Simulation-aided optimization of detector design using portable representation of 3D objects

Jan Balewski

Outline

Describe traditional approach

- Contrast STL-based approach
 - STL pros
 - STL cons

• 'plumbing': CADMesh, VMs

- •Example: DarkLight detector design
- Conclusions

Typical 2-prong detector design process

Physicists Geant model

Engineers CAD model

Typical detector design process ... takes time

Physicists bring idea

- purpose of experiment
- key components
- preferred technology
- space constraints
- simulated response
- → changed requirements

- high cost
- → changed requirements

days, weeks, months,.

Engineers

bring technical knowledge

- detailed construction plan
- realistic material budget
- realistic price tag

revised design & price tag

revised design & price tag

Geant4 representations of solids

Constructive Solid Geometry (CSG)

To build a **full solid sphere** use: G4VSolid * G4Orb(const G4String& pName, G4double pRmax)

Boundary Represented Solids (BREPs)

CAD ⇒Standard Tessellation Language (STL)

Geant4: to import sphere in STL format use:

CADMesh * mesh = new CADMesh("mySpehre.stl", "STL",...) G4VSolid * mySolid = mesh->TessellatedMesh();

Streamlined sharing of detector design

Physicists

Engineers

exchange geometry using

G4TessellatedSolid Shapes.

Standard Tessellation Language (STL)

Other tools which can be used to generate meshes to be then imported in Geant4 as tessellated solids are:

- STL2GDML A free STL to GDML conversion tool.
- SALOME Open-source software allowing to import STEP/BREP/IGES/STEP/ACIS formats, mesh them and export to STL.
- ESABASE2 Space environment analysis CAD, basic modules free for academic non-commercial use. Can import STEP files and export to GDML shapes or complete geometries.
- <u>CADMesh</u> Tool based on the <u>VCG Library</u> to read STL files and import in Geant4.
- Cogenda Commercial TCAD software for generation of 3D meshes through the module Gds2Mesh and final export to GDML.

Advantages of STL over G4-native (CSG)

- no 'logical disassembly' into TBox, TTube, etc. of complex, real life shapes
- portability between Geant4 projects (similar to GDML)
- STL fidelity (accuracy) can be changed while exporting from CAD

Example of a non-planar multi-layer detector assembled in CAD

(subjective)

Advantages of CAD over Geant4-native detector design

- intuitive assembly in 3D of non-trivial volumes and their alignments
- high quality graphics and animations important for public relations

Design a non-trivial 3D volume

Requirement:

design GEM detector (1) made out of frames, (2) placed it at an angle to the beam, (3) fitting it in to a tube

a) Slice a cylinder with the plane inclined to the beam

b) define one GEM frame (green)

Assemble a non-trivial volume

Complex object as STL package

Requirement:

this blower sits in front of your detector and obstructs measured particles. Simulate its impact.

How would you implement it in Geant4 using:TBox, TTube, ..., etc?

Geant4 implementation time : ~ hour

Volumes conflict detection, inspection

Checking overlaps for volume TpcSens I 5 ... **Geant 4** *** G4Exception: GeomVol1002 issued by : G4PVPlacement::CheckOverlaps() Overlap with volume already placed! Overlap is detected for volume TpcSens I 5 with TpcSens I4 volume's local point (-116.344,198.404,441.614), overlapping by at least: 2 mm *** This is just a warning message. ***

Limitations of STL geometry model

EMCAL: S-shape scintillator in Pb-block 3 parts positioned in space

- •no sub-volumes (parts)
- •positioning ~lost
- •material type ~lost
- •fidelity has its price (simulation time)
- •add gaps between parts to reduce risk of volume conflicts at lower fidelity

Exporting complex structure as 'parts'

EMCAL: S-shape scintillator in Pb-block 3 parts positioned in space

Many approaches ...

in CAD

•export as STL single copies of U, B parts in the parts local ref frames

in Geant4

- •re-assign materials to parts
- •re-position parts in MARS (6 dof)
- •clone part U2

abs. ref frame

Fidelity of tessellation

Fidelity of tessellation vs. CPU cost

Separation between parts

Low fidelity STL

Fixed: surface deviation 90 µm

Varied: separation gap between 2 parts

For rounded surfaces exported to STL with low fidelity and for narrow gaps between parts

- clearance between parts may shrink, be non-uniform
- parts may eventually collide

Geant4+STL: software configuration

Start: empty SL5.8 VM

Install base (compile locally):

- •CERN root, ver 5.34.04
- Geant 4.9.6.p01

Add components needed for STL

- **ASSIMP** for reading various CAD file formats
 - http://sourceforge.net/projects/assimp/files/ assimp-3.0
 - minor code fixes
- **CADMesh parsing STL to Geant4**
 - http://cadmesh.googlecode.com/files/ cadmesh-v0.9.tar.bz2
- **Test STL** (example provided)
 - ./build/cadmesh_example

CAD+Geant4 on one laptop

Virtual Machine #1: Linux/Geant4

Virtual Machine #2 :Windows/AutoCAD

Practical example: design of DarkLight detector

Evolution of DarkLight detector concept

Several detector models were designed in CAD and efficiency was simulated in Geant4.

Summary

- •Tessellation Standard (STL) simplifies automatic translation of solids from CAD to Geant4 shortening time of design-to-simulation cycle
- CADMesh interface preserves shape of solids but position and material assignment needs to be redone in Geant4
- Hybrid approach combining STL definition for complex volumes with native Geant4 definitions for simple shapes works well
- Some practice is needed to apply this scheme for larger detector systems