
 

 

Opportunities and choice in a new vector era 
 

A Nowak1 
1 CERN openlab CTO Office, Geneva, Switzerland 
 
E-mail: Andrzej.Nowak@cern.ch 
 
Abstract. This work discusses the significant changes in computing landscape related 
to the progression of Moore’s Law, and the implications on scientific computing. 
Particular attention is devoted to the High Energy Physics domain (HEP), which has 
always made good use of threading, but levels of parallelism closer to the hardware 
were often left underutilized. Findings of the CERN openlab Platform Competence 
Center are reported in the context of expanding “performance dimensions”, and 
especially the resurgence of vectors. These suggest that data oriented designs are 
feasible in HEP and have considerable potential for performance improvements on 
multiple levels, but will rarely trump algorithmic enhancements. Finally, an analysis 
of upcoming hardware and software technologies identifies heterogeneity as a major 
challenge for software, which will require more emphasis on scalable, efficient 
design. 
 
 

1. Introduction 
CERN openlab and its Platform Competence Center spent the past decade investigating mainstream 
and upcoming platform technologies. During that time, the computing landscape has witnessed many 
changes, but two are of particular importance. On one end of this decade, intrinsic improvements in 
single-thread processor efficiency ceased to be sourced from manufacturing process improvements 
and aggressive frequency scaling, and had to be provided through microarchitectural optimizations 
such as out of order enhancements, changes in branch predictors, cache optimizations, buffer size 
increases and so on. High Energy Physics (HEP) software traditionally makes pretty good use of such 
mechanisms. On the other end of this decade, we find ourselves snowed under with vectors, hardware 
threads, cores – all various forms of parallelism. 

This new era presents challenges as it presents opportunities. The discussion contained in the 
paper presented addresses these main points. 

2. Observations 

2.1. Hardware 
Worries about computing platform performance often stem from an inefficient use of available 
resources - which is a generic and persistent challenge. One such challenge in the past was the 
growing compute-memory gap, illustrated on the classic Hennessy & Patterson plot (Figure 1).  
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Figure 1: CPU-memory performance gap. Modelled after ”Computer Architecture”: Hennessy, John L.; 

Patterson, David A. 
 
In modern computing, it is less common for bottlenecks in a platform to shift in a major way, e.g. 
from disk to memory bandwidth, and thus even well-tuned workloads are rarely adversely affected by 
hardware upgrades. A notable exception is the rise of accelerators, which in a “step function” offered 
difficult to extract compute capabilities, but plenty of bandwidth to go along (Figure 2).  

Let us consider the recent history of mainstream compute capabilities. Vector width has 
quadrupled on x86 since the introduction of MMX (and went much further on GPUs!), hardware 
threading made a triumphant comeback after a brief appearance in the Pentium 4 family, and the 
“Haswell” microarchitecture from Intel now features 8 execution ports in lieu of 6 on earlier models. 
Core count in a chip has grown from 2 in awkward MCP designs to over 60 in the Intel KNC, while 
multi-socket, multi-node installations are standards in datacenters. All in all, the appearance of a vast 
land of opportunity created by the simultaneous expansion of multiple performance dimensions has a 
strong impact on the ratio between the theoretical limits of computing efficiency and the targets 
actually achieved – as discussed further. 



 
Figure 2: Peak single precision, general purpose FLOPs/cycle in a single chip 

 
This illustrates the need for a shift in programming and optimization focus, in particular in 

compute-oriented workloads - from generic latency and hotspot-oriented efforts to sweeping redesigns 
of whole software packages. While it is common to extrapolate Moore’s Law and its benefits at least 
5 years into the future, industry specialists warn of major movements in connectivity, memory and 
energy efficiency. For example, the ratio of bytes per FLOP is no longer a compute density metric, 
but also one that implies an optimal or suboptimal energy balance in a chip. 

 
Table 1: Memory operations and their energy 

costs in a platform 
 

Operation Energy cost 

L1 access 2 pJ 

L2 access 150 pJ 

RAM 2 000 pJ 

FLOP Future - ? 
 

 
Figure 3: Hardware parallelism mapped onto software 

 
 

This trend can be noted by observing the widespread community interest in accelerators, vectors 
and even new architectures – after many years of indivisible x86 reign on our desktops and in our 
datacenters, numerous experiments with ARM, NVIDIA and even MIPS architectures are underway. 

2.2. Software stagnation 
On the other side, production HEP software remained the same from the point of view of its capability 
to take advantage of technical novelties. As discussed in [1], large, code-heavy C++ based 
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frameworks dominate, with two major toolkits, ROOT [2] and Geant4 [3,4], still single-threaded and 
lacking vectorization (for the most part). It should not come as a surprise that, roughly speaking, the 
gap in performance between the theoretical limit and optimized code is 10x, and the distance between 
the performance of scalar, single-threaded HEP code and optimized code is another 10x. These 
numbers are decomposed into more detailed factors in Table 2 and Table 3, and explained in detail in 
[1]. 

