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Abstract. This article describes a multivariate polynomial regression method where the
uncertainty of the input parameters are approximated with Gaussian distributions, derived
from the central limit theorem for large weighted sums, directly from the training sample. The
estimated uncertainties can be propagated into the optimal fit function, as an alternative to the
statistical bootstrap method. This uncertainty can be propagated further into a loss function
like quantity, with which it is possible to calculate the expected loss function, and allows to
select the optimal polynomial degree with statistical significance. Combined with simple phase
space splitting methods, it is possible to model most features of the training data even with low
degree polynomials or constants.

1. Introduction
Regression methods are frequently used in particle physics, usually to quantify a continuous
curve or surface that simplifies a statistical sample. Typical examples are the calibration curves
for certain detector responses and neural networks trained to identify particle. The mathematical
goal is finding a f : x → y map between the x input space to the y target space in such a way
that f(x) predicts the E(y|x) conditional expectation value with statistical certainty. The least
squares algorithm is known to converge to the conditional mean, given it is a finite number and
the parametric f function is in the family that contains the solution. This latter information
is not always given and one must chose a function family general enough to cover unexpected
features. Such a function family are the logistic functions and the radial base functions and
generally the kernels. For these one usually has to determine an ideal degree of freedom for the
fit, namely the number of base functions to be used in order to avoid overtraining of the data
and so avoiding picking up non-significant features from the statistical fluctuation. Although
these are straightforward procedures, it is computationally intensive to find the global minimum
of the sum of squares for the fit. A usually unexploited feature of the least squares method
is that the global minimum can be exactly determined for kernels with fixed position in the x
space, because the amplitude that minimizes the sum of squares can be calculated with a linear
equation, without numerical optimization.

With given ki(x), i ∈ 1..nd kernels and ai amplitudes the sum of squares for the data points
{xj , yj}, j ∈ {1..N} will take the form



Eχ2 =
1

N

∑
j

(
yj −

∑
i

aiki (xj)

)2

= 〈y2〉 −
∑
i

2ai〈yki(x)〉+
∑
il

aial〈ki(x)kl(x)〉 , (1)

where the angled brackets 〈〉 indicate averaging over the sample. The loss function Eχ2 in eq. (1)
can be minimized in respect of the fi amplitudes with

fi =
∑
l

G−1
il hl (2)

by using the matrix Gil = 〈ki(x)kl(x)〉 and the vector hi = 〈yki〉. The Gil matrix is symmetric
and has 1

2nd(nd− 1) parameters. A possible way to decrease the number of parameters is to use

kernels which are power series ki(x) = ki1(x), resulting in a Hankel-type matrix Gil = 〈k1(x)i+l〉.
A simple power series kernel might be based on the monomials, k1(x) = x, ki(x) = xi, resulting
in polynomial fitting. Another advantage of fitting a polynomial with a fixed degree instead of
Gaussian or sigmoid kernels is that polynomials are not sensitive to the shift of features in the
data, in other words they are translation invariant.

2. Uncertainty and covariance of large weighted random sums
The advantage of using the matrix formalism in eq. (1) is that the original training data {xj , yj}
is compressed into the hi vector and the Gil matrix, which can be a great reduction in the number
of input parameters. These input parameters are themselves random variables having a certain
distribution that in principle could be derived from the generating distribution of the {xj , yj}
sample and the number of measurements N . Due to the central limit theorem, the generating
distribution itself does not need to be known, however it has to fulfill certain criteria. Probably
the most widely known of the central limit theorems is the one stating that if the generating
distribution of the Xi, i ∈ {1..N} random variables have the finite mean X̄ and variance σX ,
then the distribution of the variable s = 1

σX
(
∑

iXi/N−X̄) converges to the normal distribution.
With small modifications this theorem is applicable to hi and Gij .

The approximation of the covariance matrix of the pm = (h1, ..., hnd , g1, ..., g2nd),m ∈
{1, ..., 3nd} input parameters for polynomial regression is the following. In a general formalism,
every data point with index j is a triplet, consisting of an input value xj , a target value yj and
a weight wj . With b ∈ {0, 1}, k0{1, ..., nd}, k1 ∈ {1, ..., 2nd} the input parameter with pseudo
index m = kb + bnd is calculated as

pm =
1∑
j wj

∑
j

wjy
b
jx
kb
j .

