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CERN and the LHC
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per second

protons per
beam.

200 billion

protons per
bunch.
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The ATLAS Detector | 52
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The ATLAS Detector
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Data Events

Run Hursbee: 201280, Eeat Hanbe: 241581606

Das 2012-04-2% 1652258 CE5T

/— uu event
+ 24 other p-p
interactions

16th May 2013 Katharine Leney



Pixel Detector

R=122.5 mm Pixels
R =88.5mm

R=50.5mm
R=0mm

Beampipe

e Innermost layer of ATLAS detector.

e Provides precision measurements of positions
of charged particles.

e Crucial for identification of long-lived particles
via reconstruction of secondary vertices and
estimate of number of proton-proton
interactions per bunch crossing.

decoupling
capacitors

e 1744 identical modules.
e 46080 silicon pixel sensors per module.
» Thickness: 250 um

» Transverse length: 50 um fex

» Longitudinal length: 400 um )
*\glue FEs

i
e Total of 80.8 million read-out channels. ™ sensor  bump bonds "G

sensor

MCC  pigtail
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Tracking Overview
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Standard Clustering

e Particle traversing detector typically
deposits charge in more than one
pixel.

e Charge deposited in a pixel measured
using pulse-height time-over-
threshold.

e Pixels with deposited charge are
grouped into clusters if they have a
common edge or a common corner.

1
Xes =  Xeenter Ay | L2y — 2
 Position of crossing is computed from B Ao 1
the signal heights inside the cluster of Yes = Ycenter T By Yy
pixels: J
o last row(col)
) =

dfirst row(col) T Qlast row(col)
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Tracking in Dense Environments

o Standard clustering provides excellent resolution for most clusters.

e Inadequate for dense environments with multiple charged particles:
» Charge deposited in neighbouring pixels.
» Clusters are shared.
» Track parameters are mis-estimated.

e Obijects such as highly energetic jets
and hadronically decaying tau
leptons are most affected.

Jets with transverse
momentum > 1 TeV typically
produce merged clusters.
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Tracking in Dense Environments
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More energetic jets = more tracks in core.
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Tracking in Dense Environments
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Most energetic tracks in jet core.
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Tracking in Dense Environments
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Tracking in Dense Environments
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Energetic tracks in jet core share more hits with neighbouring tracks.
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Neural Networks

Hidden
e Powerful tools for pattern recognition o

problems.

e Can handle non-linear correlations
between input variables.

e Attractive for problems with many
degrees-of-freedom.

e Inputs are differently weighted in the
hidden layers of the NN to finally
determine the output.

Good choice for pixel clustering algorithm:
e Many cluster properties are nearly meaningless when alone (e.g. charge of a single pixel).
e Combine cluster properties to put into context (e.g. knowing charges of adjacent pixels).

e Variables then contain all information required for successful pattern recognition.
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Neural Network Cluster Splitter

Feed-forward multi-layer
perceptron network:

weight parameters

AN

AN

F; ()?) = h W;;8 Z WXk + 9]' + 6;
A
output activation functions

nodes for computing values
of intermediate and

input nodes/variables
(k — [O, Ninputs]

output nodes

g(x) = (l4exp )

T

output nodes are confined
between 0 and 1
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h(x) =x

Neural networks used to compute:
e Number of particles per cluster.
e Cluster position and error.
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Number of Particles Per Cluster

60 input nodes

7x7 pixel matrix
of collected
charge of each
pixel

Vector of
longitudinal size
of pixels in the
matrix

Direction of the
candidate
charged particles
traversing the
cluster
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3 output nodes

One particle
per cluster

Two particles
per cluster

Three particles
per cluster
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Cluster Position & Error

Additional set of neural networks used to estimate:

Cluster position:

e Configured for interpolation.

» Obtain a function where outputs get as close as possible to one or more
continuous target variables.

» Exploit dependence of such targets on the input variables.

e Different neural networks for different number of particles scenarios.
» Trained on true number of particles in simulation.

e Same input variables as for classification neural network.

Probability density function for residual of estimated impact point:
* AI; — ﬁ - F_)’true
* Separate neural networks for transverse and longitudinal directions.

* Translated to the cluster rest frame.

