
ATLAS trigger simulation with legacy code using

virtualization techniques

Gorm Galster1, Joerg Stelzer2 and Werner Wiedenmann3

1 University of Copenhagen, DK
2 Michigan State University, US
3 University of Wisconsin, US

E-mail: gorm.galster@cern.ch, joerg.stelzer@cern.ch, werner.wiedenmann@cern.ch

Abstract. Several scenarios, both present and future, require re-simulation of the trigger
response in the ATLAS experiment at the LHC. While software for the detector response
simulation and event reconstruction is allowed to change and improve, the trigger response
simulation has to reflect the conditions at which data was taken. This poses a maintenance
and data preservation problem. Several strategies have been considered and a proof-of-concept
model using virtualization has been developed. While the virtualization with CernVM elegantly
solves several aspects of the data preservation problem, the limitations of current methods for
contextualization of the virtual machine as well as incompatibilities in the currently used data
format introduces new challenges. In this proceeding these challenges, their current solutions
and the proof of concept model for precise trigger simulation are discussed.

1. Introduction
Each 50 ns bunches of protons are brought to collide in ATLAS[1], one of the four large detectors
experiments at the LHC ring at CERN. At the end of LHC run 1, an average of 35 protons
collided per bunch crossing, each generating a spray of particles which are detected by the
different sub-detectors of ATLAS.

In order to provide real time data reduction a sophisticated trigger system decide which
collision events are stored, effectively reducing the data throughput to hundreds of gigabyte per
second. In consequence, all stored data are inherently watermarked by the trigger configuration
and trigger algorithms used during data taking. An in-depth analysis of the data thus also
becomes a study of the trigger. Having a strategy for simulation of the trigger response is of
importance for continued usability of the recorded data.

1.1. ATLAS simulation chain
Physics analyses in high energy physics require that real data are accompanied by simulated
Monte Carlo (MC) data. During ATLAS data taking, MC data are produced alongside the real
data taking using the same software as is used for online selection and offline reconstruction.

The ATLAS simulation chain is shown in Figure 1. First the detector response to the
simulated physics events is simulated. Based on the detector response the trigger simulation
adds the trigger decision record to the event before the simulated events are reconstructed and
stored.



Figure 1. The existing MC production chain. The boxes depict the execution of the respective
simulation steps: detector simulation, trigger response simulation and the reconstruction step.
The RDO (Raw Data Objects) is the exchange format. The Release X is to denote that the
same software version is used for all three steps.

2. Motivation
Several scenarios will require a (re-)simulation of the trigger response:

• An improved description/understanding of the detector response.

• Improved algorithms and methods for offline reconstruction.

• A desire to increase the size of MC samples in future studies.

• The introduction of new event generators.

2.1. Data format challenges
While detector response simulation and event reconstruction should be done with the newest
software, the version used for trigger response simulation needs to match that used for data
taking. Mismatch between the software versions poses a number of challenges. The most direct
challenges are those relating to data format compatibility:

• The trigger response simulation needs to read detector data produced by a new detector
simulation. This either implies forward compatibility of the format and content produced
by the detector simulation or a possibility to convert the detector response to an older
format readable by the old trigger simulation.

• The reconstruction needs to read the old trigger response record. This either implies a
conversion step or backward compatibility in the format for the trigger response record
such that the reconstruction algorithm can read and understand the produced old trigger
response header.

2.2. The environment stability
Besides the challenges related to data formats there are those related to the time scale envisaged
for ATLAS. Over a time span of more than a decade it is expected that hardware architectures,
operating systems, core components and compilers change, making it impossible to run the old
code as-is.

It would thus be necessary to port trigger selection algorithms which, potentially, are not even
used any more to the new software releases and certify with every new software release that their
selection response remains unchanged. In addition one also has to guarantee that the legacy
infrastructure for these trigger algorithms works with the new operating systems, changes in
software infrastructure, changes in the compiler and computer hardware developments. Further,
knowledge of the working of unused components would have to be preserved so that it is possible
to port them continuously to new releases alongside the actual trigger code. This poses a
maintenance problem.



Figure 2. The proposed changes to the existing simulation chain. This chain requires two
additional steps and uses an intermediate byte stream (BS) file. The first steps converts the
detector specific data of the RDO into BS. After the trigger response record has been added,
the RDO is infused with the trigger response record. The resulting RDO is passed on to the
reconstruction step.

2.3. Objective and scope
The goal of this study is to investigate viable strategies for a precise trigger simulation reflecting
past data taking conditions. The precision requirement can only be realized by the use of
the same software as was used during data taking. The proposed strategy should preferably
require minimal change to existing infrastructure and additional maintenance even when future
developments in hardware and software becomes a reality.

3. Resolving data formats incompatibilities
3.1. The RDO format
The currently used format, in the MC production, as indicated in Figure 1, is the Raw Data
Objects (RDO) file format, which is a container format based on ROOT[2] technologies. The
RDO files contain as payload structured serialized data objects. The format has the disadvantage
with respect to the previously mentioned challenges, that the structure and the content is rapidly
evolving in time in response to the demand of more precise detector response simulation and/or
addition of new components of the ATLAS detector. While compatibility for reading older files
are usually provided, it is not guaranteed, and the complex nature of the format makes it difficult
to provide converters for forwards compatibility. Attempts to make such conversions, to allow
only a year old trigger simulation to read a modern RDO, were unsuccessful.

3.2. The raw detector format
Another, more native data format exists: the raw detector data format, byte stream[3]. The
byte stream format is a chunk-based data format with support for versioning of both the format
itself and the data content.