 
Table 2: Multiplicative factors for parallelism in three different software and datacentre scenarios 

 

 
SIMD ILP HW THREADS CORES SOCKETS 

THEORY 4 4 1.35 8 4 

OPTIMIZED 2.5 1.43 1.25 8 2 

HEP 1 0.80 1 6 2 

 
 

Table 3: Multiplied factors for parallelism in three different software and datacentre scenarios 
 

 
SIMD ILP HW THREADS CORES SOCKETS 

THEORY 4 16 21.6 172.8 691.2 

OPTIMIZED 2.5 3.57 4.46 35.71 71.43 

HEP 1 0.80 0.80 4.80 9.60 

 
We need to program for tomorrow’s hardware – today. 

The important lesson here touches not only on modularity and adaptability to changes in 
hardware, both of which must become the daily bread of many key developers, but also on the 
viabililty, sustainability and performance of the software engineering process in HEP. New challenges 
linked to heterogeneity, discussed further, will put our methods to an even more stringent test. In 
2007, when the many-core era was just around the corner, CERN openlab began its efforts of 
community evangelization in preparation for the inevitable explosion in datacentre core count. It 
quickly became apparent that our software would benefit from more forms of hardware parallelism 
than one, which fortunately still map onto a manageable set on the software side (Figure 3). However, 
many physicists we spoke to did not have the bandwidth to worry about issues such as hardware 
underutilization. Now the gap has grown sufficiently large for many to find the resources to address 
this challenge. For its part, CERN has initiated the Forum on Concurrent Programming Models and 
Frameworks and is investing in major improvements in Geant4, such as Geant-V and the multi-
threaded Geant4 prototype, and ROOT. Another prominent effort is the EU FP7 “ICE-DIP” project, 
which aims to develop next-generation data acquisition capabilities using new technologies. 

Large HEP jobs are deeply affected by object-oriented development, to the extent that top 
functions in a flat profile consume low single-digit percentages of time or instructions, while it takes 
hundreds if not thousands of entries to account for the bottom 50% of the profile – which means that 
even if we get rid of them completely (hardly a possibility), the workload would run at most twice as 
fast. Such frameworks are almost beyond hope when it comes to the efficient use of opportunities such 



as vectorization, and need a data oriented design approach to benefit from them. It’s not all bad, 
however: prominent examples of success exist as well. For example, the GSI team working on the 
CBM/ALICE online codes achieved a 120’000x speedup on their code. The interesting part is that 
only a factor of 120x came from microarchitectural optimizations and parallelization, while a factor of 
1000x came from implementing a significantly more optimal algorithm (Figure 4). There is also a 
good result from the CERN openlab side: work done on the MLFit benchmark allowed it to scale by 
nearly 2x when moving from an Intel “Westmere” based server to a “Sandy Bridge” one (Figure 5). 

 

 
Figure 4: Speedups for optimized ALICE/CBM online code, figure copied from I. Kisel et al. [5][6] 

 

 
Figure 5: “Westmere” (light blue) vs. “Sandy Bridge” (dark blue) server performance, frequency scaled 

 
In what concerns specific technologies for, say, vectorization, they are differentiated not just by 

their features, but also by the syntax or notation they employ and their implementation (library, 
compiler extension, etc). While new syntax options such as Cilk+ are quite appealing, to the extent 
that they’re desired in the C++ standard, there has yet to appear a sufficiently convincing technical 
implementation that provides convenience and performance at the same time. On the multi-threading 
front, TBB is being integrated into a prototype version of Geant4, also with notable success.  

There is, of course, no guarantee that vector growth will continue, but it is still a growing trend, 
with AVX3 sporting 512-bit vectors on mainstream Xeon systems, and much wider vector-like units 
still being deployed in GPUs en-masse. 

Finally, even though the case for parallelism on multiple levels might be clear by now, it will still 
take some work to establish which is the best path to pursue, which technologies are the most 
promising (and sustainable) ones, and which syntax, notation and programming concept will fit the 
HEP community. 

3. Heterogeneity 
One emerging challenge with respect to contemporary computing strategies and software 
development is heterogeneity. It has been around for a long time at the datacentre level, where for 
example a Grid user only sees a virtualized interface to his system and does not know which 



capabilities the CPU assigned to his job will have. At the chip level, AMD has its “Trinity” APU 
technology, while Intel introduced graphics processors supporting “Sandy Bridge” processors and its 
successors. Very few (experimental) software packages make use of such hardware. Finally, at the 
platform level, we see heterogeneity not only at the level of compute capabilities of interconnected 
devices but also in terms of their architecture, memory configuration, integration and so on. Before 
such a device is engaged to collaborate with the main CPU, many questions must be asked, also at the 
software level. How will the device feed on data and communicate? Will it have sufficient memory, 
performing as expected? Will it meet latency constraints? Will it provide floating point results 
compatible with the main processor? Should the code run natively on the accelerator or be offloaded 
when the time is right? The answer to those questions and actions taken will depend on the problem 
and the structure of next-generation software frameworks. Another platform related question is that of 
memory – in recent years there has been a trend of stratification. Two levels of caches expanded to 
three and multi-socket systems provide multiple NUMA domains. A hot topic in this domain is high 
bandwidth, low latency, potentially non-volatile memory, which could act as a layer between L3 and 
RAM, or play a role in storage (Figure 6 and Table 4). 

