

Opportunities and choice in a new vector era

A Nowak1
1 CERN openlab CTO Office, Geneva, Switzerland

E-mail: Andrzej.Nowak@cern.ch

Abstract. This work discusses the significant changes in computing landscape related
to the progression of Moore’s Law, and the implications on scientific computing.
Particular attention is devoted to the High Energy Physics domain (HEP), which has
always made good use of threading, but levels of parallelism closer to the hardware
were often left underutilized. Findings of the CERN openlab Platform Competence
Center are reported in the context of expanding “performance dimensions”, and
especially the resurgence of vectors. These suggest that data oriented designs are
feasible in HEP and have considerable potential for performance improvements on
multiple levels, but will rarely trump algorithmic enhancements. Finally, an analysis
of upcoming hardware and software technologies identifies heterogeneity as a major
challenge for software, which will require more emphasis on scalable, efficient
design.

1. Introduction
CERN openlab and its Platform Competence Center spent the past decade investigating mainstream
and upcoming platform technologies. During that time, the computing landscape has witnessed many
changes, but two are of particular importance. On one end of this decade, intrinsic improvements in
single-thread processor efficiency ceased to be sourced from manufacturing process improvements
and aggressive frequency scaling, and had to be provided through microarchitectural optimizations
such as out of order enhancements, changes in branch predictors, cache optimizations, buffer size
increases and so on. High Energy Physics (HEP) software traditionally makes pretty good use of such
mechanisms. On the other end of this decade, we find ourselves snowed under with vectors, hardware
threads, cores – all various forms of parallelism.

This new era presents challenges as it presents opportunities. The discussion contained in the
paper presented addresses these main points.

2. Observations

2.1. Hardware
Worries about computing platform performance often stem from an inefficient use of available
resources - which is a generic and persistent challenge. One such challenge in the past was the
growing compute-memory gap, illustrated on the classic Hennessy & Patterson plot (Figure 1).

mailto:Andrzej.Nowak@cern.ch

Figure 1: CPU-memory performance gap. Modelled after ”Computer Architecture”: Hennessy, John L.;

Patterson, David A.

In modern computing, it is less common for bottlenecks in a platform to shift in a major way, e.g.
from disk to memory bandwidth, and thus even well-tuned workloads are rarely adversely affected by
hardware upgrades. A notable exception is the rise of accelerators, which in a “step function” offered
difficult to extract compute capabilities, but plenty of bandwidth to go along (Figure 2).

Let us consider the recent history of mainstream compute capabilities. Vector width has
quadrupled on x86 since the introduction of MMX (and went much further on GPUs!), hardware
threading made a triumphant comeback after a brief appearance in the Pentium 4 family, and the
“Haswell” microarchitecture from Intel now features 8 execution ports in lieu of 6 on earlier models.
Core count in a chip has grown from 2 in awkward MCP designs to over 60 in the Intel KNC, while
multi-socket, multi-node installations are standards in datacenters. All in all, the appearance of a vast
land of opportunity created by the simultaneous expansion of multiple performance dimensions has a
strong impact on the ratio between the theoretical limits of computing efficiency and the targets
actually achieved – as discussed further.

Figure 2: Peak single precision, general purpose FLOPs/cycle in a single chip

This illustrates the need for a shift in programming and optimization focus, in particular in

compute-oriented workloads - from generic latency and hotspot-oriented efforts to sweeping redesigns
of whole software packages. While it is common to extrapolate Moore’s Law and its benefits at least
5 years into the future, industry specialists warn of major movements in connectivity, memory and
energy efficiency. For example, the ratio of bytes per FLOP is no longer a compute density metric,
but also one that implies an optimal or suboptimal energy balance in a chip.

Table 1: Memory operations and their energy

costs in a platform

Operation Energy cost

L1 access 2 pJ

L2 access 150 pJ

RAM 2 000 pJ

FLOP Future - ?

Figure 3: Hardware parallelism mapped onto software

This trend can be noted by observing the widespread community interest in accelerators, vectors
and even new architectures – after many years of indivisible x86 reign on our desktops and in our
datacenters, numerous experiments with ARM, NVIDIA and even MIPS architectures are underway.

