
CMS Use of a  Data Federation Peter Elmer, Princeton University

(for the CMS Computing group)



CMS at the Large Hadron Collider (LHC)

• General purpose detector for both 
proton-proton and Heavy Ion collisions 
at the LHC 

• A collaboration of ~3800 physicists and 
engineers from ~180 institutions in 39 
countries 

• computing resources are provided to 
the experiment by about 60 computing 
centers



CMS Computing Model

• The baseline CMS Computing Model was developed in 2005: an era of 
unreliable sites, unreliable storage systems, an unreliable grid and poor 
monitoring if one wanted to understand what was happening. 

• We opted for a very simple model: 

• Datasets are statically placed at sites, either by the central computing 
operations or by request of analysis groups 

• Jobs go where the data is located and read data locally 

• No data is moved on response to job submissions 

• Uses more storage, a tradeoff between efficiency and system complexity 



PhEDEx - Physics Experiment Data Export

CMS average data transfer volume (2004-2012)

Design focused on scalability and reliability from the beginning
Generic data transfer and placement system

A transfer management database plus a set of loosely coupled, stateless agents

Computing tool with the greatest longevity in CMS

Volume: 
Up to 250TB/day 
transferred (500k transfer 
successes/week) 


Files:  
11M (24M incl. replicas) 


Throughput: 
Up to 2-2.5GB/s 
aggregate in peak weeks



Breakdown of storage solutions at sites 
that are nodes in the CMS PhEDEx topology

T1 only T2 only T3 only

Total

Storage Heterogeneity



Data Federations

• The maturity of the computing system leads to an emphasis 
on new goals: efficiency of storage use (eventually fewer 
replicas?), lower latency for end users, greater transparency 
relative to storage system heterogeneity, improved usability 
for analysis 

• Much of the traffic is to T2 sites, where analysis is happening 



Data Federations

• Exploit WAN data access as a complement to local access: 
allow jobs running at one site to transparently access files 
located at other sites  

• In short, create a federated data storage system which 
provides access to files residing in a heterogeneous mix of site 
storage systems and independent administrative domains.  

• Requires a common global namespace. For efficiency 
applications also need to handle gracefully higher latency file 
reads and bandwidth limitations. 

• A data federation has however several interesting use cases



Use cases



Use cases



Use cases



xrootd

• The CMS data federation is implemented using xrootd. 

• Single entry point for file access is the "redirector". It maintains 
no permanent file location information, but queries registered 
xrootd data servers as to whether they have the file. The client 
is then redirected to one which can provide access.

GSI-based authentication 
is used, via xrootd plugin 
 to map GSI to username



Global file namespace
• Since 2005 CMS has imposed a single logical file namespace 

globally. File access (the PFN) at a given site is determined by a 
site-specific set of transformation rules, i.e. the so-called "trivial 
file catalog". 

• The use of these rules is setup such that a "fallback" access 
can be specified. If the job attempts to read the file via the 
standard (first match) method and it fails, the job will then 
attempt to open the file via the fallback method. This is 
configured as the entry point into the global data federation. 

• This bit of application-level logic permits the implementation of 
the use cases mentioned earlier.



Optimizing high-latency file access

• o(50ms) latencies within regions and o(100ms) latency 
between regions, much greater than local access. 
Manage reads carefully to avoid small reads.

Use TTreeCache to group 
many reads into a single, 

large, vector read. Limit I/O 
round-trips to one per 

512kB read.

Top 10 data products are 
colored, the rest black



Deployment

• Funded project "Any Data, Anywhere, Anytime" (AAA) in the 
US. The first deployment began with sites there as a regional 
federation. 

• Now being expanded to include all CMS sites in a global 
federation 

• Access to data in the federation can of course come from 
anywhere 

• The realization of such a system is critically dependent on 
proper monitoring



Global Data Federation



xrootd server side monitoring (UDP)



xrootd monitoring



Growth of remote access data access

Monitoring 
Data lost

30 sites provide access to their data, 37 use as fallback



Realtime monitor

Allows operators/sysadmins to spot jobs causing problems, 
for example the origin of excessive load



Data outgoing via xrootd by site - Past Month

Dominated by a few sites at the moment



Standard PhEDEx Data Transfers - Past Month



CMS Jobs by Access Type



Daily Summary Report for Operators

Quick ascii-art/table at-a-glance morning summary of 
system statistics from the previous day



Summary

• The CMS Computing Model relies on static data placement, job 
movement to the data and local data access. This simple model 
has served us well during commissioning and the first LHC run. 

• Over the past 1.5 years we have been deploying and 
commissioning a system, based on xrootd, allowing for WAN 
access to data by jobs and building a global data federation 
from heterogeneous resources. 

• The system has been growing steadily and we expect that it will 
be a critical piece of our computing system for the next LHC run



Proper Credits

• UCSD: Frank Wuerthwein, Matevz Tadel, Igor Sfiligoi 

• UW: Dan Bradley, Sridhara Dasu 

• UNL: Brian Bockelman, Ken Bloom 

• The xrootd team: Andy Hanushevsky. Lukasz Janyst, Andreas 
Peters, Gerri Ganis, et. al. 

• dCache implementation: Gerd Behrmann 

• Many T1/T2 sysadmins who deployed the system


