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Last 30 years → revolution in our ability to deal with multiloop

Feynman Integrals: Main (but not all!) ingredients:

• Dim. Reg. /G. t’ Hooft & M. Veltman (72)/

• “IBP” (Integration by Parts) method (see below)

• effective theories, various expansion of FI’s, methods of regions /M. Beneke & V.
Smirnov (1998) + . . . / and the extension principle /F. Tkachov (1982) . . . /

• “Mellin-Barns” /N. Ussyukina, A. Davyduchev . . . V. Smirnov . . . B. Tausk . . . /

• shifts and recurrence relations in the space-time dimension D /O. Tarasov . . .
P. Baikov . . . R. Lee/

• “IR-reduction” −→ most useful trick to automatically reduce # of loops by one
in computing Z-factors (read any β-function and anomalous dimension in any
theory) /see below/

• summations & special functions /see talks by C. Schneider & J. Blümlein/

• Computer Algebra: from legendary SCHOONSCHIP (M. Veltman) to Mathematica
and, especially, FORM (J. Vermaseren), see the talk by T. Ueda

• numerical methods: ”Páde approach” (J. Flescher . . . O. Tarasov . . . ) sector &
slicing techniques (see the talk by G. Heinrich)



Now: Evaluation of FI = established, fastly developing part

of math. physics

3 / 4
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This talk:

I will concentrate on the ”most mutiloop” branch of multiloop QCD: the evaluation

of RG-functions (that is β-functions and anomalous dimensions) based on massless

propagators.

Note that the same methods are equally applicable to a tightly related problem of

computing massless current-current QCD correlators. The latter are connected to

many interesting physical observables:

total cross-section of e+e− annihilation to hadrons (R-ratio)

Z, τ -lepton and Higgs decays rates to hadrons

quark masses (via QCD sum rules)

running of αEM due to strong interaction in the SM

. . .

. . .

An alternative approach, based on completely massive vacuum tadpoles will be

discussed today by A. Bednyakov



INTRO: Z-factors and R-operation

Consider a simple theory, the φ4-model with the Lagrangian

L =
1

2
(∂φ)2 −

1

2
m2φ2

−
g

4!
φ4

and let

Γ[L, φ]

is the the generating functional of all 1PI Green functions corresponding to the Lagrangian L (some

UV regularization is assumed). Renormalizability of the model means that there exits such a choice of

the renormalization constants Z2, Zm and Z4 (in the form of the formal series in the cc g, starting

from 1) that the renormalized generating functional

Γr[φ] ≡ Γ[L
c
, φ]

with

L
c =

1

2
Z2(∂φ)

2
−

1

2
Zmm2φ2

−
g

4!
Z4 φ

4

produces finite (after regularization is removed) Green functions in every order of PT in the coupling g.

All information on RG-functions (that is β-functions and anomalous dimesnions) of a theory is siiting

in Z-factors (renormalization constants).

To prove the renormalzability Bogolyubov and Parasyuk invented the R-operation. Let’remind some

definitions.



Let < Γ > be a Feynman integral (FI) corresponding to a diagram Γ,

then R-operation is defined as

R < Γ >=
∑

γ1,...γj

∏

i

∆(γi) < Γ >= R′ < Γ > +∆(Γ) < Γ >

1. sum goes over all sets {γ1, . . . γj} of (pairwise) disjoint 1PI subgraphs,

with ∆(∅) = 1

2. ∆(γ) is a counterterm (c-) operation which acts as follows:

∆(γ) < Γ >= Pγ∗ < Γ/γ >

3. Pγ = ∆ < γ > is a polynomial in external momenta (mandatory)

and masses (desirable) of FI < γ > which is inserted into the vertex vγ
inside of the reduced graph Γ/γ

4. a specific choice of the c-operation ←→ choice of a renormalization
scheme



Main (analytical) theorem of the R-operation:

If FI < Γ > does not contain IR divergences (which is certanly true if all lines are massive or

external momenta are off-shell), then the renormalized FI R < Γ > can be made finite in

the limit of removed UV regularization with a proper choice of the c-operation

In terms of the R-operation the generating functional of the renormalized Green
function is written as:

Γr[φ] = RΓ[L, φ]

Connection to the multiplicative regularization and the Lagrangian with counter-terms
is given by the following

Main (combinatorial) theorem of the R-operation:

L
c
≡ ∆Γ[L, φ]

The theorem provides us with a very convenient and flexible way of computing of
contributions to Z-factors from separate diagrams.