2.2. Software stagnation
On the other side, production HEP software remained the same from the point of view of its capability
to take advantage of technical novelties. As discussed in [1], large, code-heavy C++ based

Penryn
32

Nehalem
32

Westmere
48

Sandy Bridge
128

KNF
1024

KNC
1600

RV770
640

Northern Islands
6144 Southern Islands

8192

G80
256

GF100
960

Fermi
1024

Cell
64

1

10

100

1000

10000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

FL
O

PS
/c

yc
le

Year

Intel AMD/ATI NVIDIA IBM
Andrzej Nowak, CERN openlab 2013

frameworks dominate, with two major toolkits, ROOT [2] and Geant4 [3,4], still single-threaded and
lacking vectorization (for the most part). It should not come as a surprise that, roughly speaking, the
gap in performance between the theoretical limit and optimized code is 10x, and the distance between
the performance of scalar, single-threaded HEP code and optimized code is another 10x. These
numbers are decomposed into more detailed factors in Table 2 and Table 3, and explained in detail in
[1].

Table 2: Multiplicative factors for parallelism in three different software and datacentre scenarios

SIMD ILP HW THREADS CORES SOCKETS

THEORY 4 4 1.35 8 4

OPTIMIZED 2.5 1.43 1.25 8 2

HEP 1 0.80 1 6 2

Table 3: Multiplied factors for parallelism in three different software and datacentre scenarios

SIMD ILP HW THREADS CORES SOCKETS

THEORY 4 16 21.6 172.8 691.2

OPTIMIZED 2.5 3.57 4.46 35.71 71.43

HEP 1 0.80 0.80 4.80 9.60

We need to program for tomorrow’s hardware – today.

The important lesson here touches not only on modularity and adaptability to changes in
hardware, both of which must become the daily bread of many key developers, but also on the
viabililty, sustainability and performance of the software engineering process in HEP. New challenges
linked to heterogeneity, discussed further, will put our methods to an even more stringent test. In
2007, when the many-core era was just around the corner, CERN openlab began its efforts of
community evangelization in preparation for the inevitable explosion in datacentre core count. It
quickly became apparent that our software would benefit from more forms of hardware parallelism
than one, which fortunately still map onto a manageable set on the software side (Figure 3). However,
many physicists we spoke to did not have the bandwidth to worry about issues such as hardware
underutilization. Now the gap has grown sufficiently large for many to find the resources to address
this challenge. For its part, CERN has initiated the Forum on Concurrent Programming Models and
Frameworks and is investing in major improvements in Geant4, such as Geant-V and the multi-
threaded Geant4 prototype, and ROOT. Another prominent effort is the EU FP7 “ICE-DIP” project,
which aims to develop next-generation data acquisition capabilities using new technologies.

Large HEP jobs are deeply affected by object-oriented development, to the extent that top
functions in a flat profile consume low single-digit percentages of time or instructions, while it takes
hundreds if not thousands of entries to account for the bottom 50% of the profile – which means that
even if we get rid of them completely (hardly a possibility), the workload would run at most twice as
fast. Such frameworks are almost beyond hope when it comes to the efficient use of opportunities such

as vectorization, and need a data oriented design approach to benefit from them. It’s not all bad,
however: prominent examples of success exist as well. For example, the GSI team working on the
CBM/ALICE online codes achieved a 120’000x speedup on their code. The interesting part is that
only a factor of 120x came from microarchitectural optimizations and parallelization, while a factor of
1000x came from implementing a significantly more optimal algorithm (Figure 4). There is also a
good result from the CERN openlab side: work done on the MLFit benchmark allowed it to scale by
nearly 2x when moving from an Intel “Westmere” based server to a “Sandy Bridge” one (Figure 5).

Figure 4: Speedups for optimized ALICE/CBM online code, figure copied from I. Kisel et al. [5][6]

Figure 5: “Westmere” (light blue) vs. “Sandy Bridge” (dark blue) server performance, frequency scaled

In what concerns specific technologies for, say, vectorization, they are differentiated not just by

their features, but also by the syntax or notation they employ and their implementation (library,
compiler extension, etc). While new syntax options such as Cilk+ are quite appealing, to the extent
that they’re desired in the C++ standard, there has yet to appear a sufficiently convincing technical
implementation that provides convenience and performance at the same time. On the multi-threading
front, TBB is being integrated into a prototype version of Geant4, also with notable success.

There is, of course, no guarantee that vector growth will continue, but it is still a growing trend,
with AVX3 sporting 512-bit vectors on mainstream Xeon systems, and much wider vector-like units
still being deployed in GPUs en-masse.

