly aligned detector. The effect of displacements between the two parts of
the pixel barrel detector was studied by introducing artificial separations of 40, 80, 120, and
160 µm in the detector simulation. The movements observed in 2011 were not found to cause
any significant degradation of the performance.

Because of the luminosity profile of the 2011 data, the number of proton collisions taking place
simultaneously in one bunch crossing was of the order of 5 to 20 depending on the time period.
Although these additional collisions increase the total number of tracks in the event, the track
selection is able to reject tracks from nearby primary vertices. The multiplicity distribution of
selected tracks is almost independent of the number of primary vertices, as shown in Fig. 7 (a).
There is an indication of a slightly lower tracking efficiency in events with high pileup. The
rejection of the additional tracks is mainly due to the requirement on the distance of the tracks
with respect to the jet axis. This selection criterion is very efficient for the rejection of tracks
from pileup. The reconstruction of track parameters is hardly affected. The distribution of the
second-highest IP significance is stable, as shown in Fig. 7 (b). The impact of high pileup on the
b-jet tagging performance is illustrated in Fig. 8. This shows the light-parton misidentification
probability versus the b-jet tagging efficiency for the TCHP and SSVHP algorithms. In order

Thursday, May 16, 13



J. Slaunwhite

Electron MVA

21

Cut based Medium ID

From DP-13-003From DP-13-003

MVA ID
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9

Table 4: The ANN inputs for the nine jet-tag categories in the 8 TeV ttH analysis in the lep-
ton+jets and dilepton channels. The choice of inputs is optimized for each category. Definitions
of the variables are given in the text. The best input variable for each jet-tag category is denoted
by F.

Lepton+Jets Dilepton
Jets �6 4 5 �6 4 5 �6 2 �3
Tags 2 3 3 3 4 �4 �4 2 �3
Jet 1 pT X X X F X
Jet 2 pT X X
Jet 3 pT X X X X
Jet 4 pT X X X X
Njets X
pT(`, Emiss

T , jets) F X X X X X
M(`, Emiss

T , jets) X X X X X
Average M((juntag

m , juntag
n )) X X

M((jtag
m , jtag

n )closest) X
M((jtag

m , jtag
n )best) X

Average DR(jtag
m , jtag

n ) X X X X
Minimum DR(jtag

m , jtag
n ) X X X

DR(`, jclosest) X X X X
Sphericity X X X
Aplanarity X X
H0 X
H1 X X
H2 X X
H3 F X X
µCSV X X F F F F F X F
(sCSV

n )2 X X X X X
Highest CSV value X
2nd-highest CSV value X X X X X X
Lowest CSV value X X X X X X
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Significance

23

6 5 Signal extraction

�3 b-tags. Tables 1–3 show the predicted signal, background, and observed yields in each209

category for the lepton+jets and dilepton channels. Background estimates are obtained from210

MC after the appropriate corrections and scale factors have been applied, as described above.211

Given the event selection criteria and the large jet and b-tag multiplicity requirements in the212

lepton+jets channel, the background from QCD multijet production is negligible. Uncertain-213

ties in signal and background yields include both statistical and systematic sources. Sources of214

systematic uncertainty are described in Section 6. In Tables 1–3, the tt + jets background is sep-215

arated into the tt + bb, tt + cc, and tt+light flavor (l f ) components. The categories with higher216

jet and tag multiplicities are the most sensitive to signal. We include less sensitive categories in217

order to better constrain the background.218

The choice of event selection categories outlined above is optimized for the H ! bb decay219

mode. However, in the higher end of our search range—including mH = 125 GeV—other220

decay modes, especially WW and tt, can have significant standard model branching fractions.221

For the purposes of this search, we define any ttH event as signal, regardless of the Higgs222

boson decay. For most of the event selection categories defined above, the contribution from223

the decay modes other than H ! bb is less than 10%. The largest contribution from the non-224

bb decay modes arises in the �6 jets + 2 b-tags lepton+jets category where almost 50% of the225

events come from decay modes other than H ! bb. In that category H ! WW dominates226

the non-bb contribution. With the current optimization, the impact of the non-bb decay modes227

to the analysis sensitivity is negligible as the contribution from H ! bb in the most sensitive228

categories is > 95%.229

5 Signal extraction230

Artificial neural networks (ANNs) [50] are used in all categories of the analysis to further dis-231

criminate signal from background and improve signal sensitivity. Separate ANNs are trained232

for each jet-tag category, and the choice of input variables is optimized for each as well. The233

ANN input variables considered are related to object kinematics, event shape, and the discrim-234

inant output from the b-tagging algorithm. A total of 24 input variables has been considered235

and are listed in column 1 of Table 4. The inputs are selected from a ranked list based on ini-236

tial separation between signal and background. The separation of the individual variables is237

evaluated using a separation benchmark hS2i [51] defined as follows:238

hS2i = 1
2

Z
(ŷS(y)� ŷB(y))

2

ŷS(y) + ŷB(y)
dy, (1)

where y is the input variable, and ŷS and ŷB are the signal and background probability den-239

sity functions for that input variable in the signal and background samples, respectively. The240

maximum number of input variables considered is determined by the statistics in the simu-241

lated samples used for ANN training. The number of variables per category is determined by242

reducing the number of variables until the minimum number of variables needed to maintain243

roughly the same ANN performance is reached. In the lepton+jets categories, the use of ap-244

proximately 10 input variables yields stable performance; using fewer inputs exhibits degraded245

discrimination power, and using more inputs exhibits little improvement in performance in246

most categories. A similar exercise was done for the dilepton categories. The choice of input247

variables for each jet-tag category used in the 8 TeV analysis is summarized in Table 4; the input248

variables for each category in the 7 TeV analysis are very similar. The input variables used in249

the ANN can be broken down into several classes, as detailed below.250 Thursday, May 16, 13


