AUTOMATED COMPUTATION OF SCATTERING AMPLITUDES

Giovanni Ossola

New York City College of Technology City University of New York (CUNY)

ACAT 2013

15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research

Institute of High Energy Physics, Beijing, May 16 - 21, 2013

Giovanni Ossola (City Tech)

INTRODUCTION

Scattering Amplitudes turn our theories into predictions:

- The Evaluation of Scattering Amplitudes is necessary to test our theoretical models and compare their prediction with the experiments
- There is a long tradition and extensive literature
- The **understanding of the structure** of Scattering Amplitudes goes in parallel with the **development of tools** for computations

INTRODUCTION

Scattering Amplitudes turn our theories into predictions:

- The Evaluation of Scattering Amplitudes is necessary to test our theoretical models and compare their prediction with the experiments
- There is a long tradition and extensive literature
- The **understanding of the structure** of Scattering Amplitudes goes in parallel with the **development of tools** for computations Outline of this talk:
 - Motivation for higher order calculations
 - An overview of techniques employed for virtual one-loop amplitudes
 - Can we extend what we learned at one-loop to study a more general problem?

For more details \rightarrow several talks in $Track\ 3$

The "Big Picture"

PARTONS AND PROTONS

PERTURBATIVE EXPANSION

Theoretical predictions should match the needs of the experiments

For many analyses, Leading-Order (LO) predictions are not sufficient \rightarrow we need higher orders in the perturbative expansion

Giovanni Ossola (City Tech)

May 2013 5 / 28

WHY HIGHER ORDERS?

• Reduce the Theoretical Error

- Parametric Error (input parameters: PDF, masses, couplings...)
- Truncation Error (missing Higher Orders)
- Estimated by looking at the Scale-Dependence

WHY HIGHER ORDERS?

• Reduce the Theoretical Error

- Parametric Error (input parameters: PDF, masses, couplings...)
- Truncation Error (missing Higher Orders)
- Estimated by looking at the Scale-Dependence
- Effects of Higher Order Corrections (NLO, NNLO, etc)
 - Large effects in the cross-section (in particular in QCD)
 - Changes in the shape of distributions
 - Loop-induced effects
- At the LHC:
 - Distinguish the Signal from Backgrounds
 - Provide the "theory answers" to anomalies/new physics signals

FROM LO TO NLO

Automated tools for Real & Subtraction

Giovanni Ossola (City Tech)

One-loop - Notations

Any *m*-point one-loop amplitude can be written, before integration, as

$$A(ar{q}) = rac{N(ar{q})}{ar{D}_0 ar{D}_1 \cdots ar{D}_{m-1}}$$

where

$$ar{D}_i = (ar{q} + p_i)^2 - m_i^2$$
 , $ar{q}^2 = q^2 - \mu^2$, $ar{D}_i = D_i - \mu^2$

Our task is to calculate, for each phase space point:

$$\mathcal{M} = \int d^n \bar{q} \ \mathcal{A}(\bar{q}) = \int d^n \bar{q} \frac{\mathcal{N}(\bar{q})}{\bar{D}_0 \bar{D}_1 \dots \bar{D}_{m-1}}$$

Giovanni Ossola (City Tech)

THE TRADITIONAL ONE-LOOP "MASTER" FORMULA

Passarino, Veltman (1979)

$$\int d^{n}\bar{q} \frac{N(\bar{q})}{\bar{D}_{i_{0}}\bar{D}_{i_{1}}\dots\bar{D}_{m-1}} = \sum_{i_{0}$$

ONE-LOOP AS A 3 STEP PROCESS

$$\int d^{n}\bar{q} \frac{N(\bar{q})}{\bar{D}_{i_{0}}\bar{D}_{i_{1}}\dots\bar{D}_{m-1}} = \sum_{i} d_{i} \operatorname{Box}_{i} + \sum_{i} c_{i} \operatorname{Triangle}_{i} + \sum_{i} b_{i} \operatorname{Bubble}_{i} + \sum_{i} a_{i} \operatorname{Tadpole}_{i} + \operatorname{R},$$