 

 
Figure 6: Micron HMC (from S. Borkar, Intel) 

 

 Bandwidth Energy 

DDR3 
(Today) > 10GB/s > 50 pJ 

/ bit 

HMC 
(Prototype) > 100 GB/s < 10 pJ 

/ bit 

Table 4: HMC prototype parameters 
 

 
The software side will feel pressure on two fronts. On one side, compilers and toolsets might 

begin to diverge, and the OS kernel will have to efficiently arbitrate communication between the host 
and slot-in devices. Such has been the experience of CERN openlab while working on the Intel MIC 
project since 2008, where none of the physics benchmarks used or their dependencies were fully 
ready for cross-platform compilation and usage. The porting times shown in Table 4 illustrate that a 
small benchmark such as the Trackfitter was easy to port, even though it required a manual 
reimplementation of several key functions, to match the architecture of the KNF. MLFit, which was 
written using large standards (OpenMP and MPI) and stripped of ROOT dependencies, was 
essentially a matter of recompilation and updating the build system. However, the first port of the 
multi-threaded Geant4 prototype, which relies on a lot of Geant4 source code and has several external 
dependencies, took more than a month to get right. The column showing the time needed for new 
(updated) ports demonstrates that in our experience, introducing support for a certain degree of 
heterogeneity was an investment that paid off and did not require major reviews. 

 
 
 
 



 LOC 1st port time New ports Tuning 

TF < 1’000 days N/A 2 weeks 

MLFit 3’000 < 1 day < 1 day weeks 

MTG4 2’000’000 1 month < 1 day < 1 week 

Table 5: Approximate KNF/“Larrabee” (MIC) porting and tuning times by HEP benchmark 
 

The low-power ARM architecture is making its 64-bit entry into datacenters worldwide, and those 
in the HEP community who wish to use it [7][8] will face challenges very similar to those experienced 
in our work with Intel MIC. For example, compiler support for NEON vector instructions is still quite 
young, and several other areas in popular Open Source software need attention. As recently as in 
2012, it was still a time consuming feat to properly install and support Linux on one of the “desktop” 
ARM development boards. 

On the other software front, it is not yet apparent how to maintain a single source that could be 
compiled to or offloaded to different backends [9], and whether it should be maintained as “straight” 
C/C++ code or as targeted kernels, or perhaps even in another form. Several projects tried to bridge 
this productivity and engineering gap – RapidMind, Intel’s Ct, OpenCL, custom Intel compiler 
extensions and several others – but none of them have managed to provide a portable source AND 
portable performance at the same time. Some established industry standards come to the rescue, e.g. 
OpenMP4 now includes accelerator and offload directives that were pre-published with OpenACC, 
but it will still take some time before the industry comes to a well-defined conclusion. 

A particular and painful consequence of symmetric processing is the challenge of numerical 
convergence [10][11]. In some cases, there is no other choice but to accept that floating point results 
will diverge between the CPU and an accelerator or co-processor. Vectors might be processed 
differently, data and operation ordering may change, associativity may vary, compilers will generate 
different code and “fast” function variants might be used as defaults. In any modern “offload” device 
(GPUs and Intel MIC included) there exist two or three variants of math functions – those that strictly 
adhere to standards but are excruciatingly slow, those that explicitly sacrifice accuracy for speed, and 
those that offer a reasonable compromise by operating on limited ranges of input arguments. 
Unfortunately for coders, these new options often imply a revision of floating-point in the source – an 
undertaking that is not concluded overnight on frameworks with 5 million lines of code. Ultimately, 
such an exercise can be a very useful one, in particular to develop methods that assess the quality of 
computation results through means other than their bit-for-bit binary compatibility on multiple 
platforms. That is also why it is important to closely follow efforts on math library optimization, such 
as [12]. 

4. Conclusion 
As always, the computing landscape is changing rapidly. However, it has become the responsibility of 
the platform and system user to “seize the day”, and to turn all the hardware in a computing platform 
into an advantage – as opposed to neglecting silicon that has already been paid for. This should be 
taken into account in the light of general optimization truths which suggest that optimization should 
start with the algorithm, as that often is where the highest potential for gains resides. 

At least now, it would seem that next generation code must make some choices between 
programmability and performance – neither can be sacrificed and neither can be ignored. Universal, 
open standards must continue to play a leading role for reasons of sustainability and interoperability. 
Scaling in multiple hardware and software dimensions seems indispensable – that includes numerous 
aspects such as parallelization, vectorization, multi-process domain, message passing readiness, 



“asynchronicity” and lack of coherency. Well-designed algorithms and frameworks will be a major 
contributor to success in this area. Finally, power efficiency is becoming a practical worry as well – 
future chips might require an optimal or specific balance of data movement and computation. 

There is a long road ahead of the HEP community, one that will surely take many turns and hold 
many surprises. Without doubt, many mainstream technologies the community uses today have 
already peaked, and it could well be that we currently find ourselves at a crossroads similar to the one 
that took us into the PC era [13]. 
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