Dimensional Regularization (DR) and related MS-scheme /t’ Hooft and M. Veltman,
(1972-1973)/ are most usefull for RG calculations.

The R-operation for MS-scheme is fixed by defining the c-operation as follows

∆(γ) < γ >= −KR′ < γ >

where K picks up the pole part in ǫ = 2−D/2.

The most crucial for all the RG-business property of such the MS-R-operation
is its commutativity with differentiations wrt masses and external momenta. This
commutativity naturally leads to the following remarkable statement

Theorem 1. (J. Collins, 75) Any UV counterterm for any Feynman integral and,
consequently, any RG function in arbitrary minimally renormalized model is a
polynomial in momenta and masses.

⋆ Mathematically correct definition of DR requires the use of α-parameters and has been done for

massive case by Breitelohner and Maison in 1977 and by V. Smirnov and K.Ch. in 1984 for a general

case of FI with UV and IR divergences



Infrared Rearrangement Method /A. Vladimirov (1978)/

Suppose we want to compute contributions to Z2 and Zm from the 2-loop propagator of the φ4-theory

q2δZ2 + m2δZm = KR′
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R
′

δZ2 is simple: one just set m = 0 and the result directly comes from double application of the

textbook 1-loop formula for massless propagators (called p-integrals later on):

1

i

∫

dDl

(−l2α)(−(q − l)2β)
= πD/2

(−q2
)
2−ǫ−α−βG(α, β)

with G(α, β) being just a simple combination of 6 Γ-functions.



To compute δZm one could, of course, set q = 0 but resulting 2-loop massive vacuum graph is

certainly more complicated than 1-loop p-integral. Anticipating even more complicated cases in future,

let us try to stay with massless integrals . . . .

Let us first perform a derivative wrt m2 of the initial integral:

−

∂

∂m2

−
1

3
δZm = KR

′
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Now would be nice to set m=0 but we can not as the dotted line corresponds to 1
p4

and leads to an IR

divergency! (which certainly spoil the result for δZm)



But as we are dealing with log-divergent integral, its UV counter-term is just a pole
without any dependence on external momenta. So one could freely change external
momenta without touching δZm!

−
1

3
δZm = KR′
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With q = m == 0 and q′ 6= 0 there is no IR divergences and we could easily perform
integrations using massless formulas.



The IRR in many cases is able to reduce the problem of evaluation of (L+1)-loop UV
countertem to evaluation of some L-loop p-integrals (the latter is necessary to know
up to and including the constant ǫ0 part in the corresponding ǫ-expansion).

But there are cases when it does not work: no simple (read: flowing through exactly
one line) choice of the external momentum in a massless FI can kill all IR problems:

An example:

Here the IR divergency in p-integration makes problems. One, of course, could regulate
it with a small “auxiliary”mass:

1

p4
→

1

(p2 +m2)2

but that will complicates integration, leading to a 2-scale integral.



The idea how to overcome the problem (in fact, it came from the Bogolyubov’s
distributional approach to QFT) is very simple: to subtract the unwanted IR divergency
with the help of an IR counterterm but now local in position space:

1

p4
→

1

(p4)
−

c

ǫ
δD(p)

with the constant c choosen such that there would be no IR poles coming from the
integration region of small momentum p.

After such a replacement no IR poles survive and integrations are made easily.

This idea eventually led to the so-called R∗-operation1:

a generalization of the R-operation which recursively subtracts all UV and IR divergences from

any (Euclidean!) Feynman integral.

It was also a starting point of the so-called extension principle2

1 K.Ch., F. Tkachov (1982); K.Ch., V. Smirnov (1984 – . . . )

2 F. Tkachov (1983); F. Tkachov, G. Pivovarov (1983 –. . . )



The main use of the R∗ -operation is in proof of the following statement

Theorem 2. Any (L+1)-loop UV counterterm for any Feynman integral may be
expressed in terms of pole and finite parts of some appropriately constructed L-loop
p-integrals.