- 1) Generation: Compute the unintegrated amplitudes for all diagrams
- 2) Reduction: Extract all coefficients and rational terms
- 3) **Master Integrals**: Calculate the Master Integrals (scalar integrals) and combine with the coefficients

$$=\Sigma + \Sigma + \Sigma + \Sigma + \Sigma + R$$

ONE-LOOP AS A 3 STEP PROCESS

$$\int d^{n}\bar{q} \frac{N(\bar{q})}{\bar{D}_{i_{0}}\bar{D}_{i_{1}}\dots\bar{D}_{m-1}} = \sum_{i} d_{i} \operatorname{Box}_{i} + \sum_{i} c_{i} \operatorname{Triangle}_{i} + \sum_{i} b_{i} \operatorname{Bubble}_{i} + \sum_{i} a_{i} \operatorname{Tadpole}_{i} + \operatorname{R},$$

- 1) Generation: Compute the unintegrated amplitudes for all diagrams
- 2) Reduction: Extract all coefficients and rational terms
- 3) **Master Integrals**: Calculate the Master Integrals (scalar integrals) and combine with the coefficients

There are several techniques available for Generation+Reduction and available codes to compute the one-loop Scalar Integrals

> One-Loop Master Integrals: Ellis, Zanderighi; van Oldenborgh; van Hameren; Binoth et al.; Hahn et al.

TENSORIAL REDUCTION

• The numerator function of any amplitude is a **polynomial** in the integration momentum q

$$\mathcal{N}(\bar{q}) = \sum_{r=0}^{R} C_{\mu_1 \dots \mu_r} \bar{q}^{\mu_1} \dots \bar{q}^{\mu_r}$$

- Each amplitude can be decomposed in a linear combination of **kinematic factors**, which are **q-independent**, multiplied by **tensors of various ranks in q** sitting on sets of Denominators
- Tensor integrals can be written in terms of scalar integrals (or not!)
- PROS: control over spurious singularities (Gram); fully algebraic.
- Needs efficient computer algebra and smart book-keeping/caching

Denner, Dittmaier; Binoth et al.; Hahn et al.; Fleisher, Riemann, Yundin.

ON-SHELL METHODS / UNITARITY CUTS

Giovanni Ossola (City Tech)

GENERALIZED UNITARITY

- Generate loop momenta configurations that satisfy the cut conditions (complex momenta)
- For each configuration, **compute and multiply the trees** at the corner of the cut diagram
- Combine the results appropriately to **get all the coefficients** of the scalar integrals

- More subtleties for the triple cut (leakage from higher point functions)
- Effectively reduces a loop computation to tree computation ("fusing tree amplitudes into loop amplitudes")

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Ellis, Giele, Kunszt, Melnikov

Rational Term ${\bm \mathsf{R}}$

Cut-Constructible part vs Rational Term

R is "automatic" in the tensorial reduction (algebra in dimension d)

On-shell methods offer different options for calculation of R

- Higher integer dimensions Giele, Kunszt, Melnikov
- Loop-level on shell recursions Berger, Bern, Dixon, Forde and Kosower
- Mass continuation method Badger
- Tree-level like Feynman Rules G.O., Papadopoulos, Pittau; Draggiotis, Garzelli, Malamos, Pittau; Shao, Zhang, Chao

INTEGRAL-LEVEL VS INTEGRAND-LEVEL

Description in terms of Master Integrals $I_i \rightarrow$ Integral Level

$$\int d^{n}\bar{q} A(\bar{q}) = \int d^{n}\bar{q} \frac{N(\bar{q})}{\bar{D}_{0}\bar{D}_{1}\dots\bar{D}_{m-1}} = c_{0}l_{0} + c_{1}l_{1} + \dots + C_{n}l_{n}$$

INTEGRAL-LEVEL VS INTEGRAND-LEVEL

Description in terms of Master Integrals $I_i \rightarrow$ Integral Level

$$\int d^{n}\bar{q} A(\bar{q}) = \int d^{n}\bar{q} \frac{N(\bar{q})}{\bar{D}_{0}\bar{D}_{1}\dots\bar{D}_{m-1}} = c_{0}l_{0} + c_{1}l_{1} + \dots + C_{n}l_{n}$$