16th May 2013 Katharine Leney
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Training

e Ten neural networks needed for up to three sub-clusters:

Number of charged
particles traversing
cluster

Particle 1 position

Particle 2 position

Particle 3 position

Particle 1 x-error

Particle 2 x-error

Particle 3 x-error

Particle 1 y-error

Particle 2 y-error

Particle 3 y-error

e Trained on simulations of pair produced top-quarks, and highly energetic di-jet

events.

o Simulations divided into test samples and training samples.

» Number of training patterns exceeds number of network parameter by at least

1000.

16th May 2013
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Cluster Splitting

p(N=1): 0.168  p(N=2):0.629  p(N>2): 0.203
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Two-Particle Separation

o Track is allowed to share a pixel cluster with another track only if cluster is not
already split, and the neural network output is compatible with a possible merged
cluster.
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e Most noticeable
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Cluster Resolution
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e Dramatic improvement in resolution (track-to-measurement residual).

e Non-linear treatment of charge resolution allows recovery of single peak
in track-to-hit residuals.
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Track Resolution
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Improved cluster resolution
leads to improved track
parameters.

15% improvement in

longitudinal impact

parameter.

» Used for identification of
long-lived particles (e.g.
heavy flavour quarks).
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Summary

e Neural network approach used to boost detector performance and make full
use of detector design potential.

o All correlations inside pixel cluster are taken into account.
e Identify and split merged clusters created by multiple charged particles.

e Sizeable improvement in track measurements, particularly in dense
environments such as in jet cores and hadronic tau decays.

e Non-linear treatment of charge collection improves impact parameter
resolution even for isolated tracks.

e Improved two-particle separation will become even more important during
future upgrades as particle density increases.

16th May 2013 Katharine Leney
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Back-Up
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The ATLAS Detector
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How much is an eV?

A single electron accelerated by a potential difference of 1 volt will have a
discreet amount of energy, E=qV joules, where q is the charge on the electron in
coulombs andV is the potential difference in volts.

1eV=(1.602x10"7C)x(1V)=1.602x 1071 ].

103 k (kilo)

100 M (mega)

107 G (giga)

1012 T (tera)
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Semi-Conductor Trackers

Energy

Sas {2 .. €~ CONDUCTION
- BAND

Energy input

from high- A

energy particle Ht H H

O VALENCE
BAND

e In a semi-conductor, the gap
between the valence band and
conduction band is less than 1GeV.

e When high energy particle hits semi-
conductor, some of the energy is
absorbed by electrons which are
then promoted to the conduction

band.

e Number of charge carriers (both
electrons and holes) is increased,
and so resistance decreases.



¢ [mm]

o [mm]

Cluster Shapes

Two very close particles

0.8
B 30000
0.75 - 25000
0.7 : 20000
E 15000
0.65
E J 10000
0.6 —
B —15000
0.5 : |P(|1):| o'p113 IP(2|): 0'31351 P1(>2):| 0'165|1 1 T —lo
378 7.6 7.4 7.2 A7 -16.8 16.6 16.4 16.2
n [mm]
Three overlapping particles
-3.6 = 22000
365 — 20000
- — 18000
3.7 16000
— 14000
3.75 = 12000
28 E 10000
— — 18000
-3.85 = —6000
39 — —1{4000
E —2000
-3.9 _ |P(|1 ):I o'p2|3 |P(2): U - 75 P1(>2):| 0'502 1 1 1 | 1 1 1 1 1 1 | 1 1 1 —Io
52 15.6 15.8 16 16.2 16.4 16.6 16.8 17
1 [mm]

16th May 2013 Katharine Leney

29



Abstract

We present a novel technique using a set of artificial neural networks to identify
and split merged measurements created by multiple charged particles in the
ATLAS pixel detector. Such merged measurements are a common feature of
boosted physics objects such as tau leptons or strongly energetic jets where
particles get highly collimated. The neural networks are trained using Monte

Carlo samples produced with a detailed detector simulation.

The performance of the splitting technique is quantified using LHC data
collected by the ATLAS detector in 2011 and Monte Carlo simulation. The
number of shared hits per track is significantly reduced, particularly in boosted
systems, which increases the reconstruction efficiency and quality. The improved
position and error estimates of the measurements lead to a sizable improvement
of the track and vertex resolution.
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CPU Performance of NN Clusterisation

e Neural network clustering runs 6 times slower than traditional clustering.

 In context of the full event reconstruction, the re-evaluation of the splitting
during track fitting and the increased combinatorics from additionally found
track candidates leads at maximum to a 5% increase of the per event execution
time in the highest pile-up conditions experienced during the 2012 data taking.
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