
Distributed and multi-core computation of 2-loop integrals

E de Doncker1 and F Yuasa2

1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. A.
2 High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan

E-mail: elise.dedoncker@wmich.edu,fukuko.yuasa@kek.jp

Abstract. For an automatic computation of Feynman loop integrals in the physical region we rely on an
extrapolation technique where the integrals of the sequence are obtained with iterated/repeated adaptive
methods from the QUADPACK 1D quadrature package. The integration rule evaluations inthe outer level,
corresponding to independent inner integral approximations, are assigned to threads dynamically via the
OpenMP runtime in the parallel implementation. Furthermore, multi-level (nested) parallelism enables
an efficient utilization of hyperthreading or larger numbers of cores. For a class of loop integrals in the
unphysical region, which do not suffer from singularities in the interior of the integration domain, we find
that the distributed adaptive integration methods in the multivariate PARINT package are highly efficient
and accurate. We apply these techniques without resorting to integral transformations and report on the
capabilities of the algorithms and the parallel performance for a test set including various types of two-loop
integrals.

1. Introduction
The integral for ann-dimensional scalar Feynman diagram withL loops andN internal lines can be
represented in Feynman parameter space as

I =
Γ

(

N − nL
2

)

(4π)nL/2
(−1)N

∫ 1

0

N
∏

j=1

dxj δ(1 −
∑

xi)
CN−n(L+1)/2

(D − iεC)N−nL/2
. (1)

Here the functionsC andD are polynomials determined by the topology of the corresponding Feynman
diagram [1] and we considern = 4.

Section 2 of this paper outlines a multi-core algorithm for iterated/repeated integration and
extrapolation, which allows for parallelization at multiple levels of the integration scheme. A parameter
ε is introduced in the integrand denominator and decreased according to a geometric sequence. The
corresponding integrals are evaluated by iterated integration, using a one-dimensional adaptive program
from the QUADPACK package [2]. Theǫ-algorithm [3, 4] is applied for convergence acceleration of the
integral sequence asε tends to zero.

Section 3 gives a brief description of the distributed adaptive algorithm in the PARINT multivariate
integration (cubature) package [5]. Written in C and layered over MPI [6], PARINT consists of parallel
adaptive, Monte Carlo and quasi-Monte Carlo methods. Not unlike the QUADPACK routines, these are
implemented as tools forautomaticintegration, where the user defines the integrand function and the
domain, and specifies a relative and absolute error tolerance for the computation (tr andta, respectively).
Denoting the integral byIf over the domainD,

If =

∫

D
f(~x)d~x, (2)

it is then the objective to return an approximationQf and absolute error estimateEaf such that
| Qf − If | ≤ max{ ta, tr| If | } ≤ Eaf, or indicate with an error flag that the requested accuracy
cannot be achieved. When a relative accuracy (only) needs tobe satisfied we setta = 0 (and vice-versa).

For iterated integration over ad-dimensional product region we will express (2) as

If =

∫ β1

α1

dx1

∫ β2

α2

dx2 . . .

∫ βd

αd

dxd f(x1, x2, . . . , xd), (3)

where the limits of integration are given by functionsαj = αj(x1, x2, . . . , xj−1) and βj =
βj(x1, x2, . . . , xj−1). In particular, the boundaries of thed-dimensional unit simplexSd areαj = 0

andβj = 1 − ∑j−1
k=1 xk, i.e.,

Sd = { (x1, x2, . . . , xd) ∈ R
d |

d
∑

j=1

xj ≤ 1 andxj ≥ 0 }. (4)

Note that, after removing theδ-function in (1) and eliminating one of the variables in viewof
∑N

j=1 xj =
1, the integration is over ad-dimensional simplex of the form (4) withd = N − 1.

The multivariate adaptive approach yields excellent results for a set of two-loop box integrals specified
by Laporta [7]. On the other hand, the iterated scheme with extrapolation has been shown to succeed
for various classes of integrals in the physical region [8, 9, 10, 11, 12], where multivariate adaptive
integration fails.

Results for the Laporta diagrams are reported in Sections 4 and 5 of this paper. The treatment
of the sample integrals does not rely on integral transformations as proposed in [12] to improve the
integrand behavior. We obtained most of the numerical approximations and timings on the HPCS
(High Performance Computational Science) cluster at WMU. For this purpose we used 16-core cluster
nodes with Intel Xeon E5-2670, 2.6GHz processors and 128GB of memory, and the cluster’s Infiniband
interconnect for message passing via MPI.

Some sample sequential results were also collected from runs on a PC node at minamivt005.kek.jp
with 6-core Intel Xeon X5680@3.33GHz CPU, and on a 2.6GHz Intel Core i7 Mac-Pro with 4 cores.
For the inclusion of OpenMP [13] multi-threading compiler directives in the iterated integration code
(based on the Fortran version of QUADPACK) we used the (GNU)gfortrancompiler and the Intel Fortran
compiler, with the flags-fopenmpand-openmp, respectively. PARINT and its integrand functions were
compiled with gcc. Code sections of the sample integrands are supplied in Appendix A.