Integrand Level \rightarrow The N = N identity

$$N(\bar{q}) = ???$$

Challenge: write a complete expression at the l.h.s. for $N(\bar{q})$

- powers of q and μ^2
- scalar products
- reconstructed denominators \bar{D}_i

INTEGRAND-LEVEL APPROACH

Integrand level decomposition:

$$\begin{split} \mathcal{N}(\bar{q}) &= \sum_{i < < m}^{n-1} \Delta_{ijk\ell m}(\bar{q}) \prod_{h \neq i, j, k, \ell, m}^{n-1} \bar{D}_h + \sum_{i < < \ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i, j, k, \ell}^{n-1} \bar{D}_h + \\ &+ \sum_{i < < k}^{n-1} \Delta_{ijk}(\bar{q}) \prod_{h \neq i, j, k}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h \neq i, j}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_i(\bar{q}) \prod_{h \neq i}^{n-1} \bar{D}_h \end{split}$$

INTEGRAND-LEVEL APPROACH

Integrand level decomposition:

$$N(\bar{q}) = \sum_{i < < m}^{n-1} \Delta_{ijk\ell m}(\bar{q}) \prod_{h \neq i, j, k, \ell, m}^{n-1} \bar{D}_h + \sum_{i < < \ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i, j, k, \ell}^{n-1} \bar{D}_h + \sum_{i < < k}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i, j, k}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h \neq i, j}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h \neq i, j}^{n-1} \bar{D}_h$$

Recombining with the denominators:

$$\begin{split} \mathcal{A}(\bar{q}) &= \sum_{i < < m}^{n-1} \frac{\Delta_{ijk\ell m}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell \bar{D}_m} + \sum_{i < < \ell}^{n-1} \frac{\Delta_{ijk\ell}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_\ell} + \sum_{i < < k}^{n-1} \frac{\Delta_{ijk}(\bar{q})}{\bar{D}_i \bar{D}_j \bar{D}_k} + \\ &+ \sum_{i < i}^{n-1} \frac{\Delta_{ij}(\bar{q})}{\bar{D}_i \bar{D}_j} + \sum_{i}^{n-1} \frac{\Delta_i(\bar{q})}{\bar{D}_i} , \end{split}$$

the decomposition exposes the multi-pole nature of the integrand

INTEGRAND-LEVEL APPROACH

Integrand level decomposition:

$$N(\bar{q}) = \sum_{i < < m}^{n-1} \Delta_{ijk\ell m}(\bar{q}) \prod_{h \neq i,j,k,\ell,m}^{n-1} \bar{D}_h + \sum_{i < < \ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i,j,k,\ell}^{n-1} \bar{D}_h + \sum_{i < < \ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i,j,k,\ell}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h \neq i,j}^{n-1} \bar{D}_h$$

- the functional form is process-independent, the process-dependent coefficients are contained in the Δ's
- the Rational Term is automatically included
- polynomial fitting replaces the integration (both sides are polynomial)
- we can extract the coefficients going on-shell: we only need the Numerator Function evaluated on the cuts

GO, Papadopoulos, Pittau; Mastrolia, GO, Reiter, Tramontano

$$\begin{split} \mathcal{N}(q) &= d + \tilde{d}(q) + \sum_{i=0}^{3} \left[c(i) + \tilde{c}(q;i) \right] D_{i} + \sum_{i_{0} < i_{1}}^{3} \left[b(i_{0}i_{1}) + \tilde{b}(q;i_{0}i_{1}) \right] D_{i_{0}} D_{i_{1}} \\ &+ \sum_{i_{0} = 0}^{3} \left[a(i_{0}) + \tilde{a}(q;i_{0}) \right] D_{i \neq i_{0}} D_{j \neq i_{0}} D_{k \neq i_{0}} \end{split}$$

We look for a q such that

$$D_0 = D_1 = D_2 = D_3 = 0$$

 \rightarrow there are two solutions q_0^{\pm}

$$N(q) = d + \tilde{d}(q)$$

Our "master formula" for $q = q_0^{\pm}$ is:

$$N(q_0^{\pm}) = [d + \tilde{d} (w \cdot q_0^{\pm})]$$

ightarrow solve to extract the coefficients d and $ilde{d}$

$$N(q) - d - \tilde{d}(q) = \sum_{i=0}^{3} [c(i) + \tilde{c}(q; i)] D_i + \sum_{i_0 < i_1}^{3} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] D_{i_0} D_{i_1} \\ + \sum_{i_0 = 0}^{3} [a(i_0) + \tilde{a}(q; i_0)] D_{i \neq i_0} D_{j \neq i_0} D_{k \neq i_0}$$

