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Outline

o Field theoretic renormalization group in critical behaviour
theory.

@ New approach to numerical calculation of anomalous
dimensions.
Normalization point scheme. Current results

@ Sector decomposition and graph symmetries
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©* model

() = [ ox (3o + 3T o) + ppelelxPY)

O(n)-symmetric * model in statistical physics describes second
order phase transition in:
e n=1

(<]

liquid-gas system
critical mixing point in binary mixtures
en=2
planar Heisenberg magnet
transition to the superfluid phase of liquid *He
en=3

@ isotropic Heisenberg magnet

<

¢ ©
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©* model. Experimentally observables quantities

() =~ [ ox (3o + 3T o) + pelelx) )

For liquid-gas system near T, the following quantities can be
compared with experiment:

@ critical exponents v, v, «

@ amplitude ratio B, /B_
Correlation length r. and some thermodynamic quantities show
singular behavior in the limit T — T,

re &2 Y, T=(T—-T)/Te, v=~0.63.
Cp ~ ALlT|77, v~ 1.24, Cy ~ By|r|™%, a~0.1.

©* model discribes only equal-time correlation functions and
thermodinamical quantities
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Critical dynamics

Models of critical dynamics are designed to describe critical slowing
down effect and critical behaviour of

@ speed of sound
@ viscosity
@ thermal conductivity coefficient

o diffusion coefficient

The behaviour of these values near critical point can be measured
experimentally, for example in experiments on light scattering,
sound propagation and so on
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Critical dynamics

Models of critical dynamics are constructed on basis of models like
©*, but there are much more models because of

@ conservation or non-conservation of order parameter

o different mode couplings
Action for model H of critical dynamics
(liquid-gas critical point)
S v, V, V) = =M 0Py [~0np — NP0 — T — @117 /6) —
—viOp] = A"ty 0PV + V] [—adev; + Aty 10Pvi + 4 9;(0%)]

1) — order parameter (density fluctuations), coupling with velocity field

fluctuations Vv ,
¢’ and V- auxiliary fields, by which the transition from the stochastic

equations to QF model is made
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Critical dynamics

Recent review:

Critical dynamics: a field-theoretical approach,

Reinhard Folk (Linz U.) , Hans-Guenther Moser (Salzburg U.)
J.Phys. A39 (2006) R207-R313

model system loops fields

A Relaxational dynamics 3 2s

B/D Diffusive dynamics =¢* 2s /[ 4s
c/C Relaxational dyn. + energy cons. 2 4s [ 6s
E/E' Planar ferromagnet h, =0 2 25 2v [ 2s 4v
F Superfluid transition *He 2 4s

Planar ferromagnet h, # 0

F' Superfluid transition He - *He mixtures 2 6s

G Heisenberg antiferromagnet 2 2s 2v

H Liquid-Gas transition 2 2s 2v

H’ Liquid-Gas and Liquid-Liquid 1 4s 2v
transition in binary mixtures

J Heisenberg ferromagnet 1 2s
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Renormalization group

Most successfull method applied to this models is Renormalization
group method?!

Model ©*
@ d =4 —2¢ — 5-loop order (analytical)?
@ d =2 — 5-loop order (numerical)?
@ d =3 — 6-loop order (numerical)*
Critical dynamics:

Most models are calculated only in 2-loop order.
Simplest model "A" is calculated in 3-loop order.

was firstly applied to statictical physics problems by Kennet Wilson in 1971
2Chetyrkin K.G, Kataev A.L., Tkachev F.V.

30Orlov E. V., Sokolov A. I.

*Nickel B., Meiron D., Baker G.
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Why more loops are needed?