2. Parallel iterated integration and extrapolation
The numerical integration over the interval[αj , βj], 1 ≤ j ≤ d in (3) can be performed with the 1D
adaptive integration code DQAGE from the QUADPACK package [2] in each coordinate direction. Via an
input parameter to DQAGE we select the 15-point Gauss-Kronrod rule pair for the integral (and error)
approximation on each subinterval. If an interval[a, b] arises in the partitioning of[αj , βj], then the local
integral approximation over[a, b] is of the form

∫ b

a
dxj F (c1, . . . , cj−1, xj) ≈

K
∑

k=1

wkF (c1, . . . , cj−1, x
(k)), (5)

where thewk andx(k), 1 ≤ k ≤ K(= 15), are the weights and abscissae of the local rule scaled to
the interval[a, b] and applied in thexj-direction. Forj = 1 this is the outer integration direction. The
function evaluation

F (c1, . . . , cj−1, x
(k)) =

∫ βj+1

αj+1

dxj+1 . . .

∫ βd

αd

dxd f(c1, . . . , cj−1, x
(k), xj+1, . . . , xd), 1 ≤ k ≤ K,

(6)

is itself an integral in thexj+1, . . . , xd-directions for1 ≤ j < d, and is computed by the method(s) for
the inner integrations. Forj = d, (6) is the evaluation of the integrand function

F (c1, . . . , cd−1, x
(k)) = f(c1, . . . , cd−1, x

(k)).

Note that successive coordinate directions may be combinedinto layers in the iterated integration
scheme. Furthermore, the error incurred in any inner integration will contribute to the integration error
in all of its subsequent outer integrations [14, 15, 16].

Since theF () evaluations on the right of (5) are independent of one another they can be evaluated in
parallel. Important benefits of this approach include that

(i) the granularity of the parallel integration is large, especially when the inner integralsF () are of
dimension two or greater;

(ii) the points where the functionF is evaluated in parallel are the same as those of the sequential
evaluation; i.e., apart from the order of the summation in (5), the parallel calculation is essentially
the same as the sequential one. This important property facilitates the debugging of parallel code.
As another characteristic the parallelization does not increase the total amount of computational
work.

In addition, the memory required for the procedure is determined by (the sum of) the amounts
of memory needed for the data pertaining to the subintervalsincurred in each coordinate direction
(corresponding to the length of the recursion stack for a recursive implementation). Consequently the
total memory increases linearly as a function of the dimension d.

For a numerical extrapolation with theǫ-algorithm [3, 4] we generate a sequence of integral values
I(εℓ), using a geometric progression ofεℓ which tends to zero with increasingℓ (see also [8, 10]).
The extrapolation results given here are obtained with a version of theǫ-algorithm code (DQEXT) from
QUADPACK. Note that the accuracy of the extrapolated result is generally limited by the accuracy of
the input sequence, which in turn is determined in PARINT by the user-prescribed error tolerance for the
integration.

The input parameters of DQAGE include the maximum number (limit) of subdivisions allowed in
the partitioning of the given interval by the adaptive algorithm. A related output parameter is the error
codeiflag, which returns 1 to indicate that the number of subdivisionsreached its maximum,limit, upon
termination (and is 0 otherwise). In an iterated integration it is sometimes beneficial to keep track of the
number of timeslimit is reached throughout the integration on each particular level, as an indication of
the difficulty of the integrand in different coordinate directions.

3. PARINT parallel adaptive integration
Layered over MPI [6] for distributed computing, the PARINT adaptive integration executable launches
a user-specified number of processes which assume the role ofcontroller and workers. The integration
domain is divided initially among the workers. Each on its own part of the domain, the workers engage in
an adaptive partitioning strategy similar to that of DQAGE, DCUHRE [17] and HALF [18] by successive
bisections, and thus each generate a local priority queue ofsubregions as a task pool. The priority queue
is implemented as a max-heap keyed with the estimated integration errors over the subregions, so that the
subregion with the largest estimated error is stored in the root of the heap. However, if the user specifies
a maximum size for the heap structure on the worker, the task pool is stored as adeapor double-ended
heapwhich allows deleting of the maximum as well as the minimum element efficiently (in order to
maintain the size of the data structure once it reaches its maximum).

Each task consists of the subdivision (bisection) of the associated subregion (generating two children
regions), integration over the children, deletion of the parent region (root of the heap) and insertion of
the children back into the heap. The bisection of a region is performed perpendicularly to the coordinate
direction in which the integrand is found to vary the most, according to fourth-order differences computed

Table 1. Times forN = 6 andN = 7 parallel iterated integration (HPCS cluster)

Diagram: Fig 1(b) Fig 1(c) Fig 1(d) Fig 1(e)
N = 6 6 6 7 7 7
limit = 10 15 15 10 14 14
tr (1D) = 10−8 10−11 10−6 10−8 10−11

ε0 = 1.2 × 10−10 1.2 × 10−20 1.2 × 10−15 1.2 × 10−14 1.2 × 10−13

|Error| = 5.0 × 10−6 5.0 × 10−6 1.8 × 10−10 1.2 × 10−5 2.6 × 10−9 4.6 × 10−9

THREADS T IME (S)
1 1155.6 1167.5 37381.0 4151.0 15316.8
2 716.2 627.2 36808.4 3620.0 14706.1
4 360.5 360.4 18248.5 1994.0 7443.2
6 255.4 254.8 12068.2 1011.3 4793.6
8 226.5 221.4 9045.1 800.7 3847.1

10 206.8 213.7 7409.4 649.2 3482.7
12 201.4 207.2 6978.2 587.2 3287.3
15 193.9 198.8 5634.6 549.9 3191.1

(15, 15) 109.0 115.4 3237.7 282.5 1216.8 5837.9

in each direction [17, 18]. The integration rule on a subregion is determined by the type of region and the
user-selected polynomial degree. The available cubature rules in PARINT include a set of rules for the
d-dimensional cube [19, 20, 21], the Quadpack rules ford = 1, and a set of rules for thed-dimensional
simplex [22, 23]. The latter are the simplex rules by Grundmann and Möller [23] (which were also found
by de Doncker [24] via extrapolation).