Finally, even though the case for parallelism on multiple levels might be clear by now, it will still
take some work to establish which is the best path to pursue, which technologies are the most
promising (and sustainable) ones, and which syntax, notation and programming concept will fit the
HEP community.

3. Heterogeneity
One emerging challenge with respect to contemporary computing strategies and software
development is heterogeneity. It has been around for a long time at the datacentre level, where for
example a Grid user only sees a virtualized interface to his system and does not know which

capabilities the CPU assigned to his job will have. At the chip level, AMD has its “Trinity” APU
technology, while Intel introduced graphics processors supporting “Sandy Bridge” processors and its
successors. Very few (experimental) software packages make use of such hardware. Finally, at the
platform level, we see heterogeneity not only at the level of compute capabilities of interconnected
devices but also in terms of their architecture, memory configuration, integration and so on. Before
such a device is engaged to collaborate with the main CPU, many questions must be asked, also at the
software level. How will the device feed on data and communicate? Will it have sufficient memory,
performing as expected? Will it meet latency constraints? Will it provide floating point results
compatible with the main processor? Should the code run natively on the accelerator or be offloaded
when the time is right? The answer to those questions and actions taken will depend on the problem
and the structure of next-generation software frameworks. Another platform related question is that of
memory – in recent years there has been a trend of stratification. Two levels of caches expanded to
three and multi-socket systems provide multiple NUMA domains. A hot topic in this domain is high
bandwidth, low latency, potentially non-volatile memory, which could act as a layer between L3 and
RAM, or play a role in storage (Figure 6 and Table 4).

Figure 6: Micron HMC (from S. Borkar, Intel)

 Bandwidth Energy

DDR3
(Today) > 10GB/s > 50 pJ

/ bit

HMC
(Prototype) > 100 GB/s < 10 pJ

/ bit

Table 4: HMC prototype parameters

The software side will feel pressure on two fronts. On one side, compilers and toolsets might

begin to diverge, and the OS kernel will have to efficiently arbitrate communication between the host
and slot-in devices. Such has been the experience of CERN openlab while working on the Intel MIC
project since 2008, where none of the physics benchmarks used or their dependencies were fully
ready for cross-platform compilation and usage. The porting times shown in Table 4 illustrate that a
small benchmark such as the Trackfitter was easy to port, even though it required a manual
reimplementation of several key functions, to match the architecture of the KNF. MLFit, which was
written using large standards (OpenMP and MPI) and stripped of ROOT dependencies, was
essentially a matter of recompilation and updating the build system. However, the first port of the
multi-threaded Geant4 prototype, which relies on a lot of Geant4 source code and has several external
dependencies, took more than a month to get right. The column showing the time needed for new
(updated) ports demonstrates that in our experience, introducing support for a certain degree of
heterogeneity was an investment that paid off and did not require major reviews.

 LOC 1st port time New ports Tuning

TF < 1’000 days N/A 2 weeks

MLFit 3’000 < 1 day < 1 day weeks

MTG4 2’000’000 1 month < 1 day < 1 week

Table 5: Approximate KNF/“Larrabee” (MIC) porting and tuning times by HEP benchmark

The low-power ARM architecture is making its 64-bit entry into datacenters worldwide, and those
in the HEP community who wish to use it [7][8] will face challenges very similar to those experienced
in our work with Intel MIC. For example, compiler support for NEON vector instructions is still quite
young, and several other areas in popular Open Source software need attention. As recently as in
2012, it was still a time consuming feat to properly install and support Linux on one of the “desktop”
ARM development boards.

On the other software front, it is not yet apparent how to maintain a single source that could be
compiled to or offloaded to different backends [9], and whether it should be maintained as “straight”
C/C++ code or as targeted kernels, or perhaps even in another form. Several projects tried to bridge
this productivity and engineering gap – RapidMind, Intel’s Ct, OpenCL, custom Intel compiler
extensions and several others – but none of them have managed to provide a portable source AND
portable performance at the same time. Some established industry standards come to the rescue, e.g.
OpenMP4 now includes accelerator and offload directives that were pre-published with OpenACC,
but it will still take some time before the industry comes to a well-defined conclusion.