Theorem 2 is a key tool for multiloop RG calculations as it reduces the general task
of evaluation of (L+1)-loop UV counterterms to a well-defined and clearly posed
purely mathematical problem: the calculation of L-loop p-integrals (that is massless
propagator-type FI’s).

In the following we shall refer to the latter as the L-loop Problem.

1. 1-loop Problem is trivial

2. the 2-loop Problem was solved after inventing and developing the Gegenbauer
polynomial technique in x-space (GPTX) (K.Ch.,F. Tkachov (1980); further important
developments in works by D. Broadhurst and A. Kotikov ).

In principle GTPX is applicable to analytically compute some quite non-trivial three
and even higher loop p-integrals. However, in practice calculations quickly get clumsy,
especially for diagrams with numerators. . Nevertheless, it proved to be very usefull
in cases of scalar diagrams with many multilinear vertexes /appear frequently in
supersymmetric theories/



An impressive example of GPTX in action (8 loops!!)

+ many more similar integrals

copied from the recent work (January of 2013):

“The Leading Order Dressing Phase in ABJM Theory”

Andrea Mauri, Alberto Santambrogio, Stefano Scoleri, arXiv:1301.7732 [hep-th]



The main breakthrough at the three loop level happened with elaborating the method
of integration by parts (IBP) of DR integrals. An example:

0 =

∫

dD ℓ1 dD ℓ2
∂

∂ℓα1
(ℓ1 − ℓ2)α

which is equivalent to the exact D-dimensional equality (first derived with GPTX in
1979):

1

ǫ

Historical references:

At one loop, IBP (for DR integrals) was used in ⋆, a crucial step — an appropriate
modification of the integrand before differentiation was undertaken in ⋆⋆ (in momentum
space, 2 and 3 loops) and in ⋆⋆⋆ (in position space, 2 loops)

⋆ G. ′t Hooft and M. Veltman (1979)
⋆⋆⋆ A. Vasiliev, Yu. Pis’mak and Yu. Khonkonen (1981)
⋆⋆ F. Tkachov (1981); K. Ch. and F. Tkachov (1981)



COMMENTS

• IBP identities are exact ones valid⋆ for general Feynman amplitudes

• IBP identities relate complicated topologies to simpler ones

• For a given class of FI’s there exist only finite very limited (empirical, well
established fact) number of (further irreducible) so-called master integrals
which provide basis to express all other members of the class

• IBP relations also play the crucial role in many (but not all) powerful
approaches to compute the very master FI’s; see below

• As a result: “. . . IBP relations evolved into a fantastically universal
and efficient method for reducing all integrals of a given
topology to a few master integrals”⋆⋆

⋆ to the best of my knowledge a rigorous proof is available for the euclidean case K.Ch., V. smirnov

(1984)/; practical calculations find no selfconsitency in on-shell situation too . . .

⋆⋆ A. Grozin, from Int.J.Mod.Phys. A27 (2012) 1230018



With the use of IBP identities the 3-loop Problem was completely solved and
corresponding (manually constructed) algorithm was effectively implemented first in
SCHOONSCHIP CAS (Gorishny, Larin, Surguladze, and Tkachov) and then with
FORM (Vermaseren, Larin, Tkachov, /1991/ . . . Vermaseren 2000–2012).

Note that all (notrivial) masters for MINCER were provided by GPTX.

This achievement resulted to a host of various important 3- and 4-four loop calculations
performed by different teams during 80-th and 90-th.

Note that the 4-loop correction to the QCD β function was done only as late as in
1996 and using “massive” way /van Ritbergen, Vermaseren,and Larin/; the reason
was too complicated combinatorics of the IR reduction



4 ways to reduce a Feynman integral to Masters

• Empiric /sit and think/ way, basically limited to 3 loops (/Mincer,Matad/);

• Arithmetic way: direct solution of /thousands or even millions!/ IBP eqs. /Laporta,
Remiddi (96); Gehrmann, Schröder, Anastasiou, Czakon, Sturm , Marquard. . . ,
A. Smirnov, Manteuffel and Studerus, (2011)

• New Representation for CF’s /Baikov (96), Steinhauser, Smirnov . . . /

⇓
• 1/D expansion of CF’s /Baikov (2001-09) /

• Very New: a Mathematica assisted AI method: a heuristic search of algebraic

reduction rules (see the talk by R. Lee)



Feynman parameters:
1

m2 − p2
≈

∫

d α eiα(m
2−p2)

New parameters:
1

m2 − p2
≈

∫

d x

x
δ(x− (m2 − p2))

Now for a given topology one can make loop integrations once and forever with the
result:

Baikov’s Representation:

F (n) ∼

∫

. . .