An important mechanism of the distributed integration algorithm is the load balancing strategy, which
is receiver-initiated and geared to keeping the loads on theworker task pools balanced, particularly
in cases of irregular integrand behavior. The message passing is performed in a non-blocking and
asynchronous manner, and permits overlapping of computation and communication. The user has the
option of turning load balancing on or off, as well as allowing or dis-allowing the controller to also act
as a worker. Optionally the installation can be configured touse long doubles instead of doubles.

The multivariate partitioning (sequentially or in parallel) exhibits a dimensional effect (exponential as
a function ofd) with respect to the total number of regions generated and thus the required total memory.
To some extent this is helped by the distribution of the subregions over the participating processors’ local
memories in the parallel system.

As a result of the asynchronous processing and message passing on MPI, PARINT executes on a
hybrid platform (multi-core and distributed) by assigningmultiple processes to each node. However, it
is generally not possible to repeat an execution exactly. The parallelization also leads tobreaking loss
or extra work performed at the end of the computation, due to the time elapsed while workers continue
to generate subregions after the termination message has been issued but before receiving it. This may
increase the total amount of work (compared to the sequential work), particularly when the number of
processes is large.

4. Results of multi-threaded iterated integration
We consider five two-loop box diagrams from Laporta [7], given in Fig 1. Table 1 gives an overview
of the problem specifications, the execution times for a varying number of threads, and the absolute
accuracy achieved (|Error|) with respect to the valuesC0 pp. 46-47 in [7] for the diagrams in Fig 1(b-d).
For Fig 1(e) we compare with the result from PARINT executed in long double precision (cf., Section 5
below). Detailed results for theN = 5 diagram of Fig 1(a) are listed in Table 2.

The multi-threading is invoked in the outer (x1) integration in (3), except for the entry denoted
(15, 15) which represents nested parallelization applied in the outer two (x1 andx2) integrations. It
emerges that the latter outperforms the single level parallelization, showing a more efficient use of the
available cores. The integrations are performed over the simplexSd for d = N − 1 (see (4)). Appendix
A.1-5 provides code segments for the integrands corresponding to Fig 1(a-e). The integrand evaluation in

(a)

p1

p2

p3

p4

x3, m3 x5, m5x4, m4

x1, m1

x2, m2

(b)

p1

p2

p3

p4

x1, m1

x3, m3

x2, m2

x4, m4

x5, m5

x6, m6

(c)

p1

p2

p3

p4

x1, m1

x3, m3

x2, m2

x7, m7

x4, m4

x5, m5

x6, m6

(d)

p1

p2

p3

p4

x1, m1

x3, m3

x2, m2

x7, m7x4, m4

x5, m5

x6, m6

(e)

p1

p2

p3

p4

x1, m1

x3, m3

x2, m2

x5, m5x7, m7

x4, m4

x6, m6

Figure 1. Diagrams (a)N = 5, (b)N = 6, (c) N = 7, (d) N = 7 ladder, (e)N = 7 crossed

the code corresponds to an expression of the real part integrand where the factorεC in the denominator
of (1) is replaced byε for the extrapolation asε → 0. Note also that the factor1/(4π)nL/2 is omitted.

The problem specifications in Table 1 include: the number of internal linesN, the relative error
tolerancetr requested for the 1D integrations of the iterated scheme, the maximum valuelimit for the
number of subdivisions of the adaptive integration procedure in each coordinate direction, and the starting
value ofε = ε0 for the extrapolation sequence. For the sequence we useεℓ = ε0×1.2−ℓ, 0 ≤ ℓ < ℓmax,
where the length of the sequence (ℓmax) is around 15. In view of the trade-off between the amount of
work done and the accuracy achieved, we choose smallerε0 and largerlimit for higher accuracy work.

4.1. Diagram with five internal legs
For a sequential run on minamivt005, with target relative accuracy of10−6 for the 1D integrations, and
the maximum number of subdivisionslimit = 10, 10, 20, 20 in thex1, x2, x3 andx4 coordinate directions,
respectively, extrapolation with theǫ-algorithm on a sequence of 15 integrals forεℓ = 1.2−15−ℓ, 0 ≤
ℓ < 15 converges with relative error4 × 10−6 in a total elapsed time of 30.3 seconds.

A more accurate computation leads to the convergence results in Table 2, where in successive columns
the following are given:ℓ, εℓ, the integration time, the integral approximation corresponding toεℓ and
the extrapolated value forC0. The integration time listed is that of a sequential run on a node of the HPCS
cluster. The target 1D relative accuracy for the integrations was10−10, ε0 = 1.2−20 and the maximum
number of subdivisionslimit = 30, 30, 50, 50 in the successive coordinate directions.