It is already a requirement from ATLAS that the format is kept backwards compatible so
that data from any data taking period remain readable. Due to the tight coupling between the
byte stream format and thef detector readout, the format is expected to evolve slowly. Further,
while not necessarily maintained or kept operational, the code required for the sub-detectors
to write old byte stream data already exists. Some sub-detectors of ATLAS already support
configuration of the byte stream payload format. Further again, data objects corresponding to
detector data are serializable to byte stream (as well as RDO) in order to properly simulate the
conditions during online data taking.

The downside of using the byte stream format for simulation is that it inherently only deals
with the detector data: MC truth information and other necessary (meta)data are not storable.



3.3. Altering the simulation chain
The trigger response simulation only needs the detector related data of the RDO as input. It
adds the trigger response leaving detector data intact. A modified MC production chain, using
an intermediate byte stream file, has been developed as shown in Figure 2. Two additional steps
are added to the simulation chain. A step that extracts the detector data from the RDO and
stores it to the intermediate byte stream file. And the step, after the trigger simulation, which
adds the trigger response record to the byte stream file. The trigger response record is read
from the byte stream file and added to the RDO. The final RDO file then serves as input to the
reconstruction step. These extra steps were implemented within the framework of ATLAS and
work has been done to allow for a seamless integration with the existing MC production code.
A proof-of-concept setup was rigged and it was shown that the modified simulation chain was
viable for all eight tested software versions.

4. Virtualization and data preservation
Virtualization technology solves the before mentioned challenges related to time evolution by
allowing effective simulation of older hardware and thus enables a complete encapsulation of
operating systems and software.

The use of virtualization, on the other hand, has its down sides: it inherently introduces an
overhead. Further, a virtual machine (VM) is for all practical purposes a machine, and not a
simple script. Introduction of additional steps running inside of the virtual machine is a major
change to the ATLAS MC simulation chain. This implies a major change to the simulation.
In addition to the old version of the trigger software, the full machine definitions need to be
maintained and kept functional.

Both aspects were addressed in the study using CERN’s own VM project, CernVM[4], and
its associated technologies.

4.1. The CernVM project
The CernVM philosophy is to have a minimal disk image, which through methods of
contextualization, can be configured for use with any version of the experiments software. Disk
images are of the order of hundreds of megabytes instead of the several gigabytes of conventional
VM disk images. The contextualization information are text files of no more than a few kB.
The contextualization and disk inflation then happens when the machine is started.

In order to provide the experimental software, the CernVM images ship with its own HTTP
based, locally cache-able, strictly versioned, read-only file system, cvmfs[5]. ATLAS already
publishes its software releases and conditions data onto cvmfs file servers.

4.2. Proof of concept implementation
Using libvirt[6], an API for platform virtualization management, with KVM (Linux Kernel-
based Virtual Machine)[7] a contextualization was developed building on top of the HEPPIX
contextualization method supported by CernVM. The contextualization method, which is mainly
intended for grid sites to adjust the raw image to local site policies, was used to tamper enough
with the systems initialization process as to make a script that would:

• create and start a fresh CernVM instance,

• contextualize it appropriately,

• have it setup ATLAS release software from cvmfs,

• execute a script with user specified parameters, i.e. the trigger simulation,

• ship out results and log files over xrootd[2],

• and finally dispose of the machine when done.



Figure 3. The modified simulation chain where the trigger simulation has been encapsulated
in a virtual machine. This setup was used for the proof-of-concept model.

The methods used are not suitable for production since, in the production environment, the
software is already being executed on virtual machines. As the chosen infrastructure can not be
steered dynamically in the ways described here, this method may lead to a highly undesirable
”Russian Doll” where a new VM is created inside a VM. Providing a better solution for dynamic
VM allocation would require major changes to existing infrastructure. While not suitable for
production the method allowed for rapid integration of virtualization technologies into the
existing simulation chain.

At the time of writing it is possible to run the simulation chain depicted in Figure 3 using
the proof of concept model on a physical computer. Nevertheless, in order to benefit fully from
the CernVM project, better contextualization methods are needed. Requirements for workable
methods for setting up a specific ATLAS software release at contextualization as well as elegant
ways of providing certificates and credentials for accessing storage services and databases have
been fed back to the CernVM project. Further investigation of how to integrate virtualization
as seamlessly as possible into the MC production is also needed.

5. Conclusions
It has been demonstrated how to simulate the trigger precisely by using older software versions
for the trigger simulation while maintaining modern software versions for detector simulation
and reconstruction.

This was achieved by using a more stable data format tightly coupled to the detector
hardware. The proposed model introduces only moderate maintenance effort.

Virtualization solutions seem tractable even when software and hardware change radically.
The CernVM project already fulfills most of the requirements but more work is needed before
production scalability can be assessed.

References
[1] ATLAS Collaboration 2008 The ATLAS experiment at the CERN large hadron collider JINST 3 S08003
[2] CERN ROOT Team 2013 ROOT An Object-Oriented Data Analysis Framework http://root.cern.ch/

download/doc/ROOTUsersGuideA4.pdf

[3] Anjos A d, Beck H P, Gorini B, Vandelli W 2011 The raw event format in the ATLAS Trigger & DAQ EDMS
445840

[4] Segal B et al 2010 LHC Cloud Computing with CernVM PoS ACAT(2010) 004
[5] Blomer J et al 2011 Distributing LHC application software and conditions databases using the CernVM file

system J. Phys.: Conf. Series 331 042003
[6] Red Hat 2013 libvirt: The virtualization API http://libvirt.org/
[7] Red Hat 2013 KVM: Kernel Based Virtual Machine http://linux-kvm.org/


