
1 / 21

Recent developments on FORM

Takahiro Ueda
TTP KIT Karlsruhe, Germany

Jos Vermaseren
Nikhef, The Netherlands

ACAT 2013
16 May 2013, IHEP, Beijing

Recent developments on FORM - T. Ueda (TTP KIT) 2 / 21

Outline

● Introduction of FORM

● Recent developments after FORM 4.0 (ver. 4.1)

● Code optimization (including Monte Carlo Tree Search)

● Conclusion

J. Kuipers, J.A.M. Vermaseren, A. Plaat, H.J. van den Herik, arXiv:1207.7079 [cs.SC].

J. Kuipers, J.A.M. Vermaseren, in preparation.

Recent developments on FORM - T. Ueda (TTP KIT) 3 / 21

What is FORM?

● FORM is a program for symbolic manipulation of mathematical
expressions. (Jos Vermaseren et al.)

● Open source: http://www.nikhef.nl/~form

● Designed to handle huge expressions with an arbitrary
number of terms. Not limited by the memory, but only by the
disk space.

● Basic tool for performing large scale calculations in
perturbative quantum field theory.

● Parallel versions:
● TFORM : POSIX threads, for multi-core processors.
● ParFORM : MPI, on computer clusters, etc.

http://www.nikhef.nl/~form

Recent developments on FORM - T. Ueda (TTP KIT) 4 / 21

FORM 4.0

● The current official version is FORM version 4.0.

● Polynomial factorization.
FactArg, Factorize, #FactDollar, ...

● Play with rational polynomials.
PolyRatFun, gcd_, div_, rem_

● Release of version 4.0 on 29 March 2012.

● Executables with some bug fixes on 10 April 2012.

● Further developments and bug fixes in the CVS
repository...

J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga,
CPC 184 (2013) 1453, arXiv:1203.6543 [cs.SC]

Recent developments on FORM - T. Ueda (TTP KIT) 5 / 21

Code Optimization

● Needs to export analytical results of FORM to Fortran or C etc.
code for further numerical computations.

● If a lengthy expression is to be evaluated millions of times
(e.g., Monte Carlo integration), it is worth reducing the code
size even if this needs a non-negligible time.

● In the next version of FORM, Format statement accepts
options for the code optimization. Then Print statement prints
the optimized code. (In practice, one can use #Optimize and
#Write for writing the optimized code into files.)

● For user convenience, we provide O0, O1, O2, O3 options,
a certain combinations of options and parameter settings.

Recent developments on FORM - T. Ueda (TTP KIT) 6 / 21

Symbols x,y,z;
ExtraSymbols vector,v;
Local F = 6*y*z^2 + 3*y^3 - 3*x*z^2 + 6*x*y*z – 3*x^2*z
 + 6*x^2*y;
Format Fortran;
Format O1,stats=on;
Print;
.end

 v(1)=y*z
 v(2)= - z + 2*y
 v(2)=x*v(2)
 v(3)=z**2
 v(1)=v(2) - v(3) + 2*v(1)
 v(1)=x*v(1)
 v(2)=y**2
 v(2)=2*v(3) + v(2)
 v(2)=y*v(2)
 v(1)=v(2) + v(1)
 F=3*v(1)
*** STATS: original 1P 16M 5A : 23
*** STATS: optimized 0P 10M 5A : 15

One power counted double because
y^3 = y * y * y.

P: powers
M: multiplications (incl. squaring)
A: additions

● The input is a polynomial of
3 variables x, y and z.

● w/ O1, # of ops.: 23 15

Recent developments on FORM - T. Ueda (TTP KIT) 7 / 21

Symbols x,y,z;
ExtraSymbols vector,v;
Local F = 6*y*z^2 + 3*y^3 - 3*x*z^2 + 6*x*y*z – 3*x^2*z
 + 6*x^2*y;
Format Fortran;
Format O2,stats=on;
Print;
.end

 v(1)=z**2
 v(2)=2*y
 v(3)=z*v(2)
 v(2)= - z + v(2)
 v(2)=x*v(2)
 v(2)=v(2) - v(1) + v(3)
 v(2)=x*v(2)
 v(3)=y**2
 v(1)=2*v(1) + v(3)
 v(1)=y*v(1)
 v(1)=v(1) + v(2)
 F=3*v(1)
*** STATS: original 1P 16M 5A : 23
*** STATS: optimized 0P 9M 5A : 14

● The input is a polynomial of
3 variables x, y and z.