Table 2. Extrapolation,N = 5, ε0 = 1.2−20, rel. tol. 10−10, seq. times (HPCS cluster)

ℓ εℓ T IME I(εℓ) C0

(s) Approx. Approx.
0 0.260841e-01 15.0 0.879998554543172662
1 0.217367e-01 15.2 0.892831432362168109
2 0.181139e-01 16.7 0.903287762406520423 0.9492935019767
3 0.150949e-01 23.0 0.911812341919760572 0.9494302717234
4 0.125791e-01 24.1 0.918769150341187113 0.9490308675735
...

...
...

...
...

12 0.292550e-02 65.1 0.943930996955826496 0.9509233190442
13 0.243792e-02 82.8 0.945122576092676248 0.9509234745063
14 0.203160e-02 99.5 0.946108275775448759 0.9509235737400
15 0.169300e-02 105.4 0.946924415927191898 0.9509235597296
16 0.141083e-02 108.9 0.947600717832237871 0.9509235626613

TOTAL TIME : 843.4 LAPORTA VALUE: 0.9509235623171

Table 3. Extrap. resultsN = 6, ε0 = 1.2−20, rel. tol. 10−11, limit = 15, # threads (reg. nodes) = 15

ℓ εℓ T IME I(εℓ) C0 | (C0(ℓ)
(s) Approx. Approx. −C0(ℓ − 1)) |

0 0.260841e-01 65.4 0.221532578551221299
1 0.217367e-01 99.9 0.230888677472657844
2 0.181139e-01 109.1 0.238665585251643331 0.276963858955
3 0.150949e-01 161.6 0.245113995206973190 0.276414002035 5.50e-04
4 0.125791e-01 185.5 0.250453078514603744 0.275897645038 5.16e-04
5 0.104826e-01 209.5 0.254870342845598397 0.275953613377 5.60e-05
...

...
...

...
...

...
10 0.421272e-02 687.1 0.267830329163125991 0.276209336599 1.08e-06
11 0.351060e-02 841.0 0.269250457421247535 0.276209925289 5.89e-07
12 0.292550e-02 721.5 0.270427723407943632 0.276209228098 6.97e-07
13 0.243792e-02 904.6 0.271404161999583338 0.276209225178 2.92e-09
TOTAL TIME (15t): 5634.6 LAPORTA VALUE: 0.276209225359

The extrapolation converges within eight to nine digits which agree with Laporta’s result. In view
of the small computation times of the individual integrals,parallelization is not highly beneficial. Some
speedup is observed for up to four threads with a parallel time of 445s, compared to 536s for two threads,
and 843s for one thread (i.e., the sequential time of Table 2.Parallel speedup is defined as the ratio of
sequential to parallel time.

4.2. Diagram with six internal legs
In test runs for a relative tolerance of10−8, and allowed maximum number of subdivisionslimit = 10
in each coordinate direction, extrapolation on the sequence with εℓ = 1.2−10−ℓ, 0 ≤ ℓ < 15 converges
to Laporta’s result within 4 to 5 digits, in about 1,156 seconds on a node of the HPCS cluster for the
sequential computation (764 seconds on Mac Pro). Timings for limit = 10 and 15, and for a varying
number of threads are given in columns 2 and 3 of Table 1.

We achieved a higher accuracy (differing1.8 × 10−10 from Laporta’s result, i.e., with a relative
accuracy of6.5 × 10−10), as specified in column 4 of Table 1. Note how the time decreases overall
from 37,381 seconds for the sequential run to 3,238 seconds with the parallel version, yielding a
speedup of about 12.6. The convergence results in Table 3 andexecution times per iteration, using 15
threads, were obtained on the HPCS cluster. Corresponding to C0 = C0(ℓ), the last column represents
|C0(ℓ) − C0(ℓ − 1)| which serves for the purpose of gauging the convergence. Since it is based on only
two consecutive elements it may not be a good estimate of the error. Theǫ-algorithm routine DQEXT in
QUADPACK produces a more sophisticated (and more conservative) error estimate.

Table 4. Extrap. resultsN = 7 crossed,ε0 = 1.2−13, rel. tol. 10−11, limit = 14, # threads(15, 15)

ℓ εℓ T IME CUMULATIVE I(εℓ) C0 | (C0(ℓ)
(s) TIME (s) Approx. Approx. −C0(ℓ − 1)) |

0 0.934639e-01 56.4 56.4 0.162481351192060378e-01
1 0.778866e-01 100.7 157.1 0.284733506638041936e-01
2 0.649055e-01 109.2 266.3 0.398260398940242025e-01 0.1875391249e+00
3 0.540879e-01 118.6 384.9 0.497257434763870229e-01 0.1171759149e+00 7.04e-02
4 0.450732e-01 147.0 531.9 0.579677963500485893e-01 0.9894834504e-01 1.82e-02
5 0.375610e-01 159.1 691.0 0.645980481345204693e-01 0.8382861180e-01 1.51e-02
6 0.313009e-01 268.8 959.8 0.697965854019316212e-01 0.8555394058e-01 1.73e-03
7 0.260841e-01 195.1 1154.8 0.737945973869281180e-01 0.8541352574e-01 1.40e-04
8 0.217367e-01 333.7 1488.5 0.768245432456762939e-01 0.8535482088e-01 5.87e-05
...

...
...

...
...