∫

dx1 . . . dxN

xn1
1 . . . x

nN
N

[P (x)](D−h−1)/2 ,

where P (x) is a polynomial on x1, . . . , xN (and masses and external momenta)

New representation obviously meets the same set IBP’id as the original integral but it
has much more flexibility! (Due to choice of the integration contours)

MAIN IDEA: to use (1) as a ”template” for the very CF’s!



reduction to Masters: 1/D expansion1

• coefficient functions in front of master integrals depend on D in simple
way:

Cα(D) =
Pn(D)

Qm(D)
===
D→∞

∑

k

Cα
k (1/D)k

• The terms in the 1/D expansion expressible (with the use of the Baikov’s
representation) through simple Gaussian integrals

• sufficiently many terms in 1/D and Cα
k −→ Cα(D)

• computing time and required resources: could be huge

• the only method currently able to reduce 4-loop p-integrals with many (up
to 3) dots and complicated numerators

• interestingly enough, unlike every other method no(!) IBP relations are
directly involved

1Baikov, Phys. Lett. B385 (1996) 403; B474 (2000) 385;
Nucl.Phys.Proc.Suppl.116:378-381,2003



( incomplete) Tool-Box for Evaluation of masters

• High-Precision or even analytical: Differential Equations /Kotikov, 1991, . . . ;
Remiddi, 2000, . . . / Difference Equations /Laporta, 2001, . . . /

• very new and powerfull:
Dimensional recurrence relations (DRR) /R. Lee, 2010, R.Lee, V.Smirnov, A.
Smirnov (2011)/

• “Mellin-Barnes”
/V.A. Smirnov (1999), Tausk, (1999) . . . Czakon, Anastasiou, . . . /
and, of course, all kinds of (irregular) tricks with dispersion relations, Feynman parameters, heavy mass expansions, etc.

/Usually works for not-too-complicated cases/

• Direct numerical evaluation via sector decomposition
(in general less precise) /Binoth and Heinrich (2000), . . . ;
Bogner and Weinzierl (2008); A.V. Smirnov and Tentyukov (2008)/ See, also, talks
by G. Heinrich and M. Kompaniets on Friday

• Glue-and-Cut symmetry (K.Ch. and Tkachov /1981/) + Reduction to Master FI’s:
works only for p-integrals but for all loops (if Reduction to Master FI’s is available)



Important Case for RG-claculations:

for all non-trivial 4-loop massless master propagators
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about 10 terms of ǫ expansion (up to the transcendentality level 12!) have been
computed first numerically (around 500 significant digits!) and then their full
analytical structure has been reconstructed (V. Smirnov & R. Lee, 2011).

Tools: IBP + recurrence relations in the space-time dimension D (O. Tarasov,1996)
+ a lot of ingenuity

Note: up to the transcendentality level 7 /enough for 5-lop RG/ the masters were first
evaluated with the Glue-and-Cut method +IBP /P. Baikov and K.Ch. 2004 – 2010/



4-loop Problem has been under study in the Karlsruhe-Moscow group (P. Baikov,
K.Ch., J. Kühn . . . ) since late 90th. It is essentially solved by now with the help of
1/D expansion /reduction to masters, implemented as a FORM program BAICER/
and Glue-and-Cut symmetry (analytical evaluation of all necessary masters)

As a result during last 10 years in our group the the results for RV V (s) and a closely
related quantity – Z-decay rate into hadrons have been extended by one more loop
(that is to order α4

s).