The product aj = wjy
b
jx
kb
j for each i index can be treated as a compound random variable. The

1/
∑

j wj was not introduced into this new variable, because that would ruin the independence
between the variables. To estimate the probability distribution of pm the following variables
are defined. Let 〈aw〉 = 1

N

∑
j wjaj be the weighted average of aj . This is approximately a

Gaussian variable with mean 〈aw〉 and variance σ2
〈aw〉 = 1

N(N−1)

∑
j (ajwj − 〈aw〉)2. Define the

average weight similarly as 〈w〉 = 1
N

∑
j wj , which is also distributed as a Gaussian with mean

〈w〉 and variance σ2
〈w〉 = 1

N(N−1)

∑
j (wj − 〈w〉)2. These variables are indeed correlated, and

their covariance is Cov (〈aw〉, 〈w〉) = 1
N(N−1)

∑
j (ajwj − 〈aw〉)(wj − 〈w〉). The above definitions

show, that pm is a ratio of two Gaussian variables. Its expectation value is pm, while its variance
can be approximated with error propagation. Assuming that σ〈w〉/〈w〉 � 0, the approximation
of the variance of pm is
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It can be seen that eq. (4) gives back the known formula for the standard deviation of 〈a〉 when
all weights are wj = 1, which is also true when the weights are independent of the distribution
of a. A similar derivation shows that the covariance between variables pm1 and pm2 , with
pseudo-indices m1 = kb1 + b1nd and m2 = kb2 + b2nd can be calculated as

Cov (pm1 , pm2) =
1

〈w〉2
∑
j

w2
j (〈wyb1xkb1 〉 − y

b1
j x

kb1
j )(〈wyb2xkb2 〉 − yb2j x

kb2
j )

N(N − 1)
. (5)

The covariance and the variance estimation can be generalized to non-monomial kernels, by
replacing xk in the above equations with the given kernel.

It must be noted that traditionally the uncertainty estimates on the fit parameters have
different formulas. In most cases the sample {xj , yj} is augmented with the uncertainty of
the target, the conditional variance in the y direction, σ2

yj , which can be considered as prior
knowledge. In that case the data points in the formation of the estimation of expectation values
receive a σ−2

yj weight and a c =
∑

j σ
−2
yj normalization factor. This choice of weight comes from

the principle that the different measurements should be combined in a way that minimizes the
uncertainty of the result, in this case the estimation of the expectation values. An example could
be the F (x) = a + bx least squares regression with a, b unknowns on the {xj , yj , σ2

yj} sample.
The input parameters to this fit are

c =
∑
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c

∑
j

yj
σ2
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The optimal fit parameters are(
a
b

)
=

(
g0 g1

g1 g2

)−1(
h0

h1

)
.

As a and b are linear functions of yj , it is easy to calculate the expectation values needed for
the covariance matrix:

Cov (a, b) = E(ab)− E(a)E(b) =
1

c

∑
j

∂a

∂yj

∂a

∂yj
σ2
yi = 〈x〉 = g1 . (6)

Similarly, Cov (a, a) = σ2
a = g0 and Cov (b, b) = σ2

b = g2. This covariance matrix indeed differs
from the one derived in eq. (5). The origin of the difference relies in the prior information that
was built into the equations. In the case of eq. (5) the weights were provided with the data
points, while in the case of eq. (6) the σ2

yi was given – knowledge of the uncertainty on the E(y|x)



conditional mean. The weights in the former case may come from Monte Carlo integration
techniques or from weighted sample separation and it is thought to be fundamentally fixed,
while in the latter case it is derived from the principle of optimal data combination. Though
it is unclear whether the two methods could be combined, the former method is thought to be
superior as it was designed to approximate the σ2

y(x) from the sample itself, and also takes into

account the uncertainty in the sampling of the input space x. Furthermore, it handles negative
and zero weights correctly.

3. Fit function uncertainty
With the knowledge of the uncertainty of the input parameters pm = (h1, ..., hnd , g1, ..., g2nd),m ∈
{1, ..., 3nd}, one can estimate the uncertainty of the fitted kernel amplitudes using linear error
propagation in eq. (2). The first derivatives of fj =

∑
lG
−1
il hl, Gil = gi+l are

∂fi
∂〈hl〉

= G−1
il ,

∂fi
∂〈go〉

= −
∑
lmn

G−1
im

∂Gmn
∂go

G−1
nl hl .