...
14 0.727958e-02 831.2 5032.2 0.840912496690573441e-01 0.8535140207e-01 3.10e-08
15 0.606632e-02 805.6 5837.9 0.844433778969480436e-01 0.8535139544e-01 6.63e-09

4.3. Diagrams with seven internal legs
The integrands for the ladder diagram of Fig 1(d) and the crossed diagram of Fig 1(e) correspond to those
for the planar and the non-planar diagram, respectively, before the transformations applied in [12].

4.3.1. Diagram of Fig 1(c). For the diagram Fig 1(c), a sequential run on minamivt005 generated a
result with relative error of1.2×10−5 in 14,719 seconds, using relative integration error tolerance10−6,
maximum number of subdivisionslimit = 10 in all coordinate directions, and extrapolation on an input
sequence of 15 integrals starting atε0 = 1.2−15.

By examining theiflag parameters, the output from the execution reveals that the maximum number
of subdivisions is reached particularly toward the inner integrations. For this problem, reversing the
order of the integration variables as shown in the function definition in Appendix A.3, improves the
performance dramatically. Keeping all other inputs the same, the sequential execution time decreases to
4,151 seconds while the accuracy of the result is maintained. Parallel times obtained when varying the
number of threads (on HPCS cluster nodes) are given in Table 1(column of Fig 1(c)). A speedup of
about 14.7 is achieved with nested parallelism.

4.3.2. Two-loop ladder box diagram Fig 1(d).For the diagram of Fig 1(d) a preliminary minamivt005
run with limit = 5 in all directions, relative integration tolerance10−6 and 15 integrations starting at
ε = 1.2−10, gave the result 0.1036438 which, compared to Laporta’s listed value of 0.10364072, has
an absolute accuracy of about3 × 10−6 (relative accuracy3 × 10−5), after an execution time of 7,848
seconds. Theiflag parameters indicated difficult behavior in the inner integrations for this problem. By
changing the order of the integration variables as listed inthe code segment of Appendix A.4 for the
integrand function, while keeping all other inputs unchanged, the program runs in 1,072 seconds on Mac
Pro and delivers the extrapolation result 0.1036451 (with relative error4.2 × 10−5).

We produced a more accurate result and timed the executions with limit = 14 in all directions, relative
1D integration tolerance10−8, for 17 integrations starting atε0 = 1.2−14. For the timing results see
Table 1 (column of Fig 1(d)). The extrapolated integral, 0.1036407236, has a relative error of2.5×10−8.
Note the overall gain in performance by the parallelization, from 15,317 seconds (sequential) to 1,217
seconds (parallel), or a speedup of about 12.6.

4.3.3. Two-loop crossed box diagram Fig 1(e).A sequential run on minamivt005 withlimit = 5 in
all directions, relative integration tolerance10−6, ε0 = 1.2−10 generated the result 0.85354533e-01 at
ℓ = 15, in 2,901 seconds. The integration variables were set as:x1 = x(1), x2 = 1 − x(1) − x(2) −
x(3)−x(4)−x(5)−x(6), x3 = x(2), x4 = x(3), x5 = x(4), x6 = x(5), x7 = x(6). With the order

of the integration variables changed to that of the code segment in Appendix A.5 for the integrand, the
program returned the result 0.85355139e-01 atℓ = 14, and 0.85349174e-01 atℓ = 15, in a total time of
801 seconds on Mac Pro.

Higher accuracy runs were performed with relative integration tolerance10−11, limit = 14 and
ε0 = 1.2−13, resulting in 0.85351402e-01 atℓ = 14 in 5,032 seconds, and 0.85351395e-01 atℓ = 15
in 5,838 seconds (total). Table 4 gives an overview of the convergence and the times for the individual
iterations using nested multi-threading(15, 15). As another comparison, since the problem is actually
unphysical for the specified kinematics, it is possible to set ε = 0 in the integrand. With 1D relative error
tolerance10−8 andlimit = 15, this gives 0.853513981536e-01 (with absolute error estimate of the outer
integration 2.2e-09) in 4,383 seconds, using(15, 15) nested multi-threading. Laporta’s method did not
solve this problem at the time of the writing of his article.

5. PARINT results
PARINT contains a parallel adaptive method with load balancing ford-dimensional rectangular regions
roughly based on the subdivision strategy of [19, 20, 21] andfor simplex regions [22, 25], with results
provided byd-dimensional integration rules of degrees 7 and 9 for the cube, and 3, 5, 7 and 9 for the
simplex. For the problems at hand, some testing reveals thatit is more efficient for PARINT to transform
the integral from the (unit) simplex to the (unit) cube, followed by an integration over the cube. We use
the transformation(x(1), . . . , x(d)) → (x1, (1−x1)x(2), . . . , (1−x1−. . .−xd−1)x(d)) with Jacobian
(1 − x1)(1 − x1 − x2) . . . (1 − x1 − . . . − xd−1).

Since the integrals with kinematics specified by Laporta [7]are unphysical we setε = 0, or eps
= 0 in the integrand codes of Appendix A.1-5. However, care needs to be taken to handle boundary
singularities in case the integration rule employs function evaluations on the boundary. For example, if
x1 = x4 = x5 = 0 (andeps= 0) in the definition offc in A.1, thencc = dd = 0. We set the integrand to
0 to avoid a divide-by-0 floating point exception.