Then we can move to the extraction of *c* coefficients using

$$N'(q) = N(q) - d - \tilde{d}(w \cdot q)$$

and setting to zero three denominators (ex: $D_1 = 0$, $D_2 = 0$, $D_3 = 0$)

$$N(q) - d - \tilde{d}(q) = [c(0) + \tilde{c}(q; 0)] D_0$$

We have infinite values of q for which

 $D_1 = D_2 = D_3 = 0$ and $D_0 \neq 0$

 \rightarrow Here we need 7 of them to determine c(0) and $\tilde{c}(q; 0)$

INTEGRAND-REDUCTION VIA LAURENT EXPANSION

- The coefficients of the integrand can be extracted by performing a Laurent expansion with respect to one of the free parameters which appear in the solutions of the cut
- corrections at the coefficient level replace the subtractions at the integrand level

Advantages:

- a "lighter" reduction algorithm where fewer coefficients
- 4-cut decoupled from triple-, double-, and single-cut.
- No more "sampling on the cuts"

This method has been implemented in the C++ library Ninja and interfaced with GoSam: Preliminary tests show an improvement in the computational performance

Mastrolia, Mirabella, Peraro see also Forde; Badger

DIFFERENT MULTI-PURPOSE CODES/TOOLS

Several Strategies = Many Computational Tools:

- ★ BlackHat [Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren]
- ★ Feynarts/Formcalc/LoopTools [Hahn et al.]
- ★ GoSam [Cullen, Greiner, Heinrich, Mastrolia, GO, Reiter, Tramontano, Luisoni]
- ★ Helac-NLO [Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek]
- ★ MadLoop [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]
- ★ NJet [Badger, Biedermann, Uwer, Yundin]
- ★ Openloops [Cascioli, Maierhöfer, Pozzorini]
- ★ Recola [Actis, Denner, Hofer, Scharf, Uccirati]
- ★ Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi]

DIFFERENT MULTI-PURPOSE CODES/TOOLS

Several Strategies = Many Computational Tools:

- ★ BlackHat → Generalized Unitarity
- ★ Feynarts/Formcalc/LoopTools → Feynman Diagrams + Tens.Red./Integrand-Level
- ★ GoSam → Feynman Diagrams + Tens.Red./Integrand-Level
- ★ Helac-NLO \rightarrow Tree-level recursion + Integrand-Level
- ★ MadLoop \rightarrow Tree-level recursion + Integrand-Level
- ★ NJet → Generalized Unitarity
- ★ Openloops \rightarrow Recursive Tensorial Reconstruction + Tens.Red./Integrand-Level
- ★ Recola → Recursive Tensorial Reconstruction + Tens.Red./Integrand-Level
- ★ Rocket → Generalized Unitarity

MODULARITY, AUTOMATION, BLHA

Automation is crucial for multi-lop NLO calculations:

- Optimization/Self-organization
- Avoid human mistakes
- Process-independent techniques

Different Levels of Automation: MC controls the OLP via BLHA

WHAT ABOUT HIGHER LOOPS?

Problem: at two loops (and higher), we do not have a Standard Complete Basis of Master Integrals

recent work of Gluza, Kosower, Kajda; Schabinger

The most common (and successful) approach relies on:

- Amplitude generation via Feynman diagrams
- Reduction to a minimal set of MIs using IBPs (Laporta algorithm)
- Direct Computation of the MIs (analytically or numerically)

Problem: at two loops (and higher), we do not have a Standard Complete Basis of Master Integrals

Can we extend what we learned at one-loop about to develop alternative approaches for multi-loop reduction?

