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Abstract. General one-loop integrals with arbitrary mass and kinematical parameters in d-
dimensional space-time are studied. By using Bernstein theorem, a recursion relation is obtained
which connects (n + 1)-point to n-point functions. In solving this recursion relation, we have
shown that one-loop integrals are expressed by a newly defined hypergeometric function, which
is a special case of Aomoto-Gelfand hypergeometric functions.

We have also obtained coefficients of power series expansion around 4-dimensional space-time
for two-, three- and four-point functions. The numerical results are compared with "LoopTools"

for the case of two- and three-point functions as examples.

1. Introduction
For discovery of the beyond standard model, we need to know the precise theoretical prediction
of standard model. For Large Hadron Collider at CERN and the international linear collider,
at least next-to-leading order(NLO) electroweak corrections are necessary. However, it is not
easy to calculate Feynman integrations with highly accuracy even for one-loop level. There
appear many kinematical parameters including masses, momenta of particles, and space-time
dimension. This means that the loop integrals are analytic functions with singularities on a
multiple dimensional complex vector space. It is difficult to obtain the numerical accuracy in all
kinematical region by a simple numerical approach. Since the numerical stability of an expression
is connected to its analytic properties, suitable analytic expressions of one-loop integral are still
important.

It is known that any loop integrals are expressed by GKZ-hypergeometric functions[1].
However, theses functions are so general extension of hypergeometric function that it is not easy
to obtain numerical values. It is desirable to find a subset of GKZ-hypergeometric functions
which corresponds to specific loop integrals to be calculated.

The analytic properties of hypergeometric functions, such as position of singularities, have
been investigated for many hypergeometric functions. Since these singularities correspond
to physical singularities or large cancellations in numerical calculations, information about
singularities helps us to obtain accurate numerical results.

There are various methods to express one-loop integrals by hypergeometric functions[2, 3,
4, 5, 6]. In this article, we show a method to obtain analytic expressions of n-point functions
with arbitrary kinematical parameters. Our method is based on Bernstein theorem [7] (see also
[8]). This theorem implies that for given polynomial D of variables x = (x1, ..., xn), there exist



differential operator P and polynomial b(s) of parameter s such that

P(∂, x, s)Ds+1(x) = b(s)Ds(x), (1)

where P is a polynomial of x, differential operator ∂ = (∂1, ..., ∂n), and parameter s. Applying
this theorem to the integrands of one-loop integrals, we obtain a recursion relation. In solving
this relation, we show that one-loop integrals are expressed by newly introduced hypergeometric
function Gn. This function is found to be one of Aomoto-Gelfand hypergeometric functions (or
general hypergeometric functions on complex Grassmannians) [9, 10, 11] which make a subset
of GKZ-hypergeometric functions.

Starting from our general expression of one-loop integral, two- and three-point function are
re-expressed in a linear combination of Gauss hypergeometric function F and Appell’s function
F3[12], respectively. For the case of scalar integral of four-point function, we have expanded
the analytic expression around 4-dimensional space-time. The result is expressed by Lauricella’s
function FD[12] up to the finite order of space-time dimension d = 4 − 2ε.

We have numerically calculated two- and three-point function as examples and have compared
the results with LoopTools[13].

2. Formulation
Let us consider the one-loop (n+1)-point function denoted by In+1. After performing integration
of δ-function, the Feynman parameter integration of In+1 is written as:

In+1(s) =
∫

∆n

dnx Ds
n, (2)

Dn(x1, ..., xn) = −1
2

n∑
j,k=0

q2
jkxjxk +

1
2

n∑
j,k=0

(m2
j + m2

k)xjxk,

=
1
2

n∑
i,j=1

Aijxixj +
∑

i

Bixi + C

=
1
2
(Ax, x) + (B, x) + C, (3)

where mi are masses of the propagators, qjk ≡ −
∑k

i=j+1 pi with external momenta pi, xi are
Feynman parameters with x0 = 1 −

∑
j≥0 xj . Here, ∆n refers to n-dimensional simplex and

Aij ≡ ∂i∂jDn, Bi ≡ ∂iDn(0) and C ≡ Dn(0). Parameter s depends on the space-time dimension
d. If d = 4 − 2ε are chosen, we find s = 1 − n − ε for the standard scalar model.

