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Introduction

Scattering Amplitudes turn our theories into predictions:

The Evaluation of Scattering Amplitudes is necessary to test our
theoretical models and compare their prediction with the

experiments

There is a long tradition and extensive literature

The understanding of the structure of Scattering Amplitudes goes
in parallel with the development of tools for computations

Giovanni Ossola (City Tech) May 2013 2 / 28



Introduction

Scattering Amplitudes turn our theories into predictions:

The Evaluation of Scattering Amplitudes is necessary to test our
theoretical models and compare their prediction with the

experiments

There is a long tradition and extensive literature

The understanding of the structure of Scattering Amplitudes goes
in parallel with the development of tools for computations

Outline of this talk:

Motivation for higher order calculations

An overview of techniques employed for virtual one-loop amplitudes

Can we extend what we learned at one-loop to study a more general
problem?

For more details → several talks in Track 3
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The “Big Picture”
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Partons and Protons
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Perturbative expansion

Theoretical predictions should match the needs of the experiments

For many analyses, Leading-Order (LO) predictions are not sufficient →
we need higher orders in the perturbative expansion
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Why Higher Orders?

Reduce the Theoretical Error
Parametric Error (input parameters: PDF, masses, couplings...)
Truncation Error (missing Higher Orders)
Estimated by looking at the Scale-Dependence

Higgs + jet at NNLO

Boughezal at al. (2013)

Top-pair production at NNLO

Czakon, Fiedler, Mitov (2013)
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Why Higher Orders?

Reduce the Theoretical Error

Parametric Error (input parameters: PDF, masses, couplings...)
Truncation Error (missing Higher Orders)
Estimated by looking at the Scale-Dependence

Effects of Higher Order Corrections (NLO, NNLO, etc)

Large effects in the cross-section (in particular in QCD)
Changes in the shape of distributions
Loop-induced effects

At the LHC:

Distinguish the Signal from Backgrounds
Provide the “theory answers” to anomalies/new physics signals
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From LO to NLO
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Automated tools for Real & Subtraction
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One-loop – Notations

Any m-point one-loop amplitude can be written, before integration, as

A(q̄) =
N(q̄)

D̄0D̄1 · · · D̄m−1

where

D̄i = (q̄ + pi)
2 −m2

i , q̄2 = q2 − µ2 , D̄i = Di − µ2

Our task is to calculate, for each phase space point:

M =

∫

dnq̄ A(q̄) =

∫

dnq̄
N(q̄)

D̄0D̄1 . . . D̄m−1
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The traditional one-loop “master” formula

Passarino, Veltman (1979)

∫

dnq̄
N(q̄)

D̄i0D̄i1 . . . D̄m−1
=

m−1
∑

i0<i1<i2<i3

d(i0i1i2i3)

∫

dnq̄
1

D̄i0D̄i1D̄i2D̄i3

+
m−1
∑

i0<i1<i2

c(i0i1i2)

∫

dnq̄
1

D̄i0D̄i1D̄i2

+

m−1
∑

i0<i1

b(i0i1)

∫

dnq̄
1

D̄i0D̄i1

+

m−1
∑

i0

a(i0)

∫

dnq̄
1

D̄i0

+ rational terms
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One-Loop as a 3 step process

∫

dnq̄
N(q̄)

D̄i0D̄i1 . . . D̄m−1
=

∑

i

di Boxi +
∑

i

ci Trianglei

+
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R ,

1) Generation: Compute the unintegrated amplitudes for all diagrams
2) Reduction: Extract all coefficients and rational terms
3) Master Integrals: Calculate the Master Integrals (scalar integrals)

and combine with the coefficients
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One-Loop as a 3 step process

∫

dnq̄
N(q̄)

D̄i0D̄i1 . . . D̄m−1
=

∑

i

di Boxi +
∑

i

ci Trianglei

+
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R ,

1) Generation: Compute the unintegrated amplitudes for all diagrams

2) Reduction: Extract all coefficients and rational terms

3) Master Integrals: Calculate the Master Integrals (scalar integrals)
and combine with the coefficients

There are several techniques available for Generation+Reduction
and available codes to compute the one-loop Scalar Integrals

One-Loop Master Integrals: Ellis, Zanderighi; van Oldenborgh;

van Hameren; Binoth et al.; Hahn et al.
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Tensorial Reduction

The numerator function of any amplitude is a polynomial in the
integration momentum q

Each amplitude can be decomposed in a linear combination of
kinematic factors, which are q-independent, multiplied by tensors

of various ranks in q sitting on sets of Denominators

Tensor integrals can be written in terms of scalar integrals (or not!)

PROS: control over spurious singularities (Gram); fully algebraic.