@ for more precise Borel resummation (all series expansions for
critical exponents are asymptotic)

@ to distinguish concurrent asymptotic regimes

@ to clarify inconsistency between RG-results (d = 4 — € and
d = 2) and exact solution for 2D Ising model
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Normalization Point Scheme
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Normalization point scheme. Motivation

Our approach has the following advantages:

@ anomalous dimensions (+;) and [-function are expressed
directly from diagrams of 1-PI renormalized Green
functions, without calculation of renormalization constants

@ for renormalized diagrams we use representation where there is
no pole terms at all. (in contrast to MS scheme where pole
terms cancel each other)
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Minimal Subtraction (MS) scheme

1 1
S= —E(mzZl +k2Z, + 5m2)g02 — ﬂg/fZ%o“.

d = 4 — ¢, Euclidean space
Zy =225 Zn=125 Z3=ZZ)
R =Rr=(1-K)RT;
R’ - incomplete R-operation (eliminating divergences in subgraphs)
K - subtraction operation
Renomalization group equations (MS scheme)
(1O + BOg — Y2 m?0,,2) R = n'ywrf.
G —€g o —eg0gInZ;
T 1+g9,nZ;° ' 1+gdinZ;
At fixed point g, RG-equations turn into equations of critical
scaling with exponents ~;(gx)
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Normalization point (NP) scheme

We use renormalization scheme where RG-equations keep the simple form
(like in MS scheme)

(110, + BOg — Ve MOy )TR = nry, TR
RG-functions depend only on coupling constant g (as in MS-scheme)

In NP scheme anomalous dimensions can be expressed through
renormalized 1-PI Green functions

2f; .
Vi = ma =24
where
fi = =R m* 0l | =0, ji=m Fo=—0pl, T4=-— I'4€.
gu

Subtraction operation for this scheme is defined by following
normalization conditions

|=§|p:0,u:m =1, |=§|p:0,m:0 =0, I:z,l?|p:0,u:m =1
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Normalization point (NP) scheme

This scheme is in some sense intermediate between minimal
subtraction(MS) scheme and subtraction at zero momenta (ZM)

@ RG-functions do not depend on mass, this results in simple
RG-equations as in MS scheme (RG-equations in ZM scheme have
more complex form)

@ Each diagram of renormalized Green function can be expressed as
uniform integral without cancellation of pole terms and large — large
subtractions (difficult in MS scheme)

Subtractions in ZM and NP scheme can be expressed as remainder of
Taylor expansion
(1= K)F(K) = F(k) = Sm_o S FM o = L [ da(1 — 2)"07 L F (ak).

This leads to the following representation for R-operation

1 ! i
R = T2 [ - aranin(ian,
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Normalization point scheme. Summary

2f; .
o —2.4
1R e
where
29 F r r =
f,- — Rm 8m2ri‘p=07ll:m’ F2 = —8p2r27 r4 = —glwg.

1/t -
Rr=T1+; /0 dai(1 — a))m oI ({a)),

@ RG-function can be calculated directly from diagrams without
divergences

@ there is no need for pole extraction.

@ c-expansion for these diagrams can be obtained by simple
Taylor expansion of integrand

@ this representation can also be used for renormalization group
in "real space"(d =2, d =3)
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We developed fully automated software that allows to calculate
anomalous dimensions in wide range of models (e.g. 3, ¢* models and
models of critical dynamics)

This software includes
@ graph generation
@ generic algorithm for finding UV and IR subgraphs
@ generation of integrand in momentum/Feynman representation
@ sector decomposition (strategy S with symmetries)
@ numerical evaluation of integrals (using external programs)

@ combining final result for RG-function

(NEW!) Using this approach we calculated RG-functions for ¢ model up
to 4-loop order ®

These calculations can be performed without any tricks directly in
momentum representation or using Feynman parameters.

®Adzhemyan L. Ts., Kompaniets M. V., Theor. and Math. Phys., 169(1):
1450-1459 (2011)
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For 5-loops and higher Sector Decomposition is required. But in our
case Sector decomposition is much more simplier than that for MS
scheme, because we don’t need to extract pole residues.

@ O(N)-symmetric ¢* model (d = 4 — €) in 5-loop order
Results agree within 107¢ with analitical results®

@ O(N)-symmetric ¢* model (d = 2) in 5-loop order
Results agree within 107® with results obtained by Orlov and
Sokolov.”