Let us define operator P by

P ≡ −(s + 2)
1

En
+

1
2En

(A−1∂Dn, ∂), (4)

where En = (A−1B,B)/2 − C. We can find the following relation:

PDs+1
n = (s + 1)Ds

n. (5)

This is the explicit expression of Bernstein theorem for scalar one-loop integral and polynomial
b-function is found to be s + 1. Applying Eq.(5) to Eq.(2) iteratively with partial integrations,



we obtain

In+1(s) = Jn+1,m(s) + Kn+1,m(s), (6)

Jn+1,m(s) =
1

2(s + 1)En

m−1∑
j=0

(s + n/2 + 1)j

(s + 2)j

×
∫

∆n

dnx
∑

k

∂k

{
(A−1∂Dn)kDs+1

n

(
−Dn

En

)j
}

, (7)

Kn+1,m(s) =
(s + n/2 + 1)m

(s + 1)m

∫
∆n

dnx Ds
n

(
−Dn

En

)m

, (8)

where (a)j ≡ a(a + 1) · · · (a + j − 1) is Pochhammer’s symbol.
If we choose the appropriate parameter region, the second term Kn+1,m(s) goes to be zero

in the limit m → ∞. The first term is surface integration and can be integrated once easily.
The remaining integrations are expressed by n-point functions. We obtain a recursion relation
between (n + 1)- and n-point functions:

In+1(s) =
1
2

∞∑
j=0

(s + n/2 + 1)j

(s + 1)j+1

(
− 1

En

)j+1 n∑
k=0

hρ(n),kIn,ρ(n;k)(s + j + 1), (9)

where coefficients hρ(n),k are rational functions of kinematical variables. The suffix ρ(n) = ∆n

and ρ(n; k) represents a (n − 1)-dimensional simplex which is obtained by eliminating k-th
vertex and faces attaching to the vertex from the original n-dimensional simplex, which appears
as a part of the boundary of the original integration domain. In a similar way, we define
ρ(n; k1, k2) ≡ ρ(ρ(n; k1), k2). Using Eq.(9) repetitively, Eq.(2) eventually depend only on the
remaining vertex, in which no integration is left. The final formula of (n + 1)-point function is

In+1(s) =
1
2n

n∑
kn=0

n−1∑
kn−1=0

· · ·
1∑

k1=0

D(n; kn, kn−1, ..., k1)shρ(n),kn
hρ(n;kn),kn−1

· · ·hρ(n;kn,...,k2),k1

×
∞∑

jn=0

∞∑
jn−1=0

· · ·
∞∑

j1=0

(s + n/2 + 1)jn

(s + 1)jn+1

(s + jn + (n − 1)/2 + 2)jn−1

(s + jn + 2)jn−1+1

· · ·

(s + jn + · · · + j2 + 1/2 + n)j1

(s + jn + · · · + j2 + n)j1+1

×
(
−D(n; kn, kn−1, ..., k1)

Eρ(n)

)jn+1 (
−D(n; kn, kn−1, ..., k1)

Eρ(n;kn)

)jn−1+1

· · ·(
−D(n; kn, kn−1, ..., k1)

Eρ(n;kn,...,k2)

)j1+1

. (10)

Here, D(n; kn, kn−1, ..., k1) is the value at the vertex kn+1 which does not appear in the list
(kn, kn−1, · · · , k1). The right-hand side of Eq.(10) shows that it is expressed by a kind of
hypergeometric series. We call this hypergeometric series function Gn, which is defined by
Eq.(13) in the next section. Using this function, one-loop scalar integral becomes

In+1(s) =
1

2n(s + 1)n

n∑
kn=0

n−1∑
kn−1=0

· · ·
1∑

k1=0

D(n; kn, kn−1, ..., k1)s+n

Eρ(n) · · ·Eρ(n;kn,...,k2)

×hρ(n),kn
hρ(n;kn),kn−1

· · ·hρ(n;kn,...,k2),k1

×Gn

(
α, β; γ;

(
−D(n; kn, kn−1, ..., k1)

Eρ(n)

)
, · · · ,

(
−D(n; kn, kn−1, ..., k1)

Eρ(n;kn,...,k2)

))
,(11)



where

α = (1, · · · , 1︸ ︷︷ ︸
n

), β = (1/2, · · · , 1/2︸ ︷︷ ︸
n−1

, s + n/2 + 1), γ = s + n + 1. (12)

3. Gn-functions
In this section, we discuss the properties of Gn function. This function is defined by:

Gn(α, β; γ; x) =
∞∑

jn=0

∞∑
jn−1=0

· · ·
∞∑

j1=0

∏n
i=1 (αi)ji

∏n
k=1 (

∑n
`=k β`)Pn

`=k j`

(γ)Pn
i=1 ji

∏n
k=1 (

∑n
`=k β`)Pn

`=k+1 j`

∏n
i=1 ji!

n∏
i=1

xji
i , (13)

where x = (x1, ..., xn) ∈ Cn are variables, α = (α1, ..., αn) and β = (β1, ..., βn) are complex
vectors, and γ is a complex parameter.