● w/ O2, # of ops.: 23 14

Recent developments on FORM - T. Ueda (TTP KIT) 8 / 21

Symbols x,y,z;
ExtraSymbols vector,v;
Local F = 6*y*z^2 + 3*y^3 - 3*x*z^2 + 6*x*y*z – 3*x^2*z
 + 6*x^2*y;
Format Fortran;
Format O3,stats=on;
Print;
.end

 v(1)=x + z
 v(2)=2*y
 v(3)=v(2) - x
 v(1)=z*v(3)*v(1)
 v(3)=y**3
 v(2)=x**2*v(2)
 v(1)=v(1) + v(3) + v(2)
 F=3*v(1)
*** STATS: original 1P 16M 5A : 23
*** STATS: optimized 1P 6M 4A : 12

● Even for such a small expression, changing the optimization
level can make a difference.

● The input is a polynomial of
3 variables x, y and z.

● w/ O3, # of ops.: 23 12

Recent developments on FORM - T. Ueda (TTP KIT) 9 / 21

Horner Scheme

● For polynomials in a single variable, it is known that
the Horner scheme is good:

● This reduces the number of operations
from to .

++ **

Recent developments on FORM - T. Ueda (TTP KIT) 10 / 21

Horner Scheme with Many Variables

● For multivariate polynomials, one can repeatedly apply a
Horner scheme in one of the variables.

● The efficiency may depend on the order in which the variables
are chosen.

18M 5A

8M 5A
9M 5A

11M 5A
14M 5A

11M 5A

14M 5A

Horner Order Formula Operations

Recent developments on FORM - T. Ueda (TTP KIT) 11 / 21

How to choose Horner variables?

● Choose Horner variables in the occurrence order such that at
every step one can get the largest decrease in the number of
operations.

● Horner scheme is used with other optimization methods, e.g.,
common subexpression elimination (CSE). The reverse
occurrence order could reduce the number of operations more
in total, because more common subexpressions could appear
in multiple places.

● Both may not be optimal. Try to all orders. Once the number
of variables becomes large (e.g.,), this is
not practical.

Recent developments on FORM - T. Ueda (TTP KIT) 12 / 21

Monte Carlo Tree Search

● The various orderings of variables
define a search tree (paths).

● Searching through trees to find a
good/best solution is common in
game theory.

...

...

● Monte Carlo Tree Search (MCTS): under an assumption that
good solutions are clustered in branches (seems to be true for
Go game and choosing Horner variables), try many paths
randomly but with taking more samples for neighborhood of
good solutions.

● Monte Calro algorithm! May give a different result at each run.

. ..

. ..

. ..

Recent developments on FORM - T. Ueda (TTP KIT) 13 / 21

Optimization Levels

● O0: Do nothing.

● O1 : Try both occurrence and reverse occurrence orderings,
followed by CSE.

● O2 : Besides O1, an extra “greedy” optimization to find more
common subexpressions at the end.

● O3 : The ordering is determined by MCTS with CSE and the
greedy optimization.

Recent developments on FORM - T. Ueda (TTP KIT) 14 / 21

Code Size vs. Time

0.0E+0

2.0E+5

4.0E+5

6.0E+5

8.0E+5

of operations

O0 O3O2O1

587880

71262 55685 36146
0.0E+0

1.0E+3

2.0E+3

3.0E+3

FORM time (sec.)

O0 O3O2O1

0.12 1.66
65.43

2398

● Benchmark: The resultant of two polynomials, so-called
Sylvester determinants with a number of parameters. The
parameters come from two polynomials:

The determinant is of a (n + m) x (n + m) matrix.

● For n = 7, m = 6 case, 13 x 13 determinant with 43166 terms.

* On an Opteron 2.6 GHz processor.

Recent developments on FORM - T. Ueda (TTP KIT) 15 / 21

Interplay with Compilers

0.0E+0

1.0E+1

2.0E+1

3.0E+1

4.0E+1

gcc -O0 compile time (sec.)

O0 O3O2O1

29.02

6.33 5.64 3.36
0.0E+0

5.0E+1

1.0E+2

1.5E+2

gcc -O0 run time for 105 evals. (sec.)

