Distributed and multi-core computation of 2-loop integrals

E deDoncker! and F Yuasa®
! Department of Computer Science, Western Michigan Unitieri§alamazoo MI 49008, U. S. A.
2 High Energy Accelerator Research Organization (KEK), OHg Tsukuba, Ibaraki, 305-0801, Japan

E-mail: el i se. dedoncker @wn ch. edu, f ukuko. yuasa@xek. jp

Abstract. For an automatic computation of Feynman loop integrals énptinysical region we rely on an
extrapolation technique where the integrals of the sequane obtained with iterated/repeated adaptive
methods from the QADPACK 1D quadrature package. The integration rule evaluatiomiserouter level,
corresponding to independent inner integral approximati@are assigned to threads dynamically via the
OpenMP runtime in the parallel implementation. Furthemmanulti-level (nested) parallelism enables
an efficient utilization of hyperthreading or larger nunef cores. For a class of loop integrals in the
unphysical region, which do not suffer from singularitieghe interior of the integration domain, we find
that the distributed adaptive integration methods in thétivasiate PARINT package are highly efficient
and accurate. We apply these techniques without resomimgtegral transformations and report on the
capabilities of the algorithms and the parallel perforneafoe a test set including various types of two-loop
integrals.

1. Introduction
The integral for am-dimensional scalar Feynman diagram withoops andN internal lines can be
represented in Feynman parameter space as

TIN=%) v ' CN (412
7= TSz (1) /0 jHldxj 5(1—2950@_2,50)%%/2. (1)

Here the function€ andD are polynomials determined by the topology of the corredpanFeynman
diagram [1] and we consider = 4.

Section 2 of this paper outlines a multi-core algorithm fterated/repeated integration and
extrapolation, which allows for parallelization at mulépevels of the integration scheme. A parameter
¢ is introduced in the integrand denominator and decreaseard@nog to a geometric sequence. The
corresponding integrals are evaluated by iterated intiegrausing a one-dimensional adaptive program
from the QUADPACK package [2]. The-algorithm [3, 4] is applied for convergence acceleratibthe
integral sequence asends to zero.

Section 3 gives a brief description of the distributed astapalgorithm in the RRINT multivariate
integration (cubature) package [5]. Written in C and lagleseer MPI [6], RRINT consists of parallel
adaptive, Monte Carlo and quasi-Monte Carlo methods. Nikeithe QUADPACK routines, these are
implemented as tools fautomaticintegration, where the user defines the integrand functimhthe
domain, and specifies a relative and absolute error toleffam¢he computatiorntf andt,, respectively).
Denoting the integral b¥ f over the domairD,

If = /D @)z, @

it is then the objective to return an approximati@)) and absolute error estimai@, f such that

| Qf —Zf | < max{ tyt.|Zf|} < E,f, orindicate with an error flag that the requested accuracy

cannot be achieved. When a relative accuracy (only) neduts satisfied we sef, = 0 (and vice-versa).
For iterated integration over&dimensional product region we will express (2) as

B1 B2 Ba
If: dxl/ dxg/ dl‘d f(:cl,xg,...,xd), (3)

[e%1 a2 Qq
where the limits of integration are given by functions = «;(z1,22,...,2;-1) and §; =
Bj(x1,22,...,25-1). In particular, the boundaries of thedimensional unit simplexS; area; = 0

andgj =1 - Y32 @ e,
d
Sd:{(xla$2a---axd)€Rd|Zilijﬁlanda}jZO}. 4)
j=1

Note that, after removing thefunction in (1) and eliminating one of the variables in vie\‘/\E;\’:1 Tj=
1, the integration is over d-dimensional simplex of the form (4) with= N — 1.

The multivariate adaptive approach yields excellent tedaf a set of two-loop box integrals specified
by Laporta [7]. On the other hand, the iterated scheme wittapglation has been shown to succeed
for various classes of integrals in the physical region [81®, 11, 12], where multivariate adaptive
integration fails.

Results for the Laporta diagrams are reported in Sectionsdd5aof this paper. The treatment
of the sample integrals does not rely on integral transftiona as proposed in [12] to improve the
integrand behavior. We obtained most of the numerical aprations and timings on the HPCS
(High Performance Computational Science) cluster at WMbi.tRis purpose we used 16-core cluster
nodes with Intel Xeon E5-2670, 2.6GHz processors and 128GBemory, and the cluster’s Infiniband
interconnect for message passing via MPI.

Some sample sequential results were also collected frommanra PC node at minamivt005.kek.jp
with 6-core Intel Xeon X5680@3.33GHz CPU, and on a 2.6GHelI@bre i7 Mac-Pro with 4 cores.
For the inclusion of OpenMP [13] multi-threading compildredtives in the iterated integration code
(based on the Fortran version ob@bPACK) we used the (GNUjfortran compiler and the Intel Fortran
compiler, with the flagsfopenmpand-openmp respectively. RRINT and its integrand functions were
compiled with gcc. Code sections of the sample integranels@gpplied in Appendix A.