Euler type integral representation of Gn is obtained as:

Gn(α, β; γ; x) =
Γ(γ)∏n

j=1 Γ(αj)Γ(γ −
∑n

k=1 αk)

∫
∆n

dnu

n∏
k=1

uαk−1
k

×
(
1 −

n∑
j=1

uj

)γ−
Pn

k=1 αk−1
n∏

k=1

(
1 −

k∑
j=1

xjuj

)−βk

. (14)

The integrand is a product of powers of linear factors of integration variables, while the original
integrand of In+1 is a power of quadratic term. This representation shows that this function is a
member of a class of hypergeometric functions, which are called Aomoto-Gelfand hypergeometric
functions or hypergeometric functions on complex Grassmannians. This fact and their analytic
properties give us important information for numerical calculation. One can easily show the
following formulae:

• differentiation (with k-th unit vector ek)

∂

∂x`
Gn(α, β; γ; x) =

n∑
k=`

α`βk

γ
Gn(α + e`, β + ek; γ + 1; x). (15)

• recursion relation

Gn(α, β; γ; x) =
∞∑

jn=0

(αn)jn
(βn)jn

(γ)jn
jn!

xjn
n Gn−1(α′, β′; γ′; x′) (16)

=
Γ(γ)

Γ(α1)Γ(γ − α1)

×
∫ 1

0
dw wα1−1(1 − w)γ−α1−1(1 − x1w)−

Pn
j=1 βjGn−1(α′, β′; γ′; x′). (17)

Tensor integrals are obtained by differentiating In+1 in terms of mass parameters. Eq.(15) shows
that tensor integrals are also expressed by Gn.

Based on the above results, the problem of calculating one-loop integral is converted to one
of establishing methods of expansion around 4 space-time dimension and numerical evaluations.

We show some samples of scalar case in the next section.

4. Calculations of n-point functions
In this section, we will discuss how to evaluate and expand Gn functions. Let us discuss in detail
for 2-, 3- and 4-point functions separately.



4.1. Two-point function

Let’s first consider the two-point function. This is a good example of the understanding of
how to evaluate Gn. From the formula Eq.(10), the scalar two-point function is expressed by
G1 functions with α = 1, β = s + 3/2 and γ = s + 2 . Function G1 is nothing but Gaussian
hypergeometric function:

G1(1, s + 3/2; s + 2; x) =
∞∑

j=0

(1)j (s + 3/2)j

(s + 2)j

xj

j!
= F (1, s + 3/2, s + 2; x). (18)

Combining the kinematical factor, we obtain

I2(s) =
(p2 + m2

1 − m2
2)(m

2
1)

s+1

(s + 1)E1
F

(
1, s +

3
2
, s + 2;−4p2m2

1

E1

)
+

(p2 + m2
2 − m2

1)(m
2
2)

s+1

(s + 1)E1
F

(
1, s +

3
2
, s + 2;−4p2m2

2

E1

)
, (19)

where E1 ≡ (p2 − (m1 + m2)2)(p2 − (m1 − m2)2). The case of s = −ε corresponds to the usual
dimensional regularization d = 4− 2ε. It is more convenient for the expansion when half-integer
parameter is converted to integer. By using identities of F , we obtain

I2(s) =
ξ−(m2

1)
s

s + 1
F

(
1,−s; s + 2;

ξ−
ξ+

)
+

(1 − ξ−)(m2
2)

s

s + 1
F

(
1,−s; s + 2;

1 − ξ−
1 − ξ+

)
, (20)

where ξ± = (p2−m2
1 +m2

2±
√

E1)/(2p2). After the conversion, G1 can be expanded in arbitrary
order of ε with multiple polylogarithmic functions[14, 15].

With the known analytic properties of F , it is found that two-point function may only be
singular when ξ± = 0, 1, ∞ and ξ1 = ξ2. These cases correspond to massless or on-shell limit.
Let us investigate the case both of masses are taken massless limit as an example, where ξ− → 0
and ξ+ → 1. The first term in Eq.(20) goes to zero, but second term is not well-defined at this
limit. However, with using identities of F , we can transform the expression into the well-defined
form at this limit under the condition Re(s) > 0:

lim
m1,m2→0

I2(s) = lim
m1,m2→0

(−p2ξ+)s

s + 1
F

(
s + 1,−s; s + 2;

1
ξ+

)
= (−p2)sB(s + 1, s + 1),(21)

where B is beta-function. This means that we can select appropriate representations in terms
of kinematical conditions.