Fig 2 presents timing results obtained with PARINT on the HPCS cluster, corresponding to the five
diagrams in Fig 1. Up to 64 MPI processes were spawned on up to 4cluster nodes, using 16 procs (slots)
per node. When referring to numbers of integrand evaluations, million andbillion are abbreviated by
“M” and “B”, respectively. Since the times vary when the samerun is repeated, the plots show timings
usually averaged over three or four runs for the samep. The timesTp are expressed in seconds, as a
function of the number of MPI processesp, 1 ≤ p ≤ 64.

Table 5 gives a brief overview of pertinent test specifications,T1, Tp and the speedupSp = T1/Tp for
p = 64. For example, the times of theN = 5 diagram decrease from 32.6s atp = 1 to 0.74s atp = 64
for tr = 10−10 (reaching a speedup of 44); whereas theN = 7 crossed diagram times range between
27.6s and 0.49s fortr = 10−7 (with speedup exceeding 56).

For the two-loop crossed box problem we also ran PARINT in long doubleprecision. The results for
an increasing allowed maximum number of evaluations and increasingly strict (relative) error tolerance
tr (using 64 processes) are given in Table 6, as well as the corresponding double precision results. Listed
are: the integral approximation, actual relative error estimateEr, number of function evaluations reached

Table 5. Test specifications and range of times in Fig 2(a-d)

DIAGRAM N REL TOL MAX EVALS T1[s] T64[s] SPEEDUP

tr S64

Fig 1(a) / 2(a) 5 10−10 400M 32.6 0.74 44.1
Fig 1(e) / 2(a) crossed 7 10−7 300M 27.6 0.49 56.3

Fig 1(b) / 2(b) 6 10−9 3B 213.6 5.06 42.2
Fig 1(d) / 2(b) ladder 7 10−8 2B 189.9 4.33 43.9

Fig 1(c) / 2(c) 7 10−8 5B 507.9 8.83 57.5
Fig 1(e) / 2(d) crossed 7 10−9 20B 1892.5 34.6 54.7

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

T
p

 [
se

c]

p

N = 7 crossed, epsrel 1e-7, max 300M
N = 5, epsrel 1e-10, max 400M

(b)

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60 70

N = 7 ladder, epsrel 1e-8, max 2B
N = 6, epsrel 1e-9, max 3B

(c)

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60

T
p

 [
se

c]

p

N = 7 Fig 1(c), epsrel 1e-8, max 5B

(d)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

T
p

 [
se

c]

p

N = 7 crossed, epsrel 1e-9, max 20B

Figure 2. (a) N = 5, tr = 10−10 andN = 7 crossed,tr = 10−7; (b) N = 6, tr = 10−8 andN = 7 ladder,
tr = 10−8; (c) N = 7 [Fig 1(c)], tr = 10−8; (d) N = 7 crossed,tr = 10−9

Table 6. PARINT double and long double results for crossed diagram Fig 1(e)

tr Max long doubleprecision doubleprecision
Evals INTEGRAL APPROX Er iflag #EVALS T IME Er iflag #EVALS T IME

10−08 600M 0.085351397048123 3.5e-07 1 600000793 1.7 3.4E-07 1 600001115 0.95
1B 0.085351397753978 1.7e-07 1 1000000141 2.9 1.6e-07 1 1000000141 1.6
2B 0.085351398064779 2.9e-08 1 2000000443 6.0 2.9e-08 1 2000000765 3.3
6B 0.085351398130559 5.6e-09 0 4164032999 14.3 8.0e-09 0 4424455329 8.6

10−09 10B 0.085351398143465 5.5e-09 1 10000001571 29.7 5.5e-09 110000000927 16.4
50B 0.085351398152623 9.9e-10 0 35701321579 124.4 4.5e-100 9799638359 16.0

10−10 80B 0.085351398153315 5.5e-10 1 80000001137 240.2 5.5e-101 80000000171 133.5
100B 0.085351398153507 4.1e-10 1 100000000093 302.0 4.1e-10 1 100000000093 168.3
300B 0.085351398153798 9.1e-11 0 238854968513 642.3 1.3e-10 1 300000000279 587.2

and time taken inlong doubleprecision, followed by the relative error estimate, numberof function
evaluations reached and running time indoubleprecision. Allowing for 16 processes per node and up to
64 processes total, the MPI host file has four lines of the formnx slots=16wherenx represents a selected
node name. The running time is reported (in seconds) from thePARINT executable, and comprises all
computation not inclusive the process spawning and PARINT initialization. For a comparable number
of function evaluations, the time using long doubles is slightly less than twice the time taken using
doubles. Theiflag parameter returns 0 when the requested accuracy is assumed to be achieved, and 1
otherwise. Reaching the maximum number of evaluations results in abnormal termination withiflag = 1.

The integral approximation for thedoublecomputation is not listed in Table 6; it is consistent with the
long doubleresult within the estimated error (which appears to be over-estimated). Using doubles the
program terminates abnormally for the requested relative accuracy oftr = 10−10. Normal termination is
achieved in this case around 239B evaluations with long doubles.

6. Concluding remarks
In this paper we exploredparallel integration methods for theautomaticcomputation of a class of
two-loop box integrals [7]: (i) multi-threaded iterated/repeated integration with extrapolation, and
(ii) distributed adaptive multivariate integration. Withregard to (i) we demonstrated the capabilities
of the extrapolation for convergence acceleration, and of the parallelization on multiple levels of the
iterated integration scheme to speed up the execution.