2. Parallel iterated integration and extrapolation

The numerical integration over the interjal;, 3;],1 < j < din (3) can be performed with the 1D
adaptive integration code@n\GE from the QUADPACK package [2] in each coordinate direction. Via an
input parameter to DAGE we select the 15-point Gauss-Kronrod rule pair for the irge¢and error)
approximation on each subinterval. If an interjalb] arises in the partitioning dé;, 5;], then the local
integral approximation ovér,] is of the form

b K
/ dej F(ci,...,cj—1,25) = Zka(Cl,...,cj,l,x(k)), (5)
a k=1

where thew;, andz(®),1 < k < K(= 15), are the weights and abscissae of the local rule scaled to
the intervalla, b] and applied in the:;-direction. Forj = 1 this is the outer integration direction. The
function evaluation
Bj+1 Ba
F(Clw"acj—l»x(k)):/ dxj-l—l/ d.’L‘d f(Cl,...,Cj_l,.l‘(k),l'j+1,...,$d), 1§k§K7
Qi1 [e %}
(6)

is itself an integral in the:;41, ..., z4-directions forl < j < d, and is computed by the method(s) for
the inner integrations. Fgr= d, (6) is the evaluation of the integrand function

F(Cla v 7Cd717x(k)) = f(cly' ..)cdfbx(k))'

Note that successive coordinate directions may be combimedayers in the iterated integration
scheme. Furthermore, the error incurred in any inner iatégr will contribute to the integration error
in all of its subsequent outer integrations [14, 15, 16].

Since theF () evaluations on the right of (5) are independent of one andtiey can be evaluated in
parallel. Important benefits of this approach include that

(i) the granularity of the parallel integration is largepesially when the inner integralg() are of
dimension two or greater;

(i) the points where the functiod” is evaluated in parallel are the same as those of the seguenti
evaluation; i.e., apart from the order of the summation n ifte parallel calculation is essentially
the same as the sequential one. This important propertitdises the debugging of parallel code.
As another characteristic the parallelization does nateimge the total amount of computational
work.

In addition, the memory required for the procedure is deiteech by (the sum of) the amounts
of memory needed for the data pertaining to the subintervalsrred in each coordinate direction
(corresponding to the length of the recursion stack for amgee implementation). Consequently the
total memory increases linearly as a function of the dinwmngi

For a numerical extrapolation with thealgorithm [3, 4] we generate a sequence of integral values
Z(e¢), using a geometric progression of which tends to zero with increasing(see also [8, 10]).
The extrapolation results given here are obtained with simerof thee-algorithm code ([QEXT) from
QuADPACK. Note that the accuracy of the extrapolated result is gépdmaited by the accuracy of
the input sequence, which in turn is determined AR N T by the user-prescribed error tolerance for the
integration.

The input parameters of @GE include the maximum numbelirfit) of subdivisions allowed in
the partitioning of the given interval by the adaptive aition. A related output parameter is the error
codeiflag, which returns 1 to indicate that the number of subdivisi@@hed its maximuntimit, upon
termination (and is O otherwise). In an iterated integratias sometimes beneficial to keep track of the
number of timedimit is reached throughout the integration on each particulal,l@as an indication of
the difficulty of the integrand in different coordinate ditiens.

3. PARINT parallel adaptive integration

Layered over MPI [6] for distributed computing, the®EINT adaptive integration executable launches
a user-specified number of processes which assume the rotawbller and workers. The integration
domain is divided initially among the workers. Each on itsxquart of the domain, the workers engage in
an adaptive partitioning strategy similar to that cpBcE, DCUHRE [17] and HALF [18] by successive
bisections, and thus each generate a local priority queaelmegions as a task pool. The priority queue
is implemented as a max-heap keyed with the estimated attegrerrors over the subregions, so that the
subregion with the largest estimated error is stored indoé of the heap. However, if the user specifies
a maximum size for the heap structure on the worker, the taskip stored as deapor double-ended
heapwhich allows deleting of the maximum as well as the minimuenetnt efficiently (in order to
maintain the size of the data structure once it reaches &nmuan).

Each task consists of the subdivision (bisection) of the@ated subregion (generating two children
regions), integration over the children, deletion of theep®ion (root of the heap) and insertion of
the children back into the heap. The bisection of a regiorifopmed perpendicularly to the coordinate
direction in which the integrand is found to vary the mostaading to fourth-order differences computed

Table 1. Times forNV = 6 andN = 7 parallel iterated integration (HPCS cluster)

Diagram: Fig 1(b) Fig 1(c) Fig 1(d) Fig 1(e)
N= 6 6 6 7 7 7
limit = 10 15 15 10 14 14
t, (1D) = 108 10— 11 10-6 10-8 10— 11
€0 = 1.2 x 10710 1.2x10720 12x107% 1.2x1071% 1.2x10713
|Error|= 5.0x107% 50x107% 1.8x10710 12x1075% 26x107° 4.6x107°
THREADS TIME (S)
1 1155.6 1167.5 37381.0 4151.0 15316.8
2 716.2 627.2 36808.4 3620.0 14706.1
4 360.5 360.4 18248.5 1994.0 7443.2
6 255.4 254.8 12068.2 1011.3 4793.6
8 226.5 221.4 9045.1 800.7 3847.1
10 206.8 213.7 7409.4 649.2 3482.7
12 201.4 207.2 6978.2 587.2 3287.3
15 193.9 198.8 5634.6 549.9 3191.1
(15,15) 109.0 115.4 3237.7 282.5 1216.8 5837.9

in each direction [17, 18]. The integration rule on a suloedgs determined by the type of region and the
user-selected polynomial degree. The available cubatles in RARINT include a set of rules for the
d-dimensional cube [19, 20, 21], the Quadpack rulesifer 1, and a set of rules for thé-dimensional
simplex [22, 23]. The latter are the simplex rules by Grundmand Maoller [23] (which were also found
by de Doncker [24] via extrapolation).