@ NEW! Preliminary results for O(N)-symmetric ¢* model
(d = 2) in 6-loop order

@ NEW! Preliminary result for model A of critical dynamics in
4-loop order

6Chetyrkin K.G, Kataev A.L., Tkachev F.V., Phys.Lett., B99, 147 (1981); B101,457(E) (1981)
Kleinert H., Neu J., Shulte-Frohlinde V., Chetyrkin K.G., Larin S.A., Phys.Lett., B272,39 (1991);
Erratum: B319, 545 (1993)

7Orlov E. V., Sokolov A. I., Physics of the Solid State vol. 42 issue 11 November 2000. p. 2151-2158



Theory of phase transitions and critical phenomena: new approach to numerical calculation of anomalous dimensions.

Remarks on ¢* model in d =4 — ¢

Each diagram calculated in Normalization Point scheme can be
simply recalculated to that in Minimal Subtraction scheme.

We also perform diagram by diagram verification of analitical
results in 5-loop order.®

8This is first fully independent crosscheck of these results
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Remarks on ¢* model in d =4 — ¢

Each diagram calculated in Normalization Point scheme can be
simply recalculated to that in Minimal Subtraction scheme.

We also perform diagram by diagram verification of analitical
results in 5-loop order.®

IN PROGRESS: 6-loop order (in collaboration with K.G.Chetyrkin)

loops | total | factorized | primitive | 4-loop 4-loop
reducible | irreducible

M 50 0 0 48 2

M4 627 124 10 481 12

8This is first fully independent crosscheck of these results



Theory of phase transitions and critical phenomena: new approach to numerical calculation of anomalous dimensions.

Sector decomposition and graph symmetries
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Sector decomposition and graph symmetries

If we are going to apply Sector Decomposition to 6-7 loop integrals
one of the problems that arises is a huge® number of sectors

@ new strategies?

@ any additional information about integrand structure?

®for 6-loop graphs with strategy S, number of sectors > 10°
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Integrand symmetries

X1 X3

Graph is fully symmetric

X5

1 1
I:/ Xm.../ dX6 f(Xl,X2,X3,X4,X5,X6)
0 0
where

6
f(X].a X2, X3, X4, X5, X6) = 5(1 - Z,':]_ Xi)(X1X2X4 + X1X2X5 +
X1XoXe + X1X3X4 + X1 X3X5 4+ X1X3X + X1XaXe + X1X5X6)(_2+6)

Integrand has the same symmetries as graph eg. (x2,x4) — (x3, x5)
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We can use graph symmetries to find integrand symmetries
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Integrand symmetries

X1 X3

Graph is fully symmetric

X5
1 1

I:/ Xm.../ dX6 f(Xl,X2,X3,X4,X5,X6)
0 0

where

6
f(X].a X2, X3, X4, X5, X6) = 5(1 - Z,':]_ Xi)(X1X2X4 + X1X2X5 +
X1XoXg + X1X3X4 + X1X3X5 + X1 X3X6 + X1 XaXe + X1X5X6)(_2+6)

Integrand has the same symmetries as graph eg. (x2,x4) — (x3, x5)
We can use graph symmetries to find integrand symmetries

Integrand symmetries allows us to find equal sectors
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Primary sectors, msn-notation

Strategy S

(def: x1 > x2,x3 = 0(x1 — x2)0(x1 — x3) )
X2 > X1, X3, X4, X5, X,
X5 > X1, X2, X3, X4, X5,

6 primary sectors:

X1 > X2, X3, X4, X5, X6; X3 > X1, X2, Xa, X5, X6;
X4 > X1,X2, X3, X5, X6; X > X1, X2, X3, X4, Xs5;
Lets mark graph lines with indexes m, s and n'®
for sector x; > xo, X3, X4, X5, X6

X1 — M, X2,X3,X4,X5,Xeg — S
X1 X3 m, S,
X5

In further decompositions each sector will be associated with graph with
such multi-indexes on lines

10indexes correspond to role of variable in current decomposition:
m - main variable

s — secondary variable

n — neutral (variable are not included in current decomposition subspace)
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Primary Sectors

strategy S
6 primary sectors:
X1 > X2, X3, X4, X5, X6, X2 > X1,X3,Xa,X5,Xe; X3 > X1,X2, Xa, X5, X6,
Xa > X1,X2,X3,X5,Xp;, X5 > X1,X2,X3,X4,X5,  Xg > X1,X2,X3,X4, X5,