O0 O3O2O1

119.66

13.61 12.24 7.52

0.0E+0

1.0E+3

2.0E+3

3.0E+3

4.0E+3

gcc -O1 compile time (sec.)

O0 O3O2O1

3018.6

295.96 199.47 80.82
0.0E+0

1.0E+1

2.0E+1

3.0E+1

gcc -O1 run time for 105 evals. (sec.)

O0 O3O2O1

24.30

6.88 6.12
3.58

0.0E+0

1.0E+3

2.0E+3

3.0E+3

4.0E+3

gcc -O2 compile time (sec.)

O0 O3O2O1

3104.4

247.60 163.79 65.21
0.0E+0

1.0E+1

2.0E+1

3.0E+1

gcc -O2 run time for 105 evals. (sec.)

O0 O3O2O1

21.09

7.00 6.22 3.93

0.0E+0

1.0E+3

2.0E+3

3.0E+3

4.0E+3

gcc -O3 compile time (sec.)
3125.4

276.77 179.24 71.02
0.0E+0

1.0E+1

2.0E+1

3.0E+1

gcc -O3 run time for 105 evals. (sec.)
21.02

6.95 6.19
3.93

O0 O3O2O1 O0 O3O2O1

* With gcc 4.6.2.

Recent developments on FORM - T. Ueda (TTP KIT) 16 / 21

Interplay with Compilers (cont'd)

● Note: compilers cannot possibly be as efficient as FORM in
their optimizations. For compilers addition is not associative
because of potential numerical problems, which is ignored in
FORM.

● Considering (FORM time) + (compilation time) + (run time),
which combination of optimizations gives an optimal result
depends clearly on the number of function evaluations
needed.

Recent developments on FORM - T. Ueda (TTP KIT) 17 / 21

Simultaneous Optimizations

● Two or more expressions can have common expressions.
Combine the expressions into one expression and use
Bracket statement.

● If the expression is bracketed in terms of u, FORM does not

perform the optimizations with respect to u. The optimized

expression in H still contains u. One can separate the

individual expressions.

Symbol u;
Local F, G;
Local H = u * F + u^2 * G;
Bracket u;

Recent developments on FORM - T. Ueda (TTP KIT) 18 / 21

Simultaneous Optimizations (cont'd)

● Example: expressions in the GRACE system, Feynman
diagrams appearing in HEP. Each coefficient of the monomial
with respect to Feynman parameters must be simplified.
Common subexpressions appear in the coefficients.

● “# of variables m+n” means m Feynman parameters and n
other parameters and the simultaneous optimization is used.

HEP(σ) HEP(σ) F
13

F
24

of variables 15 4 + 11 5 + 24 5 + 31

of expressions 1 35 56 56

of terms 5717 5717 105114 836010

of ops. O0 47424 33798 812645 5753030

 O1 6099 5615 71989 391663

 O2 4979 4599 46483 233445

 O3 3423 3380 41666 195691

Recent developments on FORM - T. Ueda (TTP KIT) 19 / 21

Comments on Domain Specific Knowledge

● In some cases (like in expressions appearing in physics) one
can do some work before using the FORM optimizations,
because one has knowledge about the problem that can be
useful for simplification (domain specific knowledge) while for
FORM the formulas present some kind of chaos.

● The formula F24 can be reduced by another factor of four with

a very big improvement in the speed of the optimization.

Recent developments on FORM - T. Ueda (TTP KIT) 20 / 21

Comparison with Other Algorithms

7-4 resultant 7-5 resultant 7-6 resultant HEP(σ)

Original 29163 142711 587880 47424

FORM O1 4968 20210 71262 6099

FORM O2 3969 16398 55685 4979

FORM O3 1 3015 11171 36146 3524

Maple 8607 36464 - 17889

Maple tryhard 6451 O(27000) - 5836

Mathematica 19093 94287 - 38102

Hypergraph + CSE 4905 19148 65770 -

Haggies 2 7540 29125 - 13214

of operations

1 FORM O3 run used C
p
 = 0.07 and 10 x 400 tree expansions.

2 Haggies by Thomas Reiter .

Recent developments on FORM - T. Ueda (TTP KIT) 21 / 21

Conclusion

● We have made an implementation of various simplification
techniques in FORM to make the evaluation of output
expressions more economical.

● The results are better than anything we could find in the
literature.

● This feature will become available in the next version 4.1.