Needs efficient computer algebra and smart book-keeping/caching

Denner, Dittmaier; Binoth et al.;

Hahn et al.; Fleisher, Riemann, Yundin.
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On-Shell Methods / Unitarity Cuts
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Generalized Unitarity

Generate loop momenta configurations that satisfy the cut

conditions (complex momenta)

For each configuration, compute and multiply the trees at the
corner of the cut diagram

Combine the results appropriately to get all the coefficients of the
scalar integrals

More subtleties for the triple cut (leakage from higher point functions)

Effectively reduces a loop computation to tree computation

(”fusing tree amplitudes into loop amplitudes”)

Bern, Dixon, Dunbar, Kosower;

Britto, Cachazo, Feng; Ellis, Giele, Kunszt, Melnikov
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Rational Term R

Cut-Constructible part vs Rational Term

R is “automatic” in the tensorial reduction (algebra in dimension d)

On-shell methods offer different options for calculation of R

Higher integer dimensions Giele, Kunszt, Melnikov

Loop-level on shell recursions Berger, Bern, Dixon, Forde and Kosower

Mass continuation method Badger

Tree-level like Feynman Rules G.O., Papadopoulos, Pittau; Draggiotis,
Garzelli, Malamos, Pittau; Shao, Zhang, Chao
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Integral-level vs Integrand-level

Description in terms of Master Integrals Ii → Integral Level

∫

dnq̄ A(q̄) =

∫

dnq̄
N(q̄)

D̄0D̄1 . . . D̄m−1
= c0I0 + c1I1 + . . .+ CnIn
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Integral-level vs Integrand-level

Description in terms of Master Integrals Ii → Integral Level

∫

dnq̄ A(q̄) =

∫

dnq̄
N(q̄)

D̄0D̄1 . . . D̄m−1
= c0I0 + c1I1 + . . .+ CnIn

Integrand Level → The N = N identity

N(q̄) =???

Challenge: write a complete expression at the l.h.s. for N(q̄)

powers of q and µ2

scalar products
reconstructed denominators D̄i
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Integrand-Level Approach

Integrand level decomposition:

N(q̄) =

n−1
∑

i<<m

∆ijkℓm(q̄)

n−1
∏

h 6=i ,j,k,ℓ,m

D̄h +

n−1
∑

i<<ℓ

∆ijkℓ(q̄)

n−1
∏

h 6=i ,j,k,ℓ

D̄h +

+

n−1
∑

i<<k

∆ijk (q̄)

n−1
∏

h 6=i ,j,k

D̄h +

n−1
∑

i<j

∆ij(q̄)

n−1
∏

h 6=i ,j

D̄h +

n−1
∑

i

∆i (q̄)

n−1
∏

h 6=i

D̄h
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N(q̄) =

n−1
∑

i<<m

∆ijkℓm(q̄)

n−1
∏

h 6=i ,j,k,ℓ,m

D̄h +

n−1
∑

i<<ℓ

∆ijkℓ(q̄)

n−1
∏

h 6=i ,j,k,ℓ

D̄h +

+

n−1
∑

i<<k

∆ijk (q̄)

n−1
∏

h 6=i ,j,k

D̄h +

n−1
∑

i<j

∆ij(q̄)

n−1
∏

h 6=i ,j

D̄h +

n−1
∑

i

∆i (q̄)

n−1
∏

h 6=i

D̄h

Recombining with the denominators:

A(q̄) =

n−1
∑

i<<m

∆ijkℓm(q̄)

D̄i D̄j D̄kD̄ℓD̄m

+

n−1
∑

i<<ℓ

∆ijkℓ(q̄)

D̄i D̄j D̄kD̄ℓ

+

n−1
∑

i<<k

∆ijk(q̄)

D̄i D̄j D̄k

+

+

n−1
∑

i<j

∆ij(q̄)

D̄i D̄j

+

n−1
∑

i

∆i (q̄)

D̄i

,

the decomposition exposes the multi-pole nature of the integrand
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Integrand-Level Approach

Integrand level decomposition:

N(q̄) =

n−1
∑

i<<m

∆ijkℓm(q̄)

n−1
∏

h 6=i ,j,k,ℓ,m

D̄h +

n−1
∑

i<<ℓ

∆ijkℓ(q̄)

n−1
∏

h 6=i ,j,k,ℓ

D̄h +

+

n−1
∑

i<<k

∆ijk (q̄)

n−1
∏

h 6=i ,j,k

D̄h +

n−1
∑

i<j

∆ij(q̄)

n−1
∏

h 6=i ,j

D̄h +

n−1
∑

i

∆i (q̄)

n−1
∏

h 6=i

D̄h

the functional form is process-independent, the process-dependent
coefficients are contained in the ∆’s

the Rational Term is automatically included

polynomial fitting replaces the integration (both sides are polynomial)

we can extract the coefficients going on-shell: we only need the
Numerator Function evaluated on the cuts

GO, Papadopoulos, Pittau;