A particular and painful consequence of symmetric processing is the challenge of numerical
convergence [10][11]. In some cases, there is no other choice but to accept that floating point results
will diverge between the CPU and an accelerator or co-processor. Vectors might be processed
differently, data and operation ordering may change, associativity may vary, compilers will generate
different code and “fast” function variants might be used as defaults. In any modern “offload” device
(GPUs and Intel MIC included) there exist two or three variants of math functions – those that strictly
adhere to standards but are excruciatingly slow, those that explicitly sacrifice accuracy for speed, and
those that offer a reasonable compromise by operating on limited ranges of input arguments.
Unfortunately for coders, these new options often imply a revision of floating-point in the source – an
undertaking that is not concluded overnight on frameworks with 5 million lines of code. Ultimately,
such an exercise can be a very useful one, in particular to develop methods that assess the quality of
computation results through means other than their bit-for-bit binary compatibility on multiple
platforms. That is also why it is important to closely follow efforts on math library optimization, such
as [12].

4. Conclusion
As always, the computing landscape is changing rapidly. However, it has become the responsibility of
the platform and system user to “seize the day”, and to turn all the hardware in a computing platform
into an advantage – as opposed to neglecting silicon that has already been paid for. This should be
taken into account in the light of general optimization truths which suggest that optimization should
start with the algorithm, as that often is where the highest potential for gains resides.

At least now, it would seem that next generation code must make some choices between
programmability and performance – neither can be sacrificed and neither can be ignored. Universal,
open standards must continue to play a leading role for reasons of sustainability and interoperability.
Scaling in multiple hardware and software dimensions seems indispensable – that includes numerous
aspects such as parallelization, vectorization, multi-process domain, message passing readiness,

“asynchronicity” and lack of coherency. Well-designed algorithms and frameworks will be a major
contributor to success in this area. Finally, power efficiency is becoming a practical worry as well –
future chips might require an optimal or specific balance of data movement and computation.

There is a long road ahead of the HEP community, one that will surely take many turns and hold
many surprises. Without doubt, many mainstream technologies the community uses today have
already peaked, and it could well be that we currently find ourselves at a crossroads similar to the one
that took us into the PC era [13].

5. Acknowledgements
The dissemination of this work was supported by “ICE-DIP”, an EU FP7 Marie Curie grant, #316596.

6. References
[1] Jarp S, Lazzaro A and Nowak A 2012 The future of commodity computing and many-core

versus the interests of HEP software J. Phys. Conf. Ser. 396 052058

[2] Brun R and Rademakers F 1997 ROOT — An object oriented data analysis framework Nucl.
Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 389 81–6

[3] Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee
S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H,
Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A,
Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F,
Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas J J, González I, Gracia
Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P,
Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones
F W, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P,
Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V,
Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E,
Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen
P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia
M G, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, et al 2003 Geant4—a
simulation toolkit Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect.
Assoc. Equip. 506 250–303

[4] Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R,
Chauvie S and Chytracek R 2006 Geant4 developments and applications Nucl. Sci. Ieee Trans.
53 270–8

[5] Kisel I, Kulakov I and Zyzak M Parallel Implementation of the KFParticle Vertexing Package
for the CBM and ALICE Experiments Computing in High Energy and Nuclear Physics 2012

[6] Kisel I, Kulakov I and Zyzak M Parallel Algorithms for Track Reconstruction in the CBM
Experiment Computing in High Energy and Nuclear Physics 2012

[7] Neufeld N Measurements of the LHCb software stack on the ARM architecture

[8] Elmer P Explorations of the viability of ARM and Intel Xeon Phi for Physics Processing

[9] Rohr D, Gorbunov S, Szostak A, Kretz M, Kollegger T, Breitner T and Alt T 2012 ALICE
HLT TPC Tracking of Pb-Pb Events on GPUs J. Phys. Conf. Ser. 396 012044

[10] Corden M J Differences in floating-point arithmetic between Intel Xeon processors and the
Intel Xeon Phi coprocessor

[11] Corden M J and Kreitzer D 2009 Consistency of floating-point results using the intel compiler
or why doesn’t my application always give the same answer (Technical report, Intel
Corporation, Software Solutions Group)

[12] De Dinechin F From CRLibm to Metalibm: assisting the production of high-performance
proven floating-point code

[13] Jarp S, Simmins A, Yaari R and Tang H 1995 PC as physics computer for LHC?

	Opportunities and choice in a new vector era
	1. Introduction
	2. Observations
	2.1. Hardware
	2.2. Software stagnation

	3. Heterogeneity
	4. Conclusion
	5. Acknowledgements
	6. References