An important mechanism of the distributed integration &t is the load balancing strategy, which
is receiver-initiated and geared to keeping the loads onnttwiker task pools balanced, particularly
in cases of irregular integrand behavior. The message massiperformed in a non-blocking and
asynchronous manner, and permits overlapping of computaind communication. The user has the
option of turning load balancing on or off, as well as allogvior dis-allowing the controller to also act
as a worker. Optionally the installation can be configureds® long doubles instead of doubles.

The multivariate partitioning (sequentially or in par§liexhibits a dimensional effect (exponential as
a function ofd) with respect to the total number of regions generated amglttie required total memory.
To some extent this is helped by the distribution of the sgibres over the participating processors’ local
memories in the parallel system.

As a result of the asynchronous processing and messagegassiMPl, RRINT executes on a
hybrid platform (multi-core and distributed) by assignimgltiple processes to each node. However, it
is generally not possible to repeat an execution exactly Fdrallelization also leads tweaking loss
or extra work performed at the end of the computation, dubddime elapsed while workers continue
to generate subregions after the termination message kasdseied but before receiving it. This may
increase the total amount of work (compared to the sequiemtigk), particularly when the number of
processes is large.

4. Results of multi-threaded iterated integration

We consider five two-loop box diagrams from Laporta [7], give Fig 1. Table 1 gives an overview
of the problem specifications, the execution times for a imgrynumber of threads, and the absolute
accuracy achievedgrror|) with respect to the values, pp. 46-47 in [7] for the diagrams in Fig 1(b-d).
For Fig 1(e) we compare with the result fromMNT executed in long double precision (cf., Section 5
below). Detailed results for th& = 5 diagram of Fig 1(a) are listed in Table 2.

The multi-threading is invoked in the outer(integration in (3), except for the entry denoted
(15,15) which represents nested parallelization applied in therowto (x; andzs) integrations. It
emerges that the latter outperforms the single level maizdtion, showing a more efficient use of the
available cores. The integrations are performed over thelskS; ford = N — 1 (see (4)). Appendix
A.1-5 provides code segments for the integrands correspohol Fig 1(a-e). The integrand evaluation in

Ty, my Ty, my
b1 b3 p1 P3

T5, My

Ty, M
T3, M3 Ty, My |T5, M5 T3, ms
Zg, Mg
b2 P4 2 P4
T2, Mo T, M2
(a) (b)
Ty, 1M Ty, My L5, My
p1 3 p1 P3
Zg, Mg
T3, ms T3, ms Ty, My T, my
T7, my
b2 P4 D2 2
T, Mo L9, Mo Tg, Mg
© (d)
T, my Tgy, My

p3

L3, M3

P2 D4
To, Mo Z6, Mg
(e)

Figure 1. Diagrams (aV =5, (b) N = 6, (¢) N = 7, (d) N = 7 ladder, (e)N = 7 crossed

the code corresponds to an expression of the real part antdgrhere the factarC' in the denominator
of (1) is replaced by for the extrapolation as — 0. Note also that the factdr/(4x)"/2 is omitted.

The problem specifications in Table 1 include: the numbemtdrhal linesN, the relative error
tolerancet, requested for the 1D integrations of the iterated schengemmizximum valudimit for the
number of subdivisions of the adaptive integration procedueach coordinate direction, and the starting
value ofs = ¢ for the extrapolation sequence. For the sequence weyuse x 1.27¢, 0 < £ < max,
where the length of the sequendgngy) is around 15. In view of the trade-off between the amount of
work done and the accuracy achieved, we choose smglimd largedimit for higher accuracy work.

4.1. Diagram with five internal legs

For a sequential run on minamivt005, with target relativeuaacy of10~% for the 1D integrations, and
the maximum number of subdivisiofimit = 10, 10, 20, 20 in the+, x5, r3 andz4 coordinate directions,
respectively, extrapolation with thealgorithm on a sequence of 15 integrals for= 1.271°7¢ 0 <

¢ < 15 converges with relative errar x 10~% in a total elapsed time of 30.3 seconds.

A more accurate computation leads to the convergence sesdlable 2, where in successive columns
the following are given’, «,, the integration time, the integral approximation correxfing tos, and
the extrapolated value fa@r,. The integration time listed is that of a sequential run ondenaf the HPCS
cluster. The target 1D relative accuracy for the integratizasl0—'°, ¢y = 1.272Y and the maximum
number of subdivision8mit = 30, 30, 50, 50 in the successive coordinate directions.

Table 2. ExtrapolationN =5, ¢ = 1.272°, rel. tol. 10719, seq. times (HPCS cluster)

L €p TIME Z(ee) Co
(s) Approx. Approx.