Mastrolia, GO, Reiter, Tramontano
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Example: 4-particles process (in 4-dim)

N(q) = d + d̃(q) +

3
∑

i=0

[c(i) + c̃(q; i)]Di +

3
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

Di0Di1

+

3
∑

i0=0

[a(i0) + ã(q; i0)]Di 6=i0Dj 6=i0Dk 6=i0

We look for a q such that

D0 = D1 = D2 = D3 = 0

→ there are two solutions q±0
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Example: 4-particles process (in 4-dim)

N(q) = d + d̃(q)

Our “master formula” for q = q±0 is:

N(q±0 ) = [d + d̃ (w · q±0 )]

→ solve to extract the coefficients d and d̃
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Example: 4-particles process (in 4-dim)

N(q)− d − d̃(q) =
3

∑

i=0

[c(i) + c̃(q; i)]Di +
3

∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

Di0Di1

+

3
∑

i0=0

[a(i0) + ã(q; i0)]Di 6=i0Dj 6=i0Dk 6=i0

Then we can move to the extraction of c coefficients using

N ′(q) = N(q)− d − d̃(w · q)

and setting to zero three denominators (ex: D1 = 0, D2 = 0, D3 = 0)
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Example: 4-particles process (in 4-dim)

N(q)− d − d̃(q) = [c(0) + c̃(q; 0)]D0

We have infinite values of q for which

D1 = D2 = D3 = 0 and D0 6= 0

→ Here we need 7 of them to determine c(0) and c̃(q; 0)
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Integrand-Reduction via Laurent Expansion

The coefficients of the integrand can be extracted by performing a
Laurent expansion with respect to one of the free parameters which
appear in the solutions of the cut
corrections at the coefficient level replace the subtractions at the
integrand level

Advantages:

a ”lighter” reduction algorithm where fewer coefficients
4-cut decoupled from triple-, double-, and single-cut.
No more “sampling on the cuts”

This method has been implemented in the C++ library Ninja and
interfaced with GoSam: Preliminary tests show an improvement in the

computational performance

Mastrolia, Mirabella, Peraro

see also Forde; Badger
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Different Multi-Purpose Codes/Tools

Several Strategies = Many Computational Tools:

⋆ BlackHat [Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren]

⋆ Feynarts/Formcalc/LoopTools [Hahn et al.]

⋆ GoSam [Cullen, Greiner, Heinrich, Mastrolia, GO, Reiter, Tramontano, Luisoni]

⋆ Helac-NLO [Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek]

⋆ MadLoop [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]

⋆ NJet [Badger, Biedermann, Uwer, Yundin]

⋆ Openloops [Cascioli, Maierhöfer, Pozzorini]

⋆ Recola [Actis, Denner, Hofer, Scharf, Uccirati]

⋆ Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi]

The “NLO industrial revolution” = NLO Automation
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Different Multi-Purpose Codes/Tools

Several Strategies = Many Computational Tools:

⋆ BlackHat → Generalized Unitarity

⋆ Feynarts/Formcalc/LoopTools → Feynman Diagrams + Tens.Red./Integrand-Level

⋆ GoSam → Feynman Diagrams + Tens.Red./Integrand-Level

⋆ Helac-NLO → Tree-level recursion + Integrand-Level

⋆ MadLoop → Tree-level recursion + Integrand-Level

⋆ NJet → Generalized Unitarity

⋆ Openloops → Recursive Tensorial Reconstruction + Tens.Red./Integrand-Level

⋆ Recola → Recursive Tensorial Reconstruction + Tens.Red./Integrand-Level

⋆ Rocket → Generalized Unitarity

The “NLO industrial revolution” = NLO Automation
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Modularity, Automation, BLHA

Automation is crucial for multi-lop NLO calculations:

Optimization/Self-organization

Avoid human mistakes

Process-independent techniques

Different Levels of Automation: MC controls the OLP via BLHA
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what about higher loops?

Problem: at two loops (and higher), we do not have a
Standard Complete Basis of Master Integrals

recent work of Gluza, Kosower, Kajda; Schabinger

The most common (and successful) approach relies on:

Amplitude generation via Feynman diagrams

Reduction to a minimal set of MIs using IBPs (Laporta algorithm)

Direct Computation of the MIs (analytically or numerically)
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what about higher loops?

Problem: at two loops (and higher), we do not have a
Standard Complete Basis of Master Integrals

Can we extend what we learned at one-loop about to develop
alternative approaches for multi-loop reduction?