For physical kinematics we rely on calculating a sequence ofintegrals for extrapolation as the
parameterε decreases [8, 9, 10, 11, 12], and it has generally not been possible to calculate the integrals
for small enoughε using adaptive partitioning of the multivariate domain. However, the test cases
specified in [7] allow settingε = 0 in the integrand, and it emerges that the distributed adaptive approach
of PARINT solves these problems very efficiently (although iterated integration has an advantage with
respect to low memory usage). PARINT executes on multiple nodes, and multiple cores per node. Future
work in this area will address, for example, the distributed(non-adaptive) quasi-Monte Carlo and Monte
Carlo methods in the current PARINT package, parallel random number generators and utilizing GPUs
and other accelerators for the computations.

Future work on the iterated strategy will include improved error handling across the levels of the
iterated scheme. Furthermore, the parallelization of the iterated strategy can be extended to handle
infrared divergence as presented in [27]. Higher-dimensional problems can be attempted with iterated
integration by combining some successive 1D into multivariate layers as was done in [8]. Evaluating the
points in the 2D (or 3D) outer layer on GPUs may yield an alternative in some cases, if the structure
of the computation is sufficiently similar for all evaluation points [26]. In view of the computationally
intensive nature of the underlying problems, roundoff error guards and suitable summation techniques
need to be considered. Finally, the multi-threaded iterated integration can be incorporated within the
distributed setting of PARINT on MPI [6].

Acknowledgments
We acknowledge the support from the National Science Foundation under Award Number 1126438.
This work is further supported by Grant-in-Aid for Scientific Research (24540292) of JSPS, and the
Large Scale Simulation Program No.12-07 of KEK. We also thank Dr. L. Cucos and O. Olagbemi for
help with PARINT.

Appendix A. Code of two-loop box integrands
Code segments for the integrands corresponding to the two-loop box diagrams of Fig 1(a-e) are given
below. Note that ’&’ indicates continuation, thesqepsvariable representsε2 andsqrt3represents

√
3.

Appendix A.1. Diagram Fig 1(a) (N = 5)

x1 = x(1)
x2 = 1-x1-x(2)-x(3)-x(4)
x3 = x(2)
x4 = x(3)
x5 = x(4)
cc = (x1+x5)*(x2+x3+x4)+x4*(x2+x3)
dd =

& -x1**2*x2-x1**2*x3-x1**2*x4-x1*x2**2-x1*x2*x3-2*x1*x2*x4-x1*x2*x5
& -x1*x3**2-2*x1*x3*x4-x1*x3*x5-x1*x4**2-x1*x4*x5-x2**2*x4-x2**2*x5

& -x2*x3*x4-x2*x3*x5-x2*x4**2-2*x2*x4*x5-x2*x5**2-x3**2*x4-x3**2*x5
& -x3*x4**2-2*x3*x4*x5-x3*x5**2-x4**2*x5-x4*x5**2

fc = -dd/cc/(dd**2+sqeps)

Appendix A.2. Diagram Fig 1(b) (N = 6)

x6 = x(1)
x5 = x(2)
x4 = x(3)
x3 = x(4)
x2 = x(5)
x1 = 1-x6-x2-x3-x4-x5

dd = (x1**2+x5**2+x1*x5)*(x2+x3+x4+x6)
& +(x2**2+x3**2+x6**2+x2*x3+x2*x6+x3*x6)*(x1+x4+x5)
& +x4**2*(x1+x2+x3+x5+x6)+3*x4*x5*x6+
& 2*x1*x4*(x2+x3+x6)+2*x4*x5*(x2+x3)

fd = (dd-eps)*(dd+eps)/(dd**2+sqeps)**2

Appendix A.3. Diagram of Fig 2(a) (N = 7)

x7 = x(1)
x6 = x(2)
x5 = x(3)
x4 = x(4)
x3 = x(5)
x2 = x(6)
x1 = 1-x7-x2-x3-x4-x5-x6
dd =

& -(x1**2+x2**2+x3**2+x7**2+x1*x2+x1*x3+x1*x7+x2*x3+x2*x7+x3*x7)
& *(x4+x5+x6)-x4**2*(1-x4)-(x5**2+x6**2+x5*x6)*(1-x5-x6)
& -3*x4*(x1*x5+x6*x7)-2*((x1+x2+x3)*x4*x6+(x2+x3+x7)*x4*x5)

cc = x1*x4+x1*x5+x1*x6+x2*x4+x2*x5+x2*x6+x3*x4+x3*x5+x3*x6+x4*x5
& +x4*x6+x4*x7+x5*x7+x6*x7

fg = -2*cc*dd*(dd-sqrt3*eps)*(dd+sqrt3*eps)/(dd**2+eps**2)**3

Appendix A.4. Ladder box diagram Fig 1(d) (N = 7)

x7 = x(1)
x6 = x(2)
x5 = x(3)
x4 = x(4)
x3 = x(5)
x2 = x(6)
x1 = 1-x2-x3-x4-x5-x6-x7