Together with the previously calculated covariance matrix, the uncertainty of the fit function
F (x) =

∑
i fix

i at a given x point is

σ2
F (x) =

∑
nm

∂
∑

i fix
i

∂pm
Cov (pm, pn)

∂
∑

l flx
l

∂pn
.

The uncertainty of the fitted function does not necessarily cover the true E(y|x) conditional
mean. That only happens if the fit function is general enough to describe all the features of the
sample. The meaning of this uncertainty is deeply routed in the central limit theorem. When the
central limit theorem was applied to the pm input parameters, only the fact that the distribution
of certain sums can be modeled with a Gaussian distribution came from the theorem, the width
and the mean of this Gaussian came from a maximum likelihood fit. This is typically interpreted
as a posterior distribution for the true mean, but it can also be interpreted as a model fitted to
the sample and predicting where the sum may converge with additional data points. The same
can be said about the Gaussian uncertainty of the fit function. It tells us the likelihood where
the fit function with the same degrees of freedom would converge with additional data, but not
the position of the conditional mean. This is why some methodology is needed to compare fit
functions with different degrees of freedom and to find out which method describes better the
sample.

4. The uncertainty of the loss function
In the case of polynomial fitting one has to determine the degree of the polynomial that is still
statistically meaningful. Using too many degrees of freedom in a fit can result in overfitting
or eventually in the interpolation of the data points. In the latter case the Eχ2 loss function
simply reaches its absolute minimum, zero. However, the uncertainty of the fitted function
increases with the number of degrees of freedom and this can be exploited in order to select
significant features only, though one has to keep in mind that the Gaussian approximation of
the distribution of the pm input parameters has a limitation. First, the Gaussian approximation
is only true if the number of input points N is large enough. Second, the uncertainty of the
estimated covariance matrix may also increase to be comparable with the covariance matrix itself
if the number of degrees of freedom in the fit is comparable to the number of sample points.



The näıve way of comparing the optimized F opt
d1

(x) =
∑d1

ik hiG
−1
d1,ik

xk with degrees of

freedom d1 to F opt
d2

(x) with degrees of freedom d2 would be by calculating their loss functions

Ed1,χ2 = 1
N

∑
j(yi − F

opt
d1

(x))2 and Ed2,χ2 and checking whether their difference is significantly
different from zero. This procedure does not work, as the approximate distribution of Ed1,χ2 is

not a good measure of fit quality after the F opt
d1

(x) is substituted. This can be observed on the
example where the x space is thought to be non-random and only the y coordinates of the sample
points can vary. After the substitution of F opt

d (x) into Ed,χ2 the calculation can be simplified to

Ed,χ2 = 〈y2〉 − 2
∑
i

F opt
d,i hi +

∑
ik

F opt
d,i GikF

opt
d,k

= 〈y2〉 −
∑
ik

hiG
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ik hj ,

which has an approximate expectation value

E(Ed,χ2) = 〈y2〉 − E(
∑
ik

hiG
−1
ik hj)

= 〈y2〉 −
∑
ik

hiG
−1
ik hj −

∑
ik

GikCov (hi, hk) .

It contains a bias term compared to Ed,χ2 and allows E(Ed,χ2) to be lower than Ed,χ2 . This bias
means that the approximate distribution of Ed,χ2 is not related to the goodness of fit anymore,
but to the possible Ed,χ2 minima.