Integrand-level Techniques

Mastrolia, GO (2011); Badger, Frellersvig, Zhang; Kleiss, Malamos, Papadopoulos,

Verheyen; Zhang; Mastrolia, GO, Mirabella, Peraro; Feng, Huang; Huang, Zhang

Maximal Unitarity

Kosower, Larsen (2011); Johansson, Kosower, Larsen; Larsen, Caron-Huot
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Integrand-Level Strategy

Let’s consider a two-loop integral with n denominators:
∫

dq dk
N(q, k)

D̄1D̄2 . . . D̄n

As in the one-loop case, we want to construct an identity for the
integrands:

N(q, k) =

n
∑

i1<<i8

∆i1,...,i8(q, k)

n
∏

h 6=i1,...,i8

D̄h + . . .+

n
∑

i1<<i2

∆i1,i2(q, k)

n
∏

h 6=i1,i2

D̄h

A(q, k) =

n
∑

i1<<i8

∆i1,...,i8(q, k)

D̄i1D̄i2 . . . D̄i8

+

n
∑

i1<<i7

∆i1,...,i7(q, k)

D̄i1D̄i2 . . . D̄i7

+ . . .+

n
∑

i1<<i2

∆i1,i2(q, k)

D̄i1D̄i2

Which terms appear in the above expressions?

What is the general form of the residues ∆i1,...,im ?

Collaboration with P.Mastrolia, E.Mirabella, T.Peraro, U.Schubert
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Integrand-Level Strategy

Mastrolia, GO, Mirabella, Peraro

Let’s look at the on-shell conditions, and impose

D1 = D2 = . . . = Dn = 0

1) There are no solutions → reducible

→ The n-denominator integrand can be written in terms of integrands with
(n − 1) denominators
→ it is fully reducible in terms of lower point functions

i.e. a six-point function at one-loop
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Integrand-Level Strategy

Mastrolia, GO, Mirabella, Peraro

Let’s look at the on-shell conditions, and impose

D1 = D2 = . . . = Dn = 0

1) There are no solutions → reducible

2) The cut has solutions → there is a residue ∆

We divide the numerator modulo the Gröbner basis of the n-ple cut (a set of
polynomials vanishing on the same on-shell cuts of the denominators).
→ The remainder of the division is the residue of the n-ple cut.
→ The quotients generate integrands with (n − 1) denominators.
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Integrand-Level Strategy

Mastrolia, GO, Mirabella, Peraro

Let’s look at the on-shell conditions, and impose

D1 = D2 = . . . = Dn = 0

1) There are no solutions → reducible

2) The cut has solutions → there is a residue ∆

3) Finite number of solutions ns → Maximum Cut

→ “Maximum Cut” i.e. a four-point function at one-loop (in 4-dim)
→ its residue is a univariate polynomial parametrized by ns coefficients
→ the corresponding residue can always be reconstructed at the cut

→ the residue is determined as in the previous case
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“On-shell” in Algebraic Geometry Language

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)

where z = components of the loop momenta

Ideal: Ji1···in = 〈Di1 , · · · ,Din〉

Gröbner basis Gi1···in : same zero as the denominators

Multivariate division of Ni1···in modulo Gi1···in

Ni1···in(z) = Γi1···in +∆i1···in(z)

The quotient Γi1···in can be expressed in terms of denominators

Γi1···in =

n
∑

κ=1

Ni1···iκ−1 iκ+1···in(ζ)D̄iκ(ζ)

Which provides the Recursive Formula

Ii1···in =
n

∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

D̄i1 · · · D̄in
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Two-loop Photon Self-Energy in QED

Mastrolia, Peraro (2013)
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Conclusions/Outlook

Mini-collection of “Conclusions” form the past 5 years:
“Can we achieve at NLO the same degree of automation of the LO?”
“This method is potentially a good candidate for NLO automation”
“A generic NLO calculator seems feasible”
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Conclusions/Outlook

At present, there is a great variety of methods available for NLO scattering
amplitudes: Old ideas merged with New Ideas

Tensorial Reduction

Generalized Unitarity

Integrand-level reduction

Techniques for the Rational Terms

Trees “recycled” into loops

Automation of Feynman Diagrams

On-shell tree-amplitudes

Off-shell currents

Recursion Relations

Tensorial Reconstruction
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Tensorial Reconstruction

OLP integrated inside the MC (or via BLHA) to generate theoretical prediction for
a large variety of processes: high multiplicities, several scales, effective vertices . . .
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Conclusions/Outlook

At present, there is a great variety of methods available for NLO scattering
amplitudes: Old ideas merged with New Ideas

Tensorial Reduction

Generalized Unitarity

Integrand-level reduction

Techniques for the Rational Terms

Trees “recycled” into loops

Automation of Feynman Diagrams

On-shell tree-amplitudes

Off-shell currents

Recursion Relations

Tensorial Reconstruction

OLP integrated inside the MC (or via BLHA) to generate theoretical prediction for
a large variety of processes: high multiplicities, several scales, effective vertices . . .

Ideas + Automation = NLO Revolution

“Will we achieve at NNLO the same degree of automation of the NLO?”
(not a serious question, but...)
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