4.2. Three-point function

Eq.(11) shows that scalar three-point function is obtained as a linear combination of G2. It is
expressed as

I3(s) =
1

(s + 1)(s + 2)

2∑
k1=1

3∑
k2=1

hk1,k2G2

(
{1, 1}, {1/2, s + 2}; s + 3; x1,(k1,k2), x2,(k1,k2)

)
. (22)

Function G2 is equivalent to Appell’s function F3:

G2((α1, α2), (β1, β2), γ; x1, x2) = (1 − x1)−α1F3

(
α1, α2, γ − β1 − β2, β2, γ;

x1

x1 − 1
, x2

)
. (23)



When α1 = α2 = 1, G2 reduces to Appell’s function F1. It is also convenient when the half-
integer parameter is transformed to integer as same as the case of two-point function. We apply
nontrivial identity:

F1(α, β, β′, γ; x, y)

= (1 + z)αFD

(
α; α − γ + 1, 1 − α, 2β − 1, β′, β′; γ; z,

z

1 + z
,

2z

1 + z
,

1
v+

,
1
v−

)
, (24)

where z = (1 −
√

1 − x)/(1 +
√

1 − x) , v± = (1 +
√

1 − x)/(y ∓
√

y(y − x)) and FD is on of
Lauricella’s functions[12]. For the case s = −1 − ε, Eq.(22) reduces to

G2 → F1(half-integer) → FD(integer) → (expansion) → F1(integer)
→ multiple polylogarithmic functions in arbitrary order of ε.

Investigating the limit ε → 0, 1/ε pole appears from 1/(s + 1) of Eq.(22) for both massive and
massless cases. However, this poles canceled out when all contributions are summed up for the
massive case. So we can obtain the value of integration in this limit.

4.3. Four-point function

After performing δ-function integration, three Feynman parameters remain on the four-point
function.

In this case, G3 appears in Eq.(11).

G3(α, β; γ; x) =
Γ(γ)

Γ(α1)Γ(α2)Γ(α3)Γ(γ − α1 − α2 − α3)

×
∫

∆3

d3u uα1−1
1 uα2−1

2 uα3−1
3 (1 − u1 − u2 − u3)γ−α1−α2−α3−1

×(1 − x1u1)−β1(1 − x1u1 − x2u2)−β2(1 − x1u1 − x2u2 − x3u3)−β3 . (25)

For scalar integral case, parameters take the values α = {1, 1, 1}, β = {1/2, 1/2, s + 5/2},
γ = s + 4, x = {x1, x2, x3}, and s = −2 − ε for d = 4 − 2ε. This function can be written in a
linear combination of FD up to O(ε), which corresponds to finite order of I4, since

G3

(
{1, 1, 1},

{
1
2
,
1
2
,
1
2
− ε

}
; 2 − ε, x1, x2, x3

)
= C1F1

(
1, 1,

1
2
; 2;

x2 − x1

x2 − 1
,
x3 − x1

x3 − 1
,

)
+ C2FD

(
1, 2ε, 1, 1,

1
2
,
1
2
; 2;

1 −
√

1 − x3

2
,

1
η1

,
1
η2

,
1
η3

,
1
η4

)
+C3FD

(
1,−ε, 1,

1
2
; 2 − ε; x1,

x1 − x2

1 − x2
,
x1 − x3

1 − x3

)
+ O(ε2), (26)

where the coefficients Ci’s and ηi’s are algebraic functions of x1, x2, and x3. The half-integer
parameters are converted to integers by using extended identities from Eq.(24).

4.4. Summary numerical calculation
We have compared the numerical results between our method and LoopTools[13]. We show the
compared results of two- and three-point function in Figs.1 and 2, respectively. The results are
consistent in satisfactory accuracy.



5. Conclusion and discussion
In the discussion of Sec.2, it is necessary to select appropriate kinematical region in order to
make Eq.(8) vanishes at the limit m → ∞. However, we can show the following identity of
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Figure 1. Comparison of numerical results with LoopTools for two-point functions in two
parameter sets (a) and (b). Circles and crosses are the numerical results of real and imaginary
part of our calculation, respectively. Solid and dashed lines are the results of real and imaginary
part which are obtained from LoopTools, respectively.
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Figure 2. Comparison of numerical results of three-point functions for two parameter sets
(a) and (b). Circles and crosses are the numerical results of real and imaginary part of our
calculation, respectively. Solid and dashed lines are the results of real and imaginary part which
are obtained from LoopTools, respectively.



Gauss hypergeometric function:

Ds
n =

1
2(s + 1)En

∑
k

∂k

[(
A−1∂Dn

)
k
F

(
1, s +

n

2
+ 1; s + 2;−Dn

En

)]
. (27)

From this identity, one can derive recursion relation Eq.(9) and confirm it holds in all kinematical
region[16].

We have shown that general one-loop integral is expressed by Gn, one of hypergeometric
functions on complex Grassmannian. Especially, scalar two- and three-point functions are
expressed in terms of Gaussian and Appell’s functions, respectively for any kinematics variables
and space-time dimension. Four-point function is expressed in Lauricella’s functions up to finite
order for arbitrary kinematical parameters. We have also shown the sample numerical calculation
in terms of two-, and three-point functions and results are consistent with LoopTools package.
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