Integrand-level Techniques

Mastrolia, GO (2011); Badger, Frellersvig, Zhang; Kleiss, Malamos, Papadopoulos, Verheyen; Zhang; Mastrolia, GO, Mirabella, Peraro; Feng, Huang; Huang, Zhang

Maximal Unitarity

Kosower, Larsen (2011); Johansson, Kosower, Larsen; Larsen, Caron-Huot

Let's consider a two-loop integral with n denominators:

$$\int dq \ dk \ \frac{N(q,k)}{\bar{D}_1\bar{D}_2\dots\bar{D}_n}$$

As in the one-loop case, we want to construct an identity for the integrands:

$$\begin{split} & \mathsf{N}(q,k) = \sum_{i_1 < < i_8}^n \Delta_{i_1, \dots, i_8}(q,k) \prod_{h \neq i_1, \dots, i_8}^n \bar{D}_h + \dots + \sum_{i_1 < < i_2}^n \Delta_{i_1, i_2}(q,k) \prod_{h \neq i_1, i_2}^n \bar{D}_h \\ & \mathsf{A}(q,k) = \sum_{i_1 < < i_8}^n \frac{\Delta_{i_1, \dots, i_8}(q,k)}{\bar{D}_{i_1} \bar{D}_{i_2} \dots \bar{D}_{i_8}} + \sum_{i_1 < < i_7}^n \frac{\Delta_{i_1, \dots, i_7}(q,k)}{\bar{D}_{i_1} \bar{D}_{i_2} \dots \bar{D}_{i_7}} + \dots + \sum_{i_1 < < i_2}^n \frac{\Delta_{i_1, i_2}(q,k)}{\bar{D}_{i_1} \bar{D}_{i_2}} \end{split}$$

- Which terms appear in the above expressions?
- What is the general form of the residues $\Delta_{i_1,...,i_m}$?

Collaboration with P.Mastrolia, E.Mirabella, T.Peraro, U.Schubert

Giovanni Ossola (City Tech)

Mastrolia, GO, Mirabella, Peraro

Let's look at the on-shell conditions, and impose

$$D_1=D_2=\ldots=D_n=0$$

1) There are no solutions \rightarrow reducible

- \rightarrow The *n*-denominator integrand can be written in terms of integrands with (n-1) denominators
- \rightarrow it is fully reducible in terms of lower point functions
- i.e. a six-point function at one-loop

Mastrolia, GO, Mirabella, Peraro

Let's look at the on-shell conditions, and impose

$$D_1=D_2=\ldots=D_n=0$$

- 1) There are no solutions \rightarrow reducible
- 2) The cut has solutions \rightarrow there is a **residue** Δ

We divide the numerator modulo the Gröbner basis of the *n*-ple cut (a set of polynomials vanishing on the same on-shell cuts of the denominators).

- \rightarrow The *remainder* of the division is the *residue* of the *n*-ple cut.
- \rightarrow The *quotients* generate integrands with (n-1) denominators.

Mastrolia, GO, Mirabella, Peraro

Let's look at the on-shell conditions, and impose

$$D_1=D_2=\ldots=D_n=0$$

- 1) There are no solutions \rightarrow reducible
- 2) The cut has solutions \rightarrow there is a **residue** Δ
- 3) Finite number of solutions $n_s \rightarrow Maximum Cut$

 \rightarrow "Maximum Cut" i.e. a four-point function at one-loop (in 4-dim)

- \rightarrow its residue is a univariate polynomial parametrized by $\mathit{n_s}$ coefficients
- ightarrow the corresponding residue can always be reconstructed at the cut
- \rightarrow the residue is determined as in the previous case

"On-shell" in Algebraic Geometry Language

$$\mathcal{I}_{i_1\cdots i_n} = rac{\mathcal{N}_{i_1\cdots i_n}(z)}{D_{i_1}(z)\cdots D_{i_n}(z)}$$

where z = components of the loop momenta

• Ideal:
$$\mathcal{J}_{i_1\cdots i_n} = \langle D_{i_1}, \cdots, D_{i_n} \rangle$$

- Gröbner basis G_{i1}...in: same zero as the denominators
- Multivariate division of $\mathcal{N}_{i_1\cdots i_n}$ modulo $\mathcal{G}_{i_1\cdots i_n}$

$$\mathcal{N}_{i_1\cdots i_n}(z) = \Gamma_{i_1\cdots i_n} + \Delta_{i_1\cdots i_n}(z)$$