0 0.260841e-01 15.0 0.879998554543172662
1 0.217367e-01 15.2 0.892831432362168109
2 0.181139e-01 16.7 0.903287762406520423 0.949293501976
3 0.150949e-01 23.0 0.911812341919760572 0.949430241723
4 0.125791e-01 24.1 0.918769150341187113 0.949030867573
12 0.292550e-02 65.1 0.943930996955826496 0.95092332904
13 0.243792e-02 82.8 0.945122576092676248 0.95092383450
14 0.203160e-02 99.5 0.946108275775448759 0.95092360374
15 0.169300e-02 105.4 0.946924415927191898 0.9509239697
16 0.141083e-02 108.9 0.947600717832237871 0.950928%826

TOTALTIME: 843.4 LAPORTA VALUE: 0.9509235623171

Table 3. Extrap. resultsV = 6, ¢

=1.2720 rel. tol. 10—, limit = 15, # threads (reg. nodes) = 15

y4 £y TIME I(E@) Co | (Co(e)

(s) Approx. Approx. —Co(£—1)) |
0 0.260841e-01 65.4 0.221532578551221299
1 0.217367e-01 99.9 0.230888677472657844
2 0.181139e-01 109.1 0.238665585251643331 0.27696385895
3 0.150949e-01 161.6 0.245113995206973190 0.27641480203 5.50e-04
4 0.125791e-01 185.5 0.250453078514603744 0.27589784503 5.16e-04
5 0.104826e-01 209.5 0.254870342845598397 0.27595381337 5.60e-05
10 0.421272e-02 687.1 0.267830329163125991 0.2762099365 1.08e-06
11 0.351060e-02 841.0 0.269250457421247535 0.2762089252 5.89e-07
12 0.292550e-02 721.5 0.270427723407943632 0.2762098280 6.97e-07
13 0.243792e-02 904.6 0.271404161999583338 0.2762098251 2.92e-09
TOTAL TIME (15t): 5634.6 lAPORTAVALUE: 0.276209225359

The extrapolation converges within eight to nine digits ebhagree with Laporta’s result. In view
of the small computation times of the individual integrgdarallelization is not highly beneficial. Some
speedup is observed for up to four threads with a paralled 6f45s, compared to 536s for two threads,
and 843s for one thread (i.e., the sequential time of Tablea2allel speedup is defined as the ratio of
sequential to parallel time.

4.2. Diagram with six internal legs

In test runs for a relative tolerance o2, and allowed maximum number of subdivisiolisit = 10

in each coordinate direction, extrapolation on the sequsvithe, = 1.2710=¢_ 0 < ¢ < 15 converges
to Laporta’s result within 4 to 5 digits, in about 1,156 set®mn a node of the HPCS cluster for the
sequential computation (764 seconds on Mac Pro). Timingérfot = 10 and 15, and for a varying
number of threads are given in columns 2 and 3 of Table 1.

We achieved a higher accuracy (differingd x 10~!° from Laporta’s result, i.e., with a relative
accuracy of6.5 x 10~1°), as specified in column 4 of Table 1. Note how the time deesaserall
from 37,381 seconds for the sequential run to 3,238 secoritlisthhe parallel version, yielding a
speedup of about 12.6. The convergence results in Table &aaalition times per iteration, using 15
threads, were obtained on the HPCS cluster. Correspondiag & Cy(¢), the last column represents
|Co(¢) — Co(¢ — 1)] which serves for the purpose of gauging the convergencee$iiis based on only
two consecutive elements it may not be a good estimate ofrtbe &hee-algorithm routine EXT in
QUADPACK produces a more sophisticated (and more conservative)eastimate.

Table 4. Extrap. resultsV = 7 crossedso = 1.2713, rel. tol. 10—, limit = 14, # thread$15, 15)

L) TIME CUMULATIVE Z(eg) Co | (Co(¥)

(s) TIME (S) Approx. Approx. —Co(£—1)) |
0 0.93463%-01 56.4 56.4 0.162481351192060378e-01
1 0.778866e-01 100.7 157.1 0.284733506638041936e-01
2 0.649055e-01 109.2 266.3 0.398260398940242025e-01 75B98249e+00
3 0.540879e-01 118.6 384.9 0.497257434763870229e-01 71752149e+00 7.04e-02
4 0.450732e-01 147.0 531.9 0.579677963500485893e-01 94B388504e-01 1.82e-02
5 0.375610e-01 159.1 691.0 0.645980481345204693e-01 87883180e-01 1.51e-02
6 0.313009e-01 268.8 959.8 0.697965854019316212e-01 5%B98058e-01 1.73e-03
7 0.260841e-01 195.1 1154.8 0.737945973869281180e-01 541882574e-01 1.40e-04
8 0.217367e-01 333.7 1488.5 0.768245432456762939e-01 5354182088e-01 5.87e-05
14 0.727958e-02 831.2 5032.2 0.840912496690573441e-01853%1140207e-01 3.10e-08
15 0.606632e-02 805.6 5837.9 0.844433778969480436e-01853%139544e-01 6.63e-09

4.3. Diagrams with seven internal legs
The integrands for the ladder diagram of Fig 1(d) and theserdsliagram of Fig 1(e) correspond to those
for the planar and the non-planar diagram, respectivefgreghe transformations applied in [12].

4.3.1. Diagram of Fig 1(c). For the diagram Fig 1(c), a sequential run on minamivtO0%egard a
result with relative error of .2 x 1075 in 14,719 seconds, using relative integration error toleed0—%,
maximum number of subdivisiorsnit = 10 in all coordinate directions, and extrapolation on gutn
sequence of 15 integrals startingegt= 1.271°.