Ideally, the best measure of fitness would be a distance-like variable between the fit function
and the real E(y|x) conditional expectation value. A good approximation to that is of course
the loss function applied to F opt

d (x), but one must differentiate it from the previously described
Ed,χ2 . In this picture, one must treat the sample as an approximation to E(y|x), and not as a

random variable. Let us call it the cross validation loss function, where only the F opt
d (x) is a

random variable:

E+
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−2
∑
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F opt
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varied
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As the first derivative of
∂E+

d,χ2

∂p′m
= 0 at p′m = E(pm), the expectation value of E+

d,χ2 can be

approximated through its second derivative as

E(E+
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∑
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d,i F

opt
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∂2E+
d,χ2

∂pm∂pl
Cov (pm, pl) , (7)

where the second derivative of E+
d,χ2 was taken at the expectation values of pm, and can be

expressed as a block matrix
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∂pm∂pl
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 2G−1
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Since E+
d,χ2 is a quadratic formula and only the fit function is varied, the expectation value

cannot be lower than the minimum taken at F opt
d (x) by construction. In most cases the second



degree Taylor polynomial approximation in eq. (7) in the pm variables is enough as it is quadratic
in the hi and the dependence on the G−1

ik is usually weak for large samples. The explanation is,
that Gik depends on the sampling in x which does not affect the E(y|x) conditional expectation
value in the large sample size limit. Therefore for large sample sizes and approximately error-free

Gik matrices
∂2E+

d,χ2

∂pm∂pl
can be approximated with the its upper left sub-matrix, that represents

the derivatives of hl and hm. In this approximation E+
d,χ2 is a χ2 variable with d degrees of

freedom, given that the covariance matrix Cov (hi, hk) is non-singular.
In the full calculation of the standard deviation of E+

d,χ2 one should include the variable 〈y2〉
and its correlation to the other input parameters pm. Nevertheless, the 〈y2〉 term disappears
when a loss function difference is calculated for two different fit functions, and it can be shown
that the variance of the loss function differences can be calculated solely from the variance of
the individual E+

d,χ2 terms, neglecting the contributions from 〈y2〉. This type of variance is twice

the square of the previously described bias term in the expectation value in eq. (7), as expected
for a χ2 distribution:

σ2
d,E+ = 2

(
1

2

∑
lm

∂2E+
d,χ2

∂pm∂pl
Cov (pm, pl)

)2

.

Similar to the behavior of χ2 differences, the expectation value of the E+
d2,χ2 −E+

d1,χ2 difference

is the difference of their expectation values. The same can be said about the variance of
E+
d2,χ2 −E+

d1,χ2 , as it can be calculated from the square root of the individual E+
d2,χ2 variations:

σd1,d2,∆E+ = |σd2,E+ − σd1,E+ | .

This additional rule makes it extremely simple to find the optimal degrees of freedom d, as there
is no need to calculate covariance matrices belonging to the different fit functions. This makes the
significance of a set of monomial kernels not only relatively true, but absolute. To optimize the
degree of freedom d with a certain significance level, it is enough to minimize E(E+

d,χ2) + sσd,E+ ,

where s can be arbitrarily chosen. Due to the characteristics of the χ2 distribution, optimizing
for the minimal expected E+

d,χ2 results in selecting features, a set of kernels that are at least 50%

significant.

5. Determining the right polynomial order
Selecting the right modeling function can be understood as a repeated hypothesis testing. One
must decide a priori about the null hypothesis and the series of hypotheses to test. In case
of fitting a polynomial function, the ordering seems trivial, going from a constant to higher
polynomial degree. However, with multivariate input xµ, a polynomial can be defined with a
different degree belonging to each µ index. In this case, one may still choose a common degree,
as the optimizing method described in the previous section allows the comparison of fit functions
differing in multiple degrees of freedom. A common polynomial order is special in the sense that
it is closed under the group of rotations and translations, treating the different µ directions
equally.

However, it is not possible to compare the loss functions of an infinite number of polynomials.
Not only because it is impracticable, but also because one must stop before the numerical errors
exceed the estimated uncertainties in E+

χ2 . It is not straightforward to estimate these numerical

errors, but the rule of thumb is, that it increases with both the number of polynomial degrees and
the number of input dimensions in the multivariate case. The polynomial degree necessitates
to calculate high powers of the input parameters, which both appears in the training and in



(a) dependence of the E(E+
χ2 ) expected loss

function on the degrees of freedom

(b) regression with a single 16 degree polyno-
mial

(c) regression with constants (d) regression with linear functions

Figure 1: Example of an univariate regression. The training sample is a uniform distribution in
x ∈ (−0.9, 0.9) and a Gaussian smearing in the y direction for every x. The E(E+