x1234 = x1+x2+x3+x4
x45 = x4+x5
x67 = x6+x7
x4567 = x45 + x67

cc = x1234*x4567 - x4**2
dd = cc*(x1+x2+x3+x4+x5+x6+x7) - (x1*x2*x4567

& + x5*x6*x1234 + x1*x4*x6 + x2*x4*x5 + x3*x4*x7
& + x3*(x1*x4 + x1*x5 + x1*x6 + x1*x7 + x4*x5)
& + x3*(x2*x4 + x2*x5 + x2*x6 + x2*x7 + x4*x6)
& + x7*(x1*x4 + x1*x5 + x2*x5 + x3*x5 + x4*x5)
& + x7*(x1*x6 + x2*x4 + x2*x6 + x3*x6 + x4*x6))

fh = 2*cc*dd*(dd-sqrt3*eps)*(dd+sqrt3*eps)/(dd**2+eps**2)**3

Appendix A.5. Crossed box diagram Fig 1(e) (N = 7)

x7 = x(1)
x6 = x(2)
x5 = x(3)
x4 = x(4)
x3 = x(5)
x2 = x(6)
x1 = 1-x2-x3-x4-x5-x6-x7

cc = (x1+x2+x3+x4+x5)*(x1+x2+x3+x6+x7) - (x1+x2+x3)**2

dd = cc - (x1*x2*x4 + x1*x2*x5 + x1*x2*x6 + x1*x2*x7
& + x1*x5*x6 + x2*x4*x7 - x3*x4*x6
& + x3*(-x4*x6 + x5*x7)
& + x3*(x1*x4 + x1*x5 + x1*x6 + x1*x7 + x4*x6 + x4*x7)
& + x3*(x2*x4 + x2*x5 + x2*x6 + x2*x7 + x4*x6 + x5*x6)
& + x1*x4*x5 + x1*x5*x7 + x2*x4*x5 + x2*x4*x6
& + x3*x4*x5 + x3*x4*x6 + x4*x5*x6 + x4*x5*x7
& + x1*x4*x6 + x1*x6*x7 + x2*x5*x7 + x2*x6*x7
& + x3*x4*x6 + x3*x6*x7 + x4*x6*x7 + x5*x6*x7)

fi = 2*cc*dd*(dd-sqrt3*eps)*(dd+sqrt3*eps)/(dd**2+eps**2)**3

References
[1] Nakanishi N 1971Graph Theory and Feynman Integrals(Gordon and Breach, New York)
[2] Piessens R, de Doncker E,Überhuber C W and Kahaner D K 1983QUADPACK, A Subroutine Package for Automatic

Integration(Springer Series in Computational Mathematicsvol 1) (Springer-Verlag)
[3] Shanks D 1955J. Math. and Phys.34 1–42
[4] Wynn P 1956Mathematical Tables and Aids to Computing10 91–96
[5] de Doncker E, Kaugars K, Cucos L and Zanny R 2001Proc. of Computational Particle Physics Symposium (CPP 2001)

pp 110–119
[6] Open-MPI http://www.open-mpi.org
[7] Laporta S 2000Int. J. Mod. Phys. A15 5087–5159 arXiv:hep-ph/0102033v1
[8] de Doncker E, Shimizu Y, Fujimoto J and Yuasa F 2004Computer Physics Communications159 145–156
[9] de Doncker E, Fujimoto J, Kurihara Y, Hamaguchi N, Ishikawa T, Shimizu Y and Yuasa F 2010XIV Adv. Comp. and

Anal. Tech. in Phys. Res.PoS (ACAT10) 073
[10] de Doncker E, Fujimoto J, Hamaguchi N, Ishikawa T, Kurihara Y, Shimizu Y and Yuasa F 2011Journal of Computational

Science (JoCS)3 102–112
[11] de Doncker E, Yuasa F and Assaf R 2013Journal of Physics: Conf. Ser.454
[12] Yuasa F, de Doncker E, Hamaguchi N, Ishikawa T, Kato K, Kurihara Y and Shimizu Y 2012Journal Computer Physics

Communications183 2136–2144
[13] OpenMP website, http://www.openmp.org
[14] Fritsch F N, Kahaner D K and Lyness J N 1981ACM TOMS7 46–75
[15] Kahaner D, Moler C and Nash S 1988Numerical Methods and Software(Prentice Hall)
[16] de Doncker E and Kaugars K 2010Procedia Computer Science1 117–124
[17] Berntsen J, Espelid T O and Genz A 1991ACM Trans. Math. Softw.17 452–456
[18] De Ridder L and Van Dooren P 1976Journal of Computational and Applied Mathematics2 207–210
[19] Genz A and Malik A 1980Journal of Computational and Applied Mathematics6 295–302
[20] Genz A and Malik A 1983SIAM J. Numer. Anal.20 580–588
[21] Berntsen J, Espelid T O and Genz A 1991ACM Trans. Math. Softw.17 437–451
[22] Genz A 1990Lecture Notes in Computer Sciencevol 507 ed Sherwani N A, de Doncker E and Kapenga J A pp 279–285
[23] Grundmann A and Möller H 1978SIAM J. Numer. Anal.15 282–290
[24] de Doncker E 1979Math. Comp.33 1003–1018
[25] Genz A and Cools R 2003ACM Trans. Math. Soft.29 297–308
[26] Yuasa F, Ishikawa T, Hamaguchi N, Koike T and Nakasato N 2013Journal of Physics: Conf. Ser.454
[27] de Doncker E, Yuasa F and Kurihara Y 2012Journal of Physics: Conf. Ser.368