These results +some others related to 5 and 4-loop correlators (Higgs decays into
hadrons, etc.) can be found in:

Phys.Rev.Lett. 88 (2002) 01200
Phys.Rev.Lett. 95 (2005) 012003
Phys.Rev.Lett. 96 (2006) 012003
Phys.Rev.Lett. 97 (2006) 061803
Phys.Rev.Lett.101:012002,2008
Phys.Rev.Lett. 102 (2009) 212002
Phys.Rev.Lett.104:132004,2010
Phys.Rev.Lett. 108 (2012) 222003
JHEP 1207 (2012) 017
Phys.Lett. B714 (2012) 62-65



IMPORTANT
21 century O(α4

s) calculations would hardly be feasible without excellent possibilities
for dealing with gigantic data streams offered by FORM 3 &4 and, especially, such its
versions as

ParFORM and T-FORM:

M. Tentyukov et al. “ParFORM: Parallel Version of the Symbolic Manipulation
Program”, PoS ACAT2010 (2010) 072

M. Tentyukov, H. M. Staudenmaier, and J. A. M. Vermaseren. “ParFORM: Recent
development”. Nucl. Instrum. Meth., A559:224–228, 2006.

M. Tentyukov and J. A. M. Vermaseren. “The multithreaded version of FORM”,
hep-ph/0702279”
...
J.A.M. Vermaseren , “Potential of FORM 4.0”, PoS LL2012 (2012) 031

see, also the today’s talk “Recent developments on FORM” by Takahiro Ueda



Example of Phenomenological Relevance

• With previous α3
s calculation⋆ of Γh

Z, the theoretical errors were
comparable with the experimental ones and, in despair, everybody
was using the famous Kataev&Starshenko /1993/ estimation of the
α4
s term which (incidentally?) has happened to be quite close to the true

number!

• After our calculations the situation has become significantly better,
especially for Γh

Z, where the the theoretical error was reduced by a
factor of four!

• α4
s correction to the τ decay rate has decreased the theoretical error

and improved stability wrt the scale variation

⋆ Gorishnii, Kataev, Larin, (1991); Surguladze, Samuel, (1991); (both used Feynman

gauge); K. Ch. (1997) (in general covariant gauge)



S. Bethke:   as  2009                QCD- the modern view                     Berlin, October 5, 2009                                                                  
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Next aim of the K-M group: to compute analytically the QCD

beta-function and quark mass anom. dim. at 5-loops!

Phenomenogically result for β(αs) would be of some importance for

the analysis of the τ -decay rate within so-called CIPT and for various

QCD “optimization” schemes like PMS and PMC (the Principles of

Maximal Sensitivity P. Stevenson, 1981) and of Maximal Conformality

(S. Brodsky, X. G. Wu,L. Di Giustino,M. Mojaza, 2012).

We have started from the quark mass anom. dim. γm(αs)



Quark Mass Anomalous Dimension γm = −
∑

i≥0 γi a
i
s: history

3-loops: /O, Tarasov (82, with IRR reduced to 2-loop p-integrals);

3-loops: /S. Larin/ (92; direct evaluation of 3-loop p-integrals with MINCER)

4-loops: /K. Chetyrkin/ (97; with R∗-operation all FI’s were reduced to 3-loop
p-integrals; the latter were performed with MINCER)

4-loops: /J.A.M. Vermaseren, S.A. Larin, T. van Ritbergen/ (97; direct evaluation of
the completely massive 4-loop tadpoles /via a kind of Laporta machine (?)/)

γ0 = 1 γ1 =
1

16

{ 202

3
+nf

[

−
20

9

]

}

, γ2 =
1

64

{

1249+nf

[

−
2216

27
−

160

3
ζ(3)

]

+n
2
f

[

−
140

81

]

}

γ3 =
1

256

{ 4603055

162
+

135680

27
ζ(3) − 8800 ζ(5)

+ nf

[

−
91723

27
−

34192

9
ζ(3) + 880 ζ(4) +

18400

9
ζ(5)

]

+ n
2
f

[

5242

243
+

800

9
ζ(3)−

160

3
ζ(4)

]

+n
3
f

[

−
332

243
+

64

27
ζ(3)

]

}

.



Quark Mass Anomalous Dimension γm =
∑

−i≥0 γi a
i
s: today

New result (preliminary) /P. Baikov, J. Künh, K. Ch./ (2013; with R∗-operation all
was reduced to 4-loop p-integrals; the latter were performed with BAICER)

γ4 =
−1

45

{

−
99512327

162
−

46402466

243
ζ3 − 96800 ζ23 +

698126

9
ζ4

+
231757160

243
ζ5 − 242000 ζ6 − 412720 ζ7

+ nf

[

150736283

1458
+

12538016

81
ζ3 +

75680

9
ζ23 −

2038742

27
ζ4

−
49876180

243
ζ5 +

638000

9
ζ6 +

1820000

27
ζ7

]

+ n2
f

[

−
1320742

729
−

2010824

243
ζ3 −

46400

27
ζ23 +

166300

27
ζ4 +

264040

81
ζ5 −

92000

27
ζ6

]

+ n3
f

[

−
91865

1458
−

12848

81
ζ3 −

448

9
ζ4 +

5120

27
ζ5

]

+n4
f

[

260

243
+

320

243
ζ3 −

64

27
ζ4

]

}



Quark Mass Anomalous Dimension γm = −
∑

i≥0 γi a
i
s: con-ed

For nf = 3 the result reads:

γ
nf=3

4 = −
156509815

497664
+
23663747

124416
ζ3−85ζ

2
3−

23765

256
ζ4+

22625465

62208
ζ5−

1875

32
ζ6−

118405

576
ζ7

Numerically:

γ
nf=3
m = −

{

as + 3.792 a2s + 12.420 a3s + 44.263 a4s + 198.906 a5s
}

To construct scale-inavariant mass (or to run the quark mass) one needs also β-function
at 5-loop (not yet available)

β(nf = 3) = −

(

β0 =
4

9

)

·
{

as + 1.777 a2s + 4.4711 a3s + 20.990 a4s + β4 a
5
s

}

It is natural to estimate β4 as sitting in the interval 50 –100



The mass evolution is described by equation
m(µ)
m(µ0)

= c(as(µ))
c(as(µ0))

where

c(x) = exp

{

∫

dx′

x′

γm(x′

β(x′)

}

(x)
γ̄0

{

1 + (γ̄1 − β̄1γ̄0)x

+
1

2

[

(γ̄1 − β̄1γ̄0)
2
+ γ̄2 + β̄1

2
γ̄0 − β̄1γ̄1 − β̄2γ̄0

]

x
2

+

[

1

6
(γ̄1 − β̄1γ̄0)

3
+

1

2
(γ̄1 − β̄1γ̄0)(γ̄2 + β̄1

2
γ̄0 − β̄1γ̄1 − β̄2γ̄0)

+
1

3

(

γ̄3 − β̄1
3
γ̄0 + 2β̄1β̄2γ̄0 − β̄3γ̄0 + β̄1γ̄1 − β̄2γ̄1 − β̄1γ̄2

)]

x3 + O(x4)
}

γ̄i = γi/β0, β̄i = βi/β0, (i=1,2,3) and βi are the coefficients of the QCD beta-
function

Running (strange quark) mass from the RGI mass m̂ ≡ m(µ0)/c(as(µ0)):

ms(µ) = c(as(µ))m̂s

with (cs(x) ≡ c(x) in QCD with nf = 3)

cs(x) = x4/9(1 + 0.895062x+ 1.37143x2 + 1.95168x3 + (15.6982− 0.1111β4)x
4)



The function c(x) is used, e.g, by the ALPHA lattice collaboration to find the (MS)
mass of the strange quark at a lower scale from the RGI mass determined from lattice
simulations

Example (setting as(µ = 2GeV) = αs(µ)
π = .1; h counts loops)

ms(2GeV) = m̂s · (as(2GeV))
4
9 ·

(

1 + 0.0895h2 + 0.0137h3 + 0.00195h4 + (0.00157− .000011β4)h
5
)

Note that for any reasonable value of β4 (positive and ≤ 100) the (apparent)
convergency of the above series is quite good even at rather small energy scale



β-function in 6 loop in φ4-model

First 5-loop RG calculation in a 4-dim model (φ4-model ) was done long before the
4-loop Problem was solved:

/K.Ch, Gorishnii, Larin, and Tkachov, Phys.Lett. B132 (1983) 351/;
D.I. Kazakov,Phys.Lett. B133 (1983) 406; Kleinert, Neu, Schulte-Frohlinde , K.Ch.,
and Larin, Phys.Lett. B272 (1991) 39/

The reason: relative simplicity of the corresponding Feynman amplitudes (only limited
number of topologies, no numerators).