χ2) expected

loss function in fig. 1a has a minimum for the 16 degree polynomial in the examined range.
The curve below that belongs to the Eχ2 loss function evaluated with the optimal polynomial,
and by definition it can only decrease with additional degrees of freedom. The top curve is one
standard deviation above the expected loss function. Figure 1b shows the 16 degree optimal
polynomial with the largest uncertainties at the two boundaries of the sample. Figure 1c and 1d
shows the result of the regression with the splitting procedure described in the text, with allowed
maximal polynomial degrees nmax = 0 and 1 accordingly. Both of these regressions functions are
within one sigma of the conditional P(y|x) distribution and approximate the E(y|x) conditional
expectation value without picking up statistical noise.

the function evaluation phase. A double precision number can be thought of as a sixteen digit
decimal number, and though its nth power is expected to have a relative error of only n · 10−16,
the numerous subtractions and multiplications needed for the linear equation solver can easily
blow this up. In the univariate case, the numerical errors seems to become significant at the
polynomial degree around 20 for double precision and 24...30 for 128bit long double precision. In
the case of d input dimensions the size of the G matrix grows rapidly with the number of degrees
used, since the polynomial coefficients of the F (x) fit function are d-degree symmetric tensors,

with
(
n+d−1
n

)
free parameters. All of the free parameters in F (x) contribute to the size of the

G matrix. For 20 input dimensions a third degree polynomial has nearly 2000 free parameters,
resulting in G matrix size of 2000×2000. Although solving a linear equation with this only takes
a few seconds on a modern-day computer, this also means that more than a million instructions
are needed to express each unknown of the F (x) polynomial, resulting in large numerical errors.



(a) original (b) remodeled

Figure 2: Figure (a) shows a photo of a Chinese terra-cotta soldier, whose intensity map was
remodeled in fig. (b) in small patches with polynomials. The photo was treated as a random
sample, meaning prior knowledge of the uncertainty of the pixel intensities were neglected.
The region boundaries were determined with the algorithm described in text, based on the
principal axes of the input distribution. The regions were modeled with a two dimensional
linear polynomial, with a second layer of univariate regression upon it, to simulate a sigmoid-
like behavior. Over- and undershoots from the displayable range were rounded to the maximum
and minimum intensities accordingly. A photo instead of a real 3D distribution was chosen here
in order to demonstrate that this simple fitting and splitting method can detect the significant
features in the data while smoothing the small details, as one would require for a regression
method on a statistical sample.

6. Minimizing numerical errors
To overcome the problem of the high polynomial degrees and the large matrices, one can split
the sample into many smaller phase spaces, which may require smaller polynomial degrees. For
this one must decide on a maximum number of degrees nmax of the polynomial function which
is allowed in regression, and nmax + k, k > 1 for which the expected loss function is scanned. If
the optimal degree of the expected loss function is larger than nmax, one can apply a predefined
algorithm that splits the input phase space. One such algorithm for the univariate case simply
splits the input phase space at the x mean, as demonstrated on fig. 1. This requires practically
no additional computation, since the 〈x〉 was already calculated for the regression. The splitting
and fitting can be repeated until the full sample is regressed. A possible extension of this
approach in the multivariate case finds the multivariate mean 〈xµ〉 first, then splits the sample
at this point parallel to the principal axis which is given by the eigenvector with the largest



eigenvalue of the 〈xµxν〉 − 〈xµ〉〈xν〉 matrix; see fig. 2. These methods have the advantage that
they place the cut boundaries within the distribution, so the regression on these phase spaces are
less likely to produce degenerate solutions. A seemingly more optimal splitting method would be
finding the place where the fitted polynomial with nmax + 1 degrees have the largest derivative,
since this is a hard place to model with an nmax degree polynomial. However, it is non-trivial
to define and find this boundary in the multivariate case, and this boundary typically appear
nearby the tails of the x distribution, where the fitted function has the largest uncertainty.

7. Conclusions
The presented method is capable of modeling multivariate statistical data with polynomials by
detecting the significant features in the data. It is a fast and robust method, as most calculations
are computationally very simple and does not require numerical optimization. Similarly to the
statistical bootstrap method, the uncertainty of the regression function can be determined from
the training sample, but in this case analytically. In combination with a phase space splitting
method, it can be extended to fit very complex data, still maintaining numerical stability.
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