By examining theflag parameters, the output from the execution reveals that themnum number
of subdivisions is reached patrticularly toward the inndgegmations. For this problem, reversing the
order of the integration variables as shown in the functiefinition in Appendix A.3, improves the
performance dramatically. Keeping all other inputs theesaifme sequential execution time decreases to
4,151 seconds while the accuracy of the result is maintaiRedallel times obtained when varying the
number of threads (on HPCS cluster nodes) are given in Tafdeldmn of Fig 1(c)). A speedup of
about 14.7 is achieved with nested parallelism.

4.3.2. Two-loop ladder box diagram Fig 1(d)For the diagram of Fig 1(d) a preliminary minamivt005
run with limit = 5 in all directions, relative integration tolerant@=% and 15 integrations starting at
e = 1.2710 gave the result 0.1036438 which, compared to Laportasdistilue of 0.10364072, has
an absolute accuracy of abadlit< 1076 (relative accuracy x 10~°), after an execution time of 7,848
seconds. Thélag parameters indicated difficult behavior in the inner ing&tigins for this problem. By
changing the order of the integration variables as listethéncode segment of Appendix A.4 for the
integrand function, while keeping all other inputs uncheshghe program runs in 1,072 seconds on Mac
Pro and delivers the extrapolation result 0.1036451 (vetative errord.2 x 1075).

We produced a more accurate result and timed the executitimimit = 14 in all directions, relative
1D integration tolerancé0~%, for 17 integrations starting aty = 1.27'%. For the timing results see
Table 1 (column of Fig 1(d)). The extrapolated integral 038407236, has a relative errora$ x 108,
Note the overall gain in performance by the parallelizativam 15,317 seconds (sequential) to 1,217
seconds (parallel), or a speedup of about 12.6.

4.3.3. Two-loop crossed box diagram Fig 1(el\ sequential run on minamivt005 witimit = 5 in
all directions, relative integration tolerante=¢, ¢, = 1.271° generated the result 0.85354533e-01 at
¢ = 15,in 2,901 seconds. The integration variables were setfas: z(1), 22 =1 — (1) — z(2) —
z(3) —z(4) —x(5) —z(6), 3 = x(2), x4 = z(3), xb = z(4), 6 = x(5), 7 = x(6). With the order

of the integration variables changed to that of the code segjin Appendix A.5 for the integrand, the
program returned the result 0.85355139e-04 at14, and 0.85349174e-01 at= 15, in a total time of
801 seconds on Mac Pro.

Higher accuracy runs were performed with relative inteégratolerance10~!!, limit = 14 and
g0 = 1.2713 resulting in 0.85351402e-01 &t= 14 in 5,032 seconds, and 0.85351395e-07 at 15
in 5,838 seconds (total). Table 4 gives an overview of thevemence and the times for the individual
iterations using nested multi-threadifigp, 15). As another comparison, since the problem is actually
unphysical for the specified kinematics, it is possible tese 0 in the integrand. With 1D relative error
tolerancel 0~ andlimit = 15, this gives 0.853513981536e-01 (with absolute erramase of the outer
integration 2.2e-09) in 4,383 seconds, us{ig, 15) nested multi-threading. Laporta’s method did not
solve this problem at the time of the writing of his article.

5. PARINT results

PARINT contains a parallel adaptive method with load balancing/fdimensional rectangular regions
roughly based on the subdivision strategy of [19, 20, 21]fandimplex regions [22, 25], with results
provided byd-dimensional integration rules of degrees 7 and 9 for theecahd 3, 5, 7 and 9 for the
simplex. For the problems at hand, some testing revealdtilsahore efficient for RRINT to transform
the integral from the (unit) simplex to the (unit) cube, éolled by an integration over the cube. We use
the transformatioriz(1),...,z(d)) — (x1,(1—2z1)x(2),...,(1—21—...—x4-1)x(d)) with Jacobian
(1—%1)(1—1‘1 —%2)...(1—1‘1 —...—.Td_l).

Since the integrals with kinematics specified by Laportagig unphysical we set = 0, or eps
= 0 in the integrand codes of Appendix A.1-5. However, caredseto be taken to handle boundary
singularities in case the integration rule employs funtgwaluations on the boundary. For example, if
x1 = x4 = x5 = 0 (andeps= 0) in the definition offic in A.1, thencc = dd= 0. We set the integrand to
0 to avoid a divide-by-0 floating point exception.

Fig 2 presents timing results obtained withf®NT on the HPCS cluster, corresponding to the five
diagrams in Fig 1. Up to 64 MPI processes were spawned on upltester nodes, using 16 procs (slots)
per node. When referring to numbers of integrand evalustiorillion andbillion are abbreviated by
“M” and “B”, respectively. Since the times vary when the same is repeated, the plots show timings
usually averaged over three or four runs for the sam€&he timesT), are expressed in seconds, as a
function of the number of MPI processgsl < p < 64.

Table 5 gives a brief overview of pertinent test specificajd’, 7, and the speedu§, = 71 /T, for
p = 64. For example, the times of th¥ = 5 diagram decrease from 32.6spat= 1 to 0.74s ap = 64
for t, = 1070 (reaching a speedup of 44); whereas Me= 7 crossed diagram times range between
27.6s and 0.49s far. = 10~7 (with speedup exceeding 56).