• The quotient $\Gamma_{i_1 \cdots i_n}$ can be expressed in terms of denominators

$$\Gamma_{i_1\cdots i_n} = \sum_{\kappa=1}^n \mathcal{N}_{i_1\cdots i_{\kappa-1}i_{\kappa+1}\cdots i_n}(\zeta) \bar{D}_{i_\kappa}(\zeta)$$

Which provides the Recursive Formula

$$\mathcal{I}_{i_1\cdots i_n} = \sum_{\kappa=1}^n \mathcal{I}_{i_1\cdots i_{\kappa-1}i_{\kappa+1}i_n} + \frac{\Delta_{i_1\cdots i_n}}{\overline{D}_{i_1}\cdots \overline{D}_{i_n}}$$

TWO-LOOP PHOTON SELF-ENERGY IN QED

Mastrolia, Peraro (2013)

→ higher powers of propagators are not problematic

- Example: QED photon self energy @ two loops $\mathcal{I} = \frac{\Delta_{11234}}{D_1^2 D_2 D_3 D_4} + \frac{\Delta_{1234}}{D_1 D_2 D_3 D_4} + \frac{\Delta_{1124}}{D_1^2 D_2 D_4} + \frac{\Delta_{234}}{D_2 D_3 D_4} + \frac{\Delta_{124}}{D_1 D_2 D_4}$ $\mathcal{N} = 16[\mu_{11}^2 - \mathbf{k}_1^2 (\mathbf{k}_1 \cdot p)] + \cdots$ $d \text{ dimensions: } \vec{k}_i^{\mu} = \mathbf{k}_i^{\mu} + \vec{\mu}_i \quad \mu_{ij} \equiv \vec{\mu}_i \cdot \vec{\mu}_j$
 - Reduction completed after five steps

$$\mathcal{I} = \frac{8\mu_{11}(2\mu_{11} - p^2)}{D_1^2 D_2 D_3 D_4} - \frac{8(\mu_{11} + p^2)}{D_1 D_2 D_3 D_4} + \frac{8\mu_{11}}{D_1^2 D_2 D_4} - \frac{8}{D_2 D_3 D_4} + \frac{8}{D_1 D_2 D_4}$$

- \square ... performed for the full \mathcal{N} ...
- ... and for the other diagrams

Giovanni Ossola (City Tech)

Conclusions/Outlook

Mini-collection of "Conclusions" form the past 5 years:
"Can we achieve at NLO the same degree of automation of the LO?"
"This method is potentially a good candidate for NLO automation"
"A generic NLO calculator seems feasible"

CONCLUSIONS/OUTLOOK

 At present, there is a great variety of methods available for NLO scattering amplitudes: Old ideas merged with New Ideas

Tensorial Reduction Generalized Unitarity Integrand-level reduction Techniques for the Rational Terms Trees "recycled" into loops Automation of Feynman Diagrams On-shell tree-amplitudes Off-shell currents Recursion Relations Tensorial Reconstruction

CONCLUSIONS/OUTLOOK

 At present, there is a great variety of methods available for NLO scattering amplitudes: Old ideas merged with New Ideas

Tensorial ReductionAutomation of Feynman DiagramsGeneralized UnitarityOn-shell tree-amplitudesIntegrand-level reductionOff-shell currentsTechniques for the Rational TermsRecursion RelationsTrees "recycled" into loopsTensorial Reconstruction

 OLP integrated inside the MC (or via BLHA) to generate theoretical prediction for a large variety of processes: high multiplicities, several scales, effective vertices . . .

CONCLUSIONS/OUTLOOK

 At present, there is a great variety of methods available for NLO scattering amplitudes: Old ideas merged with New Ideas

Tensorial ReductionAutomation of Feynman DiagramsGeneralized UnitarityOn-shell tree-amplitudesIntegrand-level reductionOff-shell currentsTechniques for the Rational TermsRecursion RelationsTrees "recycled" into loopsTensorial Reconstruction

 OLP integrated inside the MC (or via BLHA) to generate theoretical prediction for a large variety of processes: high multiplicities, several scales, effective vertices . . .

Ideas + Automation = NLO Revolution

"Will we achieve at NNLO the same degree of automation of the NLO?"

(not a serious question, but...)

Giovanni Ossola (City Tech)