X1 X3 — m: :S + S: :5 + s m +
S S S
S: :S _|_ S: :S
m S
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Primary Sectors

strategy S
6 primary sectors:
X1 > X2, X3, X4, X5, X6, X2 > X1,X3,Xa,X5,Xe; X3 > X1,X2, Xa, X5, X6,
Xa > X1,X2,X3,X5,Xp;, X5 > X1,X2,X3,X4,X5,  Xg > X1,X2,X3,X4, X5,

le ;XEI — m: :S + S: :S + S: :m +
X5 s s s

S: :S _|’_ S: :S _|’_ 5: :S — 6 X m: :S
S m S S
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Second decomposition

X1 X3 6x M g
X4 X6 S S
X s

5

Decomposition space is (x2, X3, X1, X5, Xp)

s
m s o m,n s,s + m,n s,m + m,n s,S +
s, s, s,
S 5,8
s 5,8 s,s s,s
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Second decomposition

X1 X3 6x M g
X4 X6 S S
X s

5

Decomposition space is (x2, X3, X1, X5, Xp)

s
m s _ m,n s,s + m,n s,m + m,n s,S +
s, s, s,
S 5,8
s 5,8
m,n s,s + m,n s,S —4x
s, s,
5,8 s,m
s,m s,s
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Second decomposition

S, S,
X4 X6 S S

X5 S

s
m s _ m,n s,S + m,n s,m + m,n s,S +
s s, s,
S 5,8

s s,s s,s s,s

m,n s,S + m,n s,S

s, s,
s,S s,m
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Third decomposition

X1 X3 94 % m,nS ,S 46 x m,n s,s
A
X5

s
s,s s,s

1. Decomposition space (x4, X5, Xg)
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Third decomposition

X1 X3 — 24 X m,ns S,S + 6 % m,n S,S
Za AN

X5 s,s s,s

1. Decomposition space (x4, X5, Xg)
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Third decomposition

X1 X3 — 24 X m,ns S,S + 6 % m,n S,S
Za AN

X5 s,s s,s

1. Decomposition space (x4, X5, Xg)

2. Decomposition space (x2, X3, Xa, X5)

m,n s,s 4
=4 X
s,
s,m
5,8
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Decomposition result

x \° =24 X

X5 s,5,m

s,s,m

5,5,5

@ we need to calculate only 4 sectors
o original strategy: 96 sectors
o primary sectors equivalence!l: 16 sectors
@ Sectors we need to calculate can be easily reconstructed from
msn-notation

115ecDec, FIESTA



Theory of phase transitions and critical phenomena: new approach to numerical calculation of anomalous dimensions.

More examples

AR < || |@

Al orig. 215 8851 fail 78 7529 8854 7126
uniq. 12 2208 28 3215 2603 4264
B/C!  orig. 96 1080 | 14520 48 1080 1080 960
uniq. 4 135 1452 12 270 135 480

Xt orig. 96 1170 | 15350 48 1304 1114 986
uniq. 8 287 2182 12 324 215 584

S2  orig. 96 1080 | 14520 16 180 216 210
uniq. 4 135 1452 4 45 27 105

'modified sector _decomposition code from C.Bogner and S. Weinzier!
2original implementation
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How to find isomorphic graphs? graph state library

original algorithm!?2 used by B. Nickel et al. for graph identification

generalized algorithm

@ directed and undirected graphs
o different types of edges
@ multi-index labels

@ can be used for

o graph identification
@ calculating symmetry factors
s finding graph automorphisms

COmpIeXity of algorithm is close to O(N) (N — number of verticies)

written on Python (Win/Lin/Mac)

available at http://code.google.com/p/rg-graph/downloads

2Nickel B., Meiron D., Baker G. - University of Guelf Report,1977
J.F.Nagle, J. Math. Phys. 7, 1588 (1966)
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Thank you for attention!