For the two-loop crossed box problem we also rarT in long doubleprecision. The results for
an increasing allowed maximum number of evaluations aneasingly strict (relative) error tolerance
t, (using 64 processes) are given in Table 6, as well as thespmmneling double precision results. Listed
are: the integral approximation, actual relative erroineste £, number of function evaluations reached

Table 5. Test specifications and range of times in Fig 2(a-d)

DIAGRAM N ReELToL MAXEVALS Ti[s] Tea[s] SPEEDUP
tr SG4
Fig 1(a) / 2(a) 5 100 400M 326 0.74 441
Fig 1(e)/2(a)crossed 7 1077 300M 27.6 0.49 56.3
Fig 1(b) / 2(b) 6 107° 3B 2136 5.06 42.2
Fig 1(d)/ 2(b) ladder 7 1078 2B 189.9 4.33 43.9
Fig 1(c) / 2(c) 7 1078 5B 507.9 8.83 57.5

Fig 1(e)/ 2(d) crossed 7 107° 20B 18925 34.6 54.7

N =7 crossed, epsrel 1e-7, max 300M —— j N = 7 ladder, epsrel 1e-8, max 28 ——
N =5, epsrel Le-10, max 400M 200 |- N =6, epsrel 1e-9, max 3B B
30 1 *
|
i
1 |
25 | |
| 150 - | B
| 4
|
|
— 2|
3 +
L, \
[100} | 4
10 %L\
\ 50 4
5|
M
- +—
— —
— g —
.) . L s o s e s I e ——— y
0 10 20 30 40 50 60 0 I L L H A Ti—
p 0 10 20 30 40 50 60 70
500 [T T T T — + T T r
| N =7 Fig 1(c), epsrel 1e-8, max 58 —+— 1800 | N =7 crossed, epsrel 1e-9, max 20B —f— |
|
| |
| \
I 1600 \‘
| |
400 | |
| 1400 W‘L
} x
\ 1200 | |
— 300 F | 4 —_ |
o \ [|
2 \ & 1000 |
o \ o \
\ \
= \ L
200p | g |
! [+
Jﬁ\\ 600 N\
\ \
L A\ i 400
100 \. \+
. 200 \
- +—
+— —
o . . . 1= L S s 0 . . T T L ——
0 10 20 30 40 50 60) 10 20 30 40 50 60
p P

Figure2. (@) N = 5,t, = 107 and N = 7 crossedt, = 10~7; (b) N

= 6,t, = 10~® andN = 7 ladder,
t, = 1078; (c) N = 7 [Fig 1(c)], t, = 1078; (d) N = 7 crossedt, = 10~°

Table 6. PARINT double and long double results for crossed diagram Fig 1(e)

long doubleprecision
Evals INTEGRAL APPROX E, iflag

1098 600M 0.085351397048123 3.5e-07
1B 0.085351397753978 1.7e-07
2B 0.085351398064779 2.9e-08
6B 0.085351398130559 5.6e-09

10~99 10B 0.085351398143465 5.5e-09

50B 0.085351398152623 9.9e-10

10—10 80B 0.085351398153315 5.5e-10

100B 0.085351398153507 4.1e-10
300B 0.085351398153798 9.1e-11

doubleprecision
#EVALS TIME E, iflag #EvVALS TIME
600000793 1.7 3.4E-07 1 0008115 0.95
1000000141 2.9 1.6e-07 1 0000041 1.6
2000000443 6.0 2.9e-08 1 00R0@65 33
0
1

4164032999 14.3 8.0e-09 24455329 8.6
10000001571 29.7 5.5e-09 10000000927 16.4
35701321579 1244 4.5e-10 9799638359 16.0
80000001137 240.2 5.5e-10 80000000171 133.5

100000000093 302.0 141e- 1 100000000093 168.3
238854968513 642.3 1D3e- 1 300000000279 587.2

ORrROROPRPRER

and time taken idong doubleprecision, followed by the relative error estimate, nhumbkfunction
evaluations reached and running timedivubleprecision. Allowing for 16 processes per hode and up to
64 processes total, the MPI host file has four lines of the faxrslots=16wherenxrepresents a selected
node name. The running time is reported (in seconds) fronPARENT executable, and comprises all
computation not inclusive the process spawning andIRT initialization. For a comparable number
of function evaluations, the time using long doubles istgligless than twice the time taken using
doubles. Theflag parameter returns 0 when the requested accuracy is assorbedathieved, and 1
otherwise. Reaching the maximum number of evaluationdtssisutabnormal termination witlilag = 1.

The integral approximation for th@goublecomputation is not listed in Table 6; it is consistent witlk th
long doubleresult within the estimated error (which appears to be egtimated). Using doubles the
program terminates abnormally for the requested relaticaracy oft, = 10~'°. Normal termination is
achieved in this case around 239B evaluations with long lésub

6. Concluding remarks

In this paper we exploregarallel integration methods for thautomaticcomputation of a class of
two-loop box integrals [7]: (i) multi-threaded iterateglfeated integration with extrapolation, and
(ii) distributed adaptive multivariate integration. Withgard to (i) we demonstrated the capabilities
of the extrapolation for convergence acceleration, anchefparallelization on multiple levels of the
iterated integration scheme to speed up the execution.