What about 6 loops? (Would be of some use for the the statistical physics /critical
indexes/)

Analytically: no hope at present (imho)

Numerically: no hope at present (imho)

Mixed way: YES! (imho)

WHY?



Lets neglect all IR singularities (having in mind the possibility of their complete
removal with R̃-operation). Then the IR reduction by one loop could be easily
understood as follows (for a log-divergent (L+1)loop FI < Γ >):

1. set zero all (except for one) massess and all external momenta
2. cut the massive line with internal momentum ℓ, then there is an obvious formal
representation:

< Γ >=

∫

< Γ′ > (ℓ)
dℓ

m2 + ℓ2

Now in order to find the UV div. of < Γ > one should, obviously, compute the
p-integral < Γ′ > (ℓ) including its constant (ǫ0 part) + some some ”easy” FI’s with
less # of loops then L. (Note that since < Γ′ > (ℓ) ≈ 1/ℓ2α the last integral over dℓ is trivial!) That is
esentially the statement of Theorem 2!

3. for the φ4 model in many cases the FI < Γ′ > (ℓ) could be chosen to be a product
of 2 FI’s with loop numbers less then 5 → representable in terms of 4-loop p-ntegrals

4. All primitive (that is without UV subdivergences) 6-loop contributions to the φ4

β-function are known with high accuracy since long (via GPTx, D. Broadhurst, D.
Kreimer (1995))

5. the rest (difficult) diagrams amount to comprise not more then 2% from all and
can be eavluated numerically (see M. Kompaniets tomorrow)



Concluding Notes I:

• IRR based on R∗ operation significantly simplifies RG calculations. It reduces
(L+1)-loop RG function in any model to a combination of properly constructed
p-integrals; the latter include not only standard UV- but also IR subtractions. It
is always possible to do at the level of separate diagrams. IR counterterms are
expressible diagramwise through UV-ones.

• IRR + R∗ + Baikov Algorithm to reduce 4-loop p-integrals + paralell Form (J.
Vermaseren, M. Tentyukov + . . . ) + known 4-loop masters (P. Baikov, K.Ch.) =⇒
the 5-loop RG functions are in principle doable in any model.

• But: global representation of neccessary IR subtractions (that is on the level of
Green functions) strongly depends on the problem and not always easy.



Concluding Notes II:

• The 5-loop quark anomalous dimension γm is done QCD. The phenomenological
implications seem to be not very dramatic.

• The 5-loop QCD β-function is significantly more complicated; first results are
expected in a year or so. (The full QED β function in 5-loops is available since
recently: P. Baikov, K. Ch., JH. Kühn, J. Rittinger, JHEP 1207:017,2012.).

• Truly remarkable fact: N=4 SYM theory seems to be simpler than QCD: ”Konishi”
(anomalous dimension of a specific operator in N=4 SYM) in 5-loop has been
recenltly computed with a via IRR + p-intergrals + Laporta machine + a lot
of ingenuity; the result confirms the prediction from non-perturbative methods (“
Five-loop Konishi in N=4 SYM”, B. Eden, P. Heslop, G. Korchemsky, V. Smirnov,
E. Sokatchev, arXiv:1202.5733)



Concluding Notes III:

• There are some theoretical problems requiring analytical evaluation of 6-loop
anomalous dimensions: e.g. ”Konishi” (anomalous dimension of a specific operator
in N=4 SYM) in 6-loop is already available from non-perturbative methods:

Six and seven loop Konishi from Luscher corrections. Z. Bajnok, R. Janik e-Print:
arXiv:1209.0791

Here the main problem is the very reduction to masters (the way to compute the
resulting masters is known /K.Ch. and Baikov, 2010). BUT: shear # of contributing
diagrams in “normal” gauge theories would presumably be prohibitively large for,
say, QCD 6-loop β-function. Probably the situation should be better for N=4 SYM
and such quantities as R(s) and DIS sum rules (here the next loop number is 5
not 6!)

• The 6-loop β-function in the φ4-model is certainly doable in the ”mixed” anaytical-
numerical way (see the talk by M. Kompaniets tomorrow). But a diagram-wise
computer algebra implementation of the R∗ operation is requied; it is certainly
doable /the scalar theories are much simpler to deal with than the gauge ones, but
not completely trivial/.