For physical kinematics we rely on calculating a sequencéntggrals for extrapolation as the
parametee decreases [8, 9, 10, 11, 12], and it has generally not beesibp@s$o calculate the integrals
for small enoughe using adaptive partitioning of the multivariate domain. wéwer, the test cases
specified in [7] allow setting = 0 in the integrand, and it emerges that the distributed agappproach
of PARINT solves these problems very efficiently (although iterateédgration has an advantage with
respect to low memory usage)ARINT executes on multiple nodes, and multiple cores per nodewré&ut
work in this area will address, for example, the distributeoh-adaptive) quasi-Monte Carlo and Monte
Carlo methods in the curreniaRINT package, parallel random number generators and utiliziR <
and other accelerators for the computations.

Future work on the iterated strategy will include improvetbe handling across the levels of the
iterated scheme. Furthermore, the parallelization of temted strategy can be extended to handle
infrared divergence as presented in [27]. Higher-dimeraiproblems can be attempted with iterated
integration by combining some successive 1D into multatariayers as was done in [8]. Evaluating the
points in the 2D (or 3D) outer layer on GPUs may yield an alitve in some cases, if the structure
of the computation is sufficiently similar for all evaluatipoints [26]. In view of the computationally
intensive nature of the underlying problems, roundoff egwards and suitable summation techniques
need to be considered. Finally, the multi-threaded iteratéegration can be incorporated within the
distributed setting of RRINT on MPI [6].

Acknowledgments

We acknowledge the support from the National Science Fdiomdander Award Number 1126438.
This work is further supported by Grant-in-Aid for ScierttifResearch (24540292) of JSPS, and the
Large Scale Simulation Program No.12-07 of KEK. We also khian L. Cucos and O. Olagbemi for
help with FARINT.

Appendix A. Code of two-loop box integrands
Code segments for the integrands corresponding to thedamibox diagrams of Fig 1(a-e) are given
below. Note that '&’ indicates continuation, tlsgepsvariable represents’ andsqrt3represents/3.

Appendix A.1. Diagram Fig 1(a) (N =5)

x1 = x(1)

x2 = 1-x1-x(2)-x(3)-x(4)

x3 = x(2)

x4 = x(3)

x5 = x(4)

cc = (X1+x5)*(x2+x3+x4) +x4* (x2+x3)
dd =

& - X1#* 2% X2- X1# % 2% X3- XLk # 2% X4- XLx X 2% % 2- X 1% X2% X3- 2% X 1* X 2% X4- X 1* X2* X5
& - X1 X3x*2- 2% X Lx X3% X4- X1x X3* X5- X1* X4 * 2- X L* XA* X5- X2% % 2% X4- X 2% * 2% X5

& - X2% X3* X4- X2% X 3% X5- X2% X4 * 2- 2% X 2% X 4* X5- X 2% X5% % 2- X3* * 2% X4- X3* * 2% X5
& - X3% X4k *2- 2% X3* XAx X5- X3x X5% * 2- X4* * 2% X5- X 4* X5 * 2

fc = -dd/cc/ (dd+*2+sqeps)

Appendix A.2. Diagram Fig 1(b) (N = 6)

x6 = x(1)

x5 = x(2)

x4 = x(3)

x3 = x(4)

x2 = x(5)

x1 = 1-x6-Xx2-x3-x4-x5

dd = (X1x*2+X5** 24+X1* x5) * (X2+X3+X4+X6)

& F(X2% % 24X 3% % 24X 6% * 2+X 2% X3+X2* X6+X3* X6) * (X 1+Xx4+X5)
& +X4x % 2% (X L+X2+X3+X5+X6) +3* x4* X5+ X6+
& 2% X1* X4* (X2+X3+X6) +2* X4* X5* (X2+X3)

fd = (dd-eps)*(dd+eps)/ (ddx*2+sqgeps) **2

Appendix A.3. Diagram of Fig 2(a) (N = 7)

X7 = x(1)

x6 = x(2)

x5 = x(3)

x4 = x(4)

x3 = x(5)

x2 = x(6)

X1 = 1-Xx7-X2-x3-x4-x5-x6
dd =

& - (XLx* 24X 2% % 24X 3x x 24X T# % 2+X 1 X2+X L* X3+X1* X T+X 2% X3+X2* X T+X3* X 7)
& *(X4+X5+X6) - X4** 2% (1- X4) - (X5** 2+X6% * 2+x5% X6) * (1- X5- X6)
& - 3xX4x (X1xX5+X6*X7) - 2% ((X1+X2+xX3) * X4* X6+(X2+X3+X7) * X4*X5)

CC = X1xX4+X1*X5+X1* X6+X2* X4+X2* X5+X2* X6+X 3* X4+X3* X5+X3* X6+X4* X5
& +X 4% X6+XA* X T+X5% XT7+X6* X7

fg = -2+xccxdd+(dd-sqrt 3*xeps) *(dd+sqrt 3xeps)/ (dd+*2+eps**2) ** 3

Appendix A.4. Ladder box diagram Fig 1(d) (N =7)

x7 = x(1)
x6 = x(2)
x5 = x(3)
x4 = x(4)
x3 = x(5)
x2 = x(6)
x1 = 1-x2-x3-x4-x5-x6-x7

x1234 = x1+x2+x3+x4
x45 = x4+x5

X67 = X6+x7

x4567 = x45 + x67

cC = X1234xx4567 - x4*=*2

dd = cc*x(X1+X2+x3+x4+x5+x6+x7) - (x1xx2xx4567

& + X5%x6%x1234 + X1*xXx4*xX6 + X2xXx4xX5 + X3*x4*x7
& + X3*(x1xx4 + X1xx5 + x1xx6 + X1xX7 + x4xx5)

& + X3%(x2*x4 + x2x*Xx5 + X2xX6 + X2*X7 + x4*x6)

& + X7+ (xX1xx4 + x1xx5 + x2xx5 + x3xx5 + x4xx5)

& + X7*(x1*x6 + X2*x4 + X2xX6 + Xx3*Xx6 + x4*x6))

fh = 2xccxddx(dd-sqrt 3xeps) »(dd+sqrt 3xeps)/ (ddx*2+eps**2) ** 3

Appendix A.5. Crossed box diagram Fig 1(e) (N =7)

x7 = x(1)
x6 = x(2)
x5 = x(3)
x4 = x(4)
x3 = x(5)
x2 = x(6)
x1 = 1-Xx2-Xx3-x4-x5-x6-x7

cC = (X1+X2+x3+x4+x5) * (X1+X2+x3+X6+X7) - (X1+Xx2+x3)**2

dd = cc - (Xx1*x2*xx4 + X1xx2xX5 + X1x¥x2xXx6 + x1*x2*x7

& + X1xX5%X6 + X2*X4*X7 - X3*x4xX6

& + X3*%(-x4*x6 + Xx5*Xx7)

& + X3 (X1xx4 + X1xx5 + X1xX6 + X1xX7 + X4xX6 + X4xX7)
& + X3%(x2xx4 + xX2x*XxX5 + X2xX6 + X2*X7 + x4*x6 + x5*x6)
& + X1*X4*X5 + X1xx5+X7 + X2xx4xx5 + X2xx4xX6

& + X3*X4*X5 + X3*X4%xX6 + X4xx5xx6 + Xx4xx5xx7

& + X1xX4xX6 + X1*xX6xX7 + X2*X5*X7 + X2*X6*X7

& + X3*xX4*X6 + X3*X6xX7 + X4xX6*X7 + X5xxX6xX7)

fi = 2xccxdd+(dd-sqgrt3+eps)*(dd+sqrt 3xeps)/ (ddx*2+eps**2) **3

References

[1]
(2]

[3]
[4]
5]

[6]
[7]
(8]
9]

(10]

(11]
(12]

(13]
(14]
(15]
(16]
(17]
(18]
(19]
[20]
(21]
[22]
(23]
[24]
[25]
[26]
[27]

Nakanishi N 1971Graph Theory and Feynman IntegrdlSordon and Breach, New York)

Piessens R, de Doncker Bperhuber C W and Kahaner D K 19€3JADPACK, A Subroutine Package for Automatic
Integration(Springer Series in Computational Mathematiod 1) (Springer-Verlag)

Shanks D 1959. Math. and Phys34 1-42

Wynn P 1956Mathematical Tables and Aids to Computit@91-96

de Doncker E, Kaugars K, Cucos L and Zanny R 2@80dc. of Computational Particle Physics Symposium (CPP1200
pp 110-119

Open-MPI http://www.open-mpi.org

Laporta S 2000nt. J. Mod. Phys. A5 5087-5159 arXiv:hep-ph/0102033v1

de Doncker E, Shimizu Y, Fujimoto J and Yuasa F 2@3mputer Physics Communicatioifs9 145-156

de Doncker E, Fujimoto J, Kurihara Y, Hamaguchi N, IshikaT, Shimizu Y and Yuasa F 202XV Adv. Comp. and
Anal. Tech. in Phys. ReBoS (ACAT10) 073

de Doncker E, Fujimoto J, Hamaguchi N, Ishikawa T, KarénY, Shimizu Y and Yuasa F 20Jdurnal of Computational
Science (JoCS) 102-112

de Doncker E, Yuasa F and Assaf R 2Qit@irnal of Physics: Conf. Set54

Yuasa F, de Doncker E, Hamaguchi N, Ishikawa T, Kato KriKara Y and Shimizu Y 2013ournal Computer Physics
Communicationd83 2136-2144

OpenMP website, http://www.openmp.org

Fritsch F N, Kahaner D K and Lyness J N 198CM TOMS7 46-75

Kahaner D, Moler C and Nash S 1988imerical Methods and SoftwafBrentice Hall)

de Doncker E and Kaugars K 20B0ocedia Computer Sciendel17-124

Berntsen J, Espelid T O and Genz A 199CM Trans. Math. Softwl7 452—-456

De Ridder L and Van Dooren P 1976urnal of Computational and Applied Mathemat&207-210

Genz A and Malik A 198Qournal of Computational and Applied Mathemat&295—-302

Genz A and Malik A 198FIAM J. Numer. Anak0 580-588

Berntsen J, Espelid T O and Genz A 199CM Trans. Math. Softwl7 437-451

Genz A 1990ecture Notes in Computer Sciengd 507 ed Sherwani N A, de Doncker E and Kapenga J A pp 279-285

Grundmann A and Maller H 19781AM J. Numer. Anall5 282—-290

de Doncker E 1978ath. Comp33 1003-1018

Genz A and Cools R 2008CM Trans. Math. Sof29 297-308

Yuasa F, Ishikawa T, Hamaguchi N, Koike T and Nakasat®N3Journal of Physics: Conf. Set54

de Doncker E, Yuasa F and Kurihara Y 2Q1durnal of Physics: Conf